|
Quantifying species-richness patterns along geographical gradients (typically latitude and elevation) has a long history in ecology and can be based on more-or-less complete censuses from a specified area (plot sampling), selective collection within a specified area (e.g. museum collections), or general information about species distributions (e.g. observations of extremes along the gradient, distribution maps). All these approaches require complete sampling to give the true richness in an area, but the richness pattern (i.e., the relative changes in richness along the gradient) may be estimated without complete sampling, although equal sampling between areas is necessary. This is relatively easy to do for fine-scale plot sampling, but rarely easy for other types of data. For data extracted from museum collections, a correct perception of the species richness pattern therefore depends on post-sampling treatment of data. Two commonly applied techniques for quantifying species richness patterns with these types of data are discussed, namely interpolation of species ranges and rarefaction. Such treatment may correct for unequal sampling in some instances, but may in other cases introduce artificial patterns. With incomplete sampling interpolation introduces an artificial humped pattern and rarefaction requires similar species abundance distributions to make unbiased comparisons among samples. One must therefore be cautious when applying these methods for estimating species richness patterns along geographical gradients. | |
|