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Genetic diversity loss in the Anthropocene
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Anthropogenic habitat loss and climate change are reducing species’ geographic ranges, increasing
extinction risk and losses of species’ genetic diversity. Although preserving genetic diversity is
key to maintaining species’ adaptability, we lack predictive tools and global estimates of genetic
diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity
theory and population genetics to understand the loss of naturally occurring DNA mutations

with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from
20 plant and animal species, we show that genome-wide diversity follows a mutations-area
relationship power law with geographic area, which can predict genetic diversity loss from local
population extinctions. We estimate that more than 10% of genetic diversity may already be lost
for many threatened and nonthreatened species, surpassing the United Nations’ post-2020 targets

for genetic preservation.

nthropogenic habitat loss and climate

change () have led to the extinction of

hundreds of species over the past cen-

turies, and ~1 million more species

(~25% of all known species) are at risk
of extinction (2). Studies of species’ ranges,
however, have detected geographic range re-
ductions in at least 47% of surveyed plant and
animal species, likely in response to the past
centuries of anthropogenic activities (3) [see
(4) and table S17]. Though this loss might
seem inconsequential compared with losing
an entire species, this range contraction re-
duces genetic diversity, which dictates species’
ability to adapt to new environmental con-
ditions (5). The loss of geographic range can
spiral into a feedback loop, where genetic di-
versity loss further increases the risk of species
extinction (6, 7).

Although genetic diversity is a key dimen-
sion of biodiversity (8), it has been overlooked
in international conservation initiatives (9).
Only in 2021 did the United Nations (UN)
Convention of Biological Diversity propose
to preserve at least 90% of all species’ ge-
netic diversity (10, 1I). Recent meta-analyses
of animal populations with genetic marker
samples have been used as proxies to quan-
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tify recent genetic changes (12, 13). However,
theory and scalable approaches to estimate
genome-wide diversity loss across species
do not yet exist, impairing prioritization and
evaluation of conservation targets. Here, we
introduce a framework to estimate global
genetic diversity loss by bridging biodiver-
sity theory with population genetics and by
combining data on global ecosystem trans-
formations with newly available genomic
datasets.

The first studies that predicted biodiversity
reductions in response to habitat loss and
climate change in the 1990s and the 2000s
projected species extinctions using the rela-
tionship of biodiversity with geographic area,
termed the species-area relationship (SAR) (74)
(figs. S1 to S3). In this framework, ecosystems
with a larger area (4) harbor a larger number
of species (S) resulting from an equilibrium
among limited species dispersal, habitat hetero-
geneity, and colonization-extinction-speciation
dynamics. Thus, the more a study area is ex-
tended, the more species are found. The SAR
has been empirically shown to follow a power
law, S = A% It scales consistently across con-
tinents and ecosystems (75), with a higher &
characterizing ecosystems that are species
rich and highly spatially structured. Given
estimates of decreasing ecosystem area over
time (4,; > A,) due to human activities and
climate change, Thomas et al. (16) proposed
rough estimates of the percentage of species
extinctions in the 21st century ranging from
15 to 37%. Though this may be an oversim-
plification, the SAR has become a common
practical tool for policy groups, including
the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services
(IPBES) (2).

AKin to species richness, within-species

variation can be quantitatively described
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by the number of genetic mutations within a
species, defined here as DNA nucleotide var-
iants that appear in individuals of a spe-
cies. Although population genetics theory
has long established that larger populations
have higher genetic diversity (17), and ge-
ographicisolation between populations of
the same species results in geographically
separated accumulation of different muta-
tions, there have been no attempts to de-
scribe the extent of genetic diversity loss
driven by species’ geographic range reduction
using an analogous “mutations-area relation-
ship” (MAR).

