SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts with constituent species to approximate the properties of assemblages. Here, we propose to unify the two approaches in a single `spatially explicit species assemblage modelling' (SESAM) framework. This framework uses relevant designations of initial species source pools for modelling, macroecological variables, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio-temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.