|
Aim: Is high diversity in tropical and subtropical mountains due to topographical complexity alone or a combination of topography and temperature seasonality? Here, we aim to assess the contribution of these two factors on Rhododendron diversity in China. Specifically, we evaluate how low temperature seasonality in subtropical China jointly with heterogeneous environment accounts for increased species diversity across montane landscapes relative to those of the more seasonal temperate zone in north China.
Location: China.
Methods: We compiled distributional data for all Rhododendron species in China and then estimated the species richness patterns of rare versus common species, and of shrubs versus trees at spatial resolutions of 50 x 50 km. Bivariate regressions were performed to evaluate the effects of environmental variables on species richness followed by stepwise regression to select the best set of predictors.
Results: The variables of habitat heterogeneity and climate seasonality were consistently the strongest predictors of species richness for all species groups, while the contribution of water and energy variables was proportionately much lower. Winter coldness had very low predictive power, which indicated that unlike other woody plants, the northward dispersal of Rhododendron is not limited by cold winter temperature.
Main conclusions: High Rhododendron diversity in south-west China appears to be influenced jointly by the climatic gradients induced by topographical complexity and temperature seasonality as suggested by Janzen's hypothesis. The increased topographical complexity in combination with low temperature seasonality in south-west China might have promoted species accumulation by offering more niche space, preventing extinction and providing increased opportunities for allopatric speciation. While our findings strongly indicate the effect of habitat heterogeneity on species diversity, they also suggest the role of seasonal uniformity of temperature for increased diversity towards the tropics. The effect of seasonality may, however, be more pronounced in plants because of their limited ability to use behaviour to avoid environmental influences. | |
|