Integration of non-indigenous species within the interspecific abundance-occupancy relationship

There is a broad consensus that habitat disturbance and introduction of non-indigenous species may dramatically modify community structure, particularly in insular ecosystems. However, it is less clear whether emergent macroecological patterns are similarly affected. The positive interspecific abundance–occupancy relationship (IAOR) is one of the most pervasive macroecological patterns, yet has rarely been analyzed for oceanic island assemblages. We use an extensive dataset for arthropods from six islands within the Azorean archipelago to test: (1) whether indigenous and non-indigenous species are distributed differently within the IAOR; and (2) to the extent that they are, can differences can be attributed to two indices of disturbance. We implemented modeling averaged methods using five of the most common IAOR models to derive an averaged IAOR fit for each island. After testing if species colonization status (indigenous versus non-indigenous) may explain the residuals of the IAOR, we identified true negative and positive outliers and tested the effect of colonization status on the likelihood of a species being a positive or negative outlier. We found that the indigenous and non-indigenous species are randomly distributed on both sides of the overall IAOR. Only for Flores Island, were non-indigenous species more aggregated than indigenous species. We were unable to detect a meaningful relationship between deviation from the IAOR and disturbance, despite the undoubted impact of both severe habitat loss and non-indigenous species on these oceanic islands. Our results show that the non-indigenous species have been integrated alongside indigenous species in the contemporary Azorean arthropod communities such that they are mostly undetectable by the study of the IAOR.