Molecular diversity and temporal variation of picoeukaryotes in two Arctic fjords, Svalbard

Picoeukaryotes (protists < 3 mu m) form an important component of Arctic marine ecosystems, although knowledge of their diversity and ecosystem functioning is limited. In this study, the molecular diversity and autotrophic biomass contribution of picoeukaryotes from January to June 2009 in two Arctic fjords at Svalbard were examined using 18S environmental cloning and size-fractioned chlorophyll a measurements. A total of 62 putative picoeukaryotic phylotypes were recovered from 337 positive clones. Putative picoeukaryotic autotrophs were mostly limited to one species: Micromonas pusilla, while the putative heterotrophic picoeukaryote assemblage was more diverse and dominated by uncultured marine stramenopiles (MAST) and marine alveolate groups. One MAST-1A phylotype was the only phylotype to be found in all clone libraries. The diversity of picoeukaryotes in general showed an inverse relationship with total autotrophic biomass, suggesting that the conditions dominating during the peak of the spring bloom may have a negative impact on picoeukaryote diversity. Picoplankton could contribute more than half of total autotrophic biomass before and after the spring bloom and benefited from an early onset of the growth season, whereas larger cells dominated the bloom itself.