We suspected that such a MAR must exist
given that another well-known assumption is
shared between SARs and population genetics,
namely that both species in ecosystems and
mutations in populations are typically found
in low frequencies, whereas relatively few occur
at high frequencies [those that prevail through
stochastic genetic drift or are favored by nat-
ural selection (78)]. This principle of “com-
monness of rarity” is well known for species
and, together with limited spatial dispersal of
organisms in the landscape, is a key statistical
condition for the power-law SAR (when a study
area is expanded, mostly rare local species are
newly identified). We then quantified the rarity
of mutations using 11,769,920 biallelic genetic
variants of the Arabidopsis thaliana 1001 Ge-
nomes dataset (Fig. 1A) (19) by fitting several
common models of species abundances (20) to
the distribution of mutation frequencies (g),
termed the site frequency spectrum in popu-
lation genetics (Fig. 1B and figs. S3, S4, S12,
and S13). The canonical L-shaped probability
distribution (1/q) of this spectrum, which is
expected under population-equilibrium and
the absence of natural selection processes,
fits these data well (Fig. 1B), although the more
parameter-rich Preston’s species abundance
log-normal model achieved the best Akaike
information criterion (AIC) value (tables S3
and S10). Despite some differences in fit,
these models all showcase the similarities
of abundance distributions between muta-
tions within species and species within eco-
systems, suggesting that they may also behave
similarly in their relationship to geographic
area (I8, 20).

To finally quantify how genetic diversity
within a species increases with geographic
area, we constructed the MAR by subsampling
regions of different sizes across A. thaliana’s
native range using more than 1000 georefer-
enced genomes (Fig. 1, A and C). As a metric
of genetic diversity, we modeled the number of
mutations in space (M, also referred to as the
number of segregating sites or allelic richness)
consistent with the species-centric approach
of SAR, which uses species richness as the
metric of biodiversity. The MAR also followed
the power law relationship M = c4%, where cis a
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constant and the scaling value is 2yag = 0.324
[95% confidence interval (95% CI) = 0.238
to 0.41] (Fig. 1C and tables S4 to S6). The
discovered power law is robust to different
methods of area quantification, subsampling
effects (fully nested, outward or inward), and
raster resolution (~10 to 1000 km) and is ad-
justed for limited sample sizes (figs. S14 to S18
and tables S7 to S9). The expected genetic
diversity increase that results only from more
individuals being sampled only accounts
for M = clog(4) = cA*~° [see theoretical
derivation (4); figs. S5 and S6 and tables S1
and S2]; thus, the MAR law is attributed to
fundamental evolutionary and ecological
forces of population genetic drift and spatial
natural selection that cause structuring of
genetic diversity across populations (with a
maximum gyag—1; fig. S5). MAR thus em-
erges in population genetics coalescent and
individual-based simulations in two dimen-
sions (figs. S6 to S8 and S10) and continuous

space (fig. S9), as well as in mainland-island
community assembly simulations according
to the unified neutral theory of biodiversity
(fig. S24).

We then asked whether MAR can predict the
loss of genetic diversity due to species’ range
contractions. We explored several scenarios of
range contraction in A. thaliana by removing
in silico grid cells in a map representing popu-
lations (Fig. 2B). Our simulations included ran-
dom local population extinction as if habitat
destruction was scattered across large con-
tinents, radial expansion of an extinction front
due to intense localized mortality, or local
extinction in the warmest regions within a
species range (3, 2I), among others (fig. S18).
The MAR-based predictions of genetic loss,
using 1 - (1 - A,/A4, YR and assuming syag =
0.3, conservatively followed the simulated lo-
cal loss in A. thaliana [pseudo-coefficient of
determination (R?) = 0.87 across all simu-
lations] (Fig. 2A and fig. S18).

To test the generality of the MAR, we
searched in public nucleotide repositories for
datasets of hundreds to thousands of whole-
genome-sequenced individuals for the same
species sampled across geographic areas within
their native ranges (Table 1). In total, we iden-
tified 20 wild plant and animal species with
such published resources and assembled a
dataset amassing a total of 10,095 individuals
of these species, with 1522 to 88,332,015 nat-
urally occurring genome-wide mutations per
species, covering a geographic area ranging
from 0.03 million to 115 million km? Fitting
the MAR for these diverse species, we recovered
Zvar Values centered around that of A. thaliana,
with many species overlapping in confidence
intervals, and a number of outliers [mean
(£SE) 2pmar = 0.31(£0.038), median = 0.26,
interquartile range (IQR) = £0.15, range =
0.10 to 0.82, mean (+SE) zyar scaled (2%yar) =
0.26 (+0.048); see Table 1, figs. S5 and S22,
table S10, and (4)].

