Coexistence, saturation and invasion resistance in simulated plant assemblages

A popular hypothesis is that species-rich systems are less susceptible to invasion. This hypothesis is based on the idea that species richness correlates with community saturation so that establishment by a new species is more difficult in saturated communities. Little attention has been focussed on how changing assumptions about the processes regulating species richness will alter community properties such as invasion resistance. Here, we simulate plant community assembly using four models that have different underlying coexistence mechanisms (and so differ in the amount of available niche space) and subject them to invasion. We created species richness gradients by comparing between models or by considering the output of a single model with different parameter values. We found that the relation between species richness and invasion resistance depends critically on the model considered and the cause of the species richness gradient. Overall, our results suggest that species richness does not necessarily correlate with saturation and is likely to be a poor predictor of invasion resistance. These results provide a possible explanation for the variety of outcomes reported in recent experimental and observational studies that examine the relationship between species richness and invasion resistance. We conclude that consideration of the processes regulating species richness is crucial for a successful understanding of invasion resistance along species richness gradients.