Table 1. MAR across diverse species. Summary statistics of the number of individuals sampled broadly per species (with the final number of samples
analyzed after quality filters in parentheses), the number of naturally occurring mutations discovered through various DNA sequencing methods

(see table acronyms), and the total area covered by all the samples within a species (as a convex hull of coordinates). We also report the MAR
parameter zyag and its scaled version for low-sampling genomic effort per species and the percent area that needs to be kept for a species to maintain
90% of its genetic diversity calculated using z*\agr. Protected area predictions are not provided for threatened species because these have likely
already lost substantial genetic diversity and require protection of their full geographic range (indicated with “~"). CA, included in the California
Endangered Species Act; CR, Red List critically endangered; D, population decline reported in the Red List; GBS, genotyping by sequencing of biallelic
SNP markers; GC, genotyping chip; Herb., herbaceous plant; VU, Red List vulnerable; W, whole-genome resequencing or discovery SNP calling.

Species Groun Number of Number of Area ZMAR Z¥MAR Minimum
samples mutations  (km? x 10°) (95% Cl) (95% Cl) areaggq, (%)

Arabidopsis thaliana Herb. 1,135 (1,001)* 11,769,920 (W) 27.34 0.324 (0.238-0.41)  0.312 (0.305-0.32) 71-78
Arabidopsis lyrata Herb. 108 17,813,817 (W) 2.79 0.236 (0.218-0.254)  0.151 (0.137-0.165) 50-66
Amaranthus tuberculatus Herb. 162 (155)" 1,033,443 (W) 0.80 0.109 (0.081-0.136)  0.142 (0.136-0.149) 48-65
Eucalyptus melliodora (VU) Tree 275 9,378 (GBS) 0.95 0.466 (0.394-0.538) 0.403 (0.398-0.407) 77-82
Yucca brevifolia (CA) Yucca palm 290 10,695 (GBS) NAT 0.128" (0.109-0.147)  0.049 (0.037-0.062) =
Mimulus guttatus Herb. or shrub 521 (286)* 1,522 (GBS) 2514 0.274 (0.259-0.29)  0.231 (0.221-0.241) 63-73
Panicum virgatum Grass 732 (576)F 33,905,044 (W) 6.29 0.232 (0.211-0.252)  0.126 (0.116-0.136) 43-63
Panicum hallii Grass 591 45,589 (W) 2.19 0.824 (0.719-0.928)  0.814 (0.745-0.883) 88-90
Pinus contorta Tree 929 32,449 (GC) 0.89 0.015% (0.014-0.016) -0.061 (-0.062-0.060) =
Pinus torreyana (CR) Tree 242 478,238 (GBS) NAT 0.142% (0.142-0.142)  0.015 (0.015-0.015) =
Populus trichocarpa Tree 882 28,342,826 (W) 112 0.275 (0.218-0.332)  0.165 (0.155-0.176) 53-67
Anopheles gambiae Mosquito 1,142 52,525,957 (W) 19.96 0.214 (0.164-0.264)  0.122 (0.111-0.132) 42-62
Acropora millepora (NT) Coral 253 17,931,448 (W) 0.03 0.246 (0.209-0.283)  0.287 (0.28-0.294) 69-77
Drosophila melanogaster Fly 2718 5,019 (W) 115.21 0.437 (0.397-0.477)  0.325 (0.314-0.336) 72-79
Empidonax traillii (D) Bird 219 (199) 349,014 (GBS, GC) 7.03 0.214 (0.174-0.254)  0.074 (0.047-0.102) 24-54
Setophaga petechia (D) Bird 199 104,711 (GBS) 1517 0178 (0.134-0.223)  0.149 (0.135-0.163) 49-66
Peromyscus maniculatus Mammal 80 (78)1 14,076 (GBS) 22.61 0.488 (0.264-0.713)  0.683 (0.615-0.751) 86-88
Dicerorhinus sumatrensis (CR) Mammal 16 8,870,513 (W) NAT 0.412% (0.369-0.456)  0.127 (0.11-0.144) =
Canis lupus Mammal 349 (230)* 1,517,226 (W) 19.10 0.256 (0.232-0.28)  0.184 (0.175-0.193) 56-70
Homo sapiens Mammal 2,504 88,332,015 (W) 80.76  0.431" (0.347-0.514)  0.281 (0.23-0.332) =

*Only individuals in the native range were used for the analyses.

used, excluding breeds, landraces, and cultivars.

Exposito-Alonso et al., Science 377, 1431-1435 (2022)

1Only individuals with available coordinates or matching IDs were used for the analyses.
§Numbers indicate pools of flies used for pool sequencing rather than individuals.
with unknown locations or where two or fewer populations were sampled.

$Only natural populations were
fINot applicable. Area was not reported for species

#Values excluded from global averages were used for conservation applications owing to uncertain estimates,
suboptimal genomic data type, or because estimates should not be applied for conservation (i.e., humans or nearly extinct Sumatran rhinoceros) [see (4)].
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Temporal sequence of population extinction
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Fig. 1. Mutations across populations fit
models of species abundance distributions
and a power law with species range area.
(A) Density of individual genomes projected
in a 1°-by-1° latitude-longitude map of
Eurasia and exemplary subsample areas of
different sizes. (B) Distribution of mutation
[single-nucleotide polymorphism (SNP)]
frequencies in 1001 A. thaliana plants using a
site frequency spectrum (SFS) histogram
(gray inset) and a Whittaker's rank abundance
curve plot. Also shown are the fitted models
of common species abundance functions

in A. thaliana using a dataset random sample
of 10,000 mutations that are also used in
(C). (C) The MAR in log-log space built from
340 random square subsamples (red dots)
of different areas of increasing size within

A. thaliana’s geographic range along with

the number of mutations discovered within
each area subset.

Fig. 2. The power law of genetic diversity
loss with range area loss. (A) Percentage of
loss of total genetic diversity in A. thaliana
from several stochastic simulations (red) of
local extinction in (B) and theoretical model
projections of genetic diversity loss using

the MAR (dashed lines). The expectation

for genetic diversity loss based only on
individuals is in gray [using starting popula-
tions of N = 10* to 10°% see derivation (4)].
(B) lllustrated example of several possible
range contractions simulated by progressively
removing grid cells across the map of Eurasia
(red and gray boxes) after different hypothe-
sized spatial extinction patterns. (C) A metric
of adaptive capacity loss during warm edge
extinction in (B) using GWA to estimate effects
of mutation on fitness in different rainfall
conditions, water-use efficiency (wue),
flowering time, seed dormancy, plant growth
rate, and plant size. Plotted are the fraction
loss of the summed squared effects (ZaZ) of
10,000 mutations from the top 1% tails of
effects. Also plotted is the fraction of protein-
coding alleles lost (nonsynonymous, stop
codon loss or gain, and frameshift mutations;
yellow line).

3of5

7202 ‘97 Joquardeg uo Aysioarun) usSequodo)) 18 S10°00U0108 MMM //:SANT WOIJ popeo[uUMO(]



RESEARCH | REPORT

Although we expect species-specific traits
related to dispersibility or gene flow to affect
Zmar (e.g., migration rate and environmen-
tal selection in population genetic simu-
lations significantly influence z2g; table S2),
no significant association was found in an
analysis of variance (ANOVA) between 2yar
and different traits, mating systems, home
continents, and so on for the 20 species ana-
lyzed (tables S12 to S13). There may be too
few species with large population genom-
ic data to find such a signal (Table 1 and
tables S12 and S13). For conservation pur-
poses, an average 2yar ~ 0.3 (IQR = £0.15;
Table 1 and table S11) could be predictive of
large-scale trends of genetic diversity loss
in many range-reduced species that lack ge-
nomic information. Further, although spe-
cies will naturally have different starting
levels of total genetic diversity before range
reductions due to, for instance, genome size,
structure, or mating system differences (17),
the application of z\agr Will provide rela-
tive estimates of genetic diversity loss. For
instance, assuming gyar ~ 0.3, we would
predict that an area reduction of ~50%
creates a loss of ~20% of genetic diversity
relative to the total genetic diversity of a given
species.

Finally, we used MAR to estimate the aver-
age global genetic diversity loss caused by pre-
21st century land transformations. Although
accurate species-specific geographic area re-
duction data in the past centuries are scarce,
we leveraged global land cover transforma-
tions from primary ecosystems to urban or
cropland systems (2, 22) (tables S14 to S16).
Using the average s*\1ar and several global
averages of Earth’s land and coastal trans-
formations for present day [38% global area
transformation from (22), 34% from (2), and
43 to 50% from (23)], we estimate a 10 to
16% global genetic diversity loss, on aver-
age, across species (Fig. 3, A and B). Although
these estimates may approximate central
values across species in an ecosystem, we
expect a substantial variation in the extent
of loss across species, ranging theoretically
from 0 to 100% (Fig. 3, fig. S26, and table
S18), and expect that species extinction (100%
area and genetic diversity lost) will substan-
tially contribute to ecosystem-wide genet-
ic diversity losses (figs. S25 and S27). One
cause of this variation of losses across spe-
cies is the heterogeneity in land-cover trans-
formations across ecosystems; for example,
more-pristine high-altitude systems have
only lost 0.3% of their area, whereas high-
ly managed temperate forests and wood-
lands have lost 67% (Fig. 3B and tables S14
and S15).

Another cause for the variability in genetic
loss among species (even within the same
ecosystem) may be their differential geo-

Exposito-Alonso et al., Science 377, 1431-1435 (2022)

graphic ranges and abundances, life his-
tories, tolerance to transformed habitats, or
species-specific threats. We gathered data
from species red-listed by the International
Union for Conservation of Nature (IUCN)
(24), which evaluates recent population
or geographic range area reduction over
+10 years or +3 generations to place as-
sessed species in different threat categories
using several criteria and thresholds (24).
Assuming that the average 2*\ag can cap-
ture general patterns, we translate criterion
A2-4c thresholds, which document geo-
graphic range loss, into genetic diversity loss
[Fig. 3C and table S17; see (4)]. “Vulnerable”
species, having lost at least 30% of their geo-
graphic distribution, may have experienced
>9% of genetic diversity loss; “endangered”
species, which have lost more than 50% of

A Expected genetic diversity loss per ecosystem
AR.

their geographic distribution, should have
incurred >16% of genetic diversity loss; and
“critically endangered” species, with more
than 80% area reduction, likely suffered
>33% of genetic diversity loss (Fig. 3C). This
showcases that even species at no imminent
risk of extinction (e.g., least concern, near
threatened, vulnerable), such as most spe-
cies for which population genomic data ex-
ists, may already be losing genetic diversity
(Fig. 3A).

If future habitat losses are not prevented,
genetic diversity will continue eroding. In
support of this claim, habitat projections
to 2070 of 19,365 threatened and nonthreat-
ened mammal, bird, and amphibian species
from the Map of Life (25) show an average
2% genetic diversity decline (Fig. 3D), and a
total of 1843 species (3%) are projected to

B Landarea C Species D Species habitat

or species area loss by M changes category area trend
1-(1-a)f MEA (2005) Red List  Map of Life
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Fig. 3. The parameter space of genetic diversity loss mapping before 21st century ecosystem
transformations and species threat categories against possible values of the MAR. (A) Possible
values of two key parameters, the MAR scaling parameter (zyar) and percentage of area reduction
(a) of a species geographic range (as a proxy of entire ecosystem transformation). The theoretical
percentage of genetic diversity loss is represented as filled gray color, with isolines in white. Estimates
of z*\uar from Table 1 per species are in orange with their 95% Cls (see fig. S23 for the unscaled zyar).

Past area losses for these species are unknown. As

a proxy with much uncertainty, species are

plotted based on their [IUCN Red List status, which under criterion A2-4 can be used to determine the
minimum range area decline (C). The global average is calculated with the average z*\jar across
species and the total percentage of Earth transformed as published by IPBES. (B) Percentages of
transformed ecosystem areas from the Millennium Ecosystem Assessment (MEA) (table S14) are
represented by light blue arrows, from IPBES (2) for 2010 and 2050 by dark blue arrows (table S15),
and from the Land Use Harmonization 2 (LUH2) dataset (23) by deep blue arrows (table S16).

(C) Lilac-colored arrows indicate the minimum value of geographic area loss under criteria A2-4c

to be classified in each category of the IUCN Red List guidelines (24): near threatened (NT), vulnerable
(VU), endangered (EN), critically endangered (CR), and nonthreatened (NON). The dotplots with
pseudo-random numbers within the established thresholds represent plant, mammal, bird, and
amphibian species categorized using criteria A2-4 (table S17). (D) Projected area loss from 2015 to
2070 by the Map of Life (mol.org) for mammal, bird, and amphibian species (25) (data are not
available for plants). Color scale is the same as in (A) and indicates genetic diversity loss assuming

the global average z*yar.
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lose at least 5% genetic diversity in the next
decades.

Once lost, the recovery of genetic diver-
sity through natural mutagenesis is ex-
tremely slow (26), especially for positive
mutations that contribute to adaptation.
Simulating a species undergoing only a 5
to 10% reduction in area, it would take at
least =140 to 520 generations to recover its
original genetic diversity (2100 to 7800 years
for a fast-growing tree or medium-life span
mammal of 15-year generation length);
although for most simulations, recovery
virtually never happened over millennia
(fig. S11).

The ultimate challenge is to understand
how genetic diversity loss relates to loss of
adaptive capacity of a species. To this end,
we leveraged the extensive knowledge of the
effect of mutations in ecologically relevant
traits in A. thaliana from genome-wide asso-
ciations (GWAs). We again conducted spa-
tial warm-edge extinction simulations, this
time tracking metrics of adaptive capacity,
including the total sum of effects estimated
from GWA of remaining mutations (3, a’;
for 7 = 1...10,000 variants of putative a; ef-
fect), the additive genetic variance [Va =
Sipi(1 - poa;’, which accounts for each
variant’s population frequency p;], and the
loss of nonsynonymous mutations (Fig. 2C
and figs. S19 to S21). Although determin-
ing the effect of mutations through GWA
is technically challenging even in model
species (27), and variants may even be either
deleterious or advantageous depending on
genomic backgrounds (28) or environments
(29), our analyses suggest that putatively
functional mutations may be more slowly lost
as area is lost (z < 0.3; Fig. 2C) than neutral
genetic diversity (Fig. 2A and table S9). In-
deed, the additive variance Va parameter,
often equated to the rate of adaptation, ap-
pears rather stable (30) until just before the
extinction event when it sharply collapses
(fig. S21; for simulations that replicate this
pattern see fig. S9). This is analogous to
the famous “rivet popper” metaphor where
ecosystem structure and function may sud-
denly collapse as species are inadvertent-
ly lost (31). Projections of the MAR using
genome-wide variation thus may crucial-
ly serve as an early conservation tool in
nonthreatened species (32), before spe-
cies reach accelerating collapsing extinc-
tion dynamics—an acceleration that we
expect to be even more dramatic owing to
increased drift and accumulation of dele-
terious mutations of small critically endan-
gered populations (6).

To achieve the recently proposed UN tar-
get to protect “at least 90% of genetic di-
versity within all species” (11), it will be
necessary to aggressively protect as many
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populations as possible for each species.
Here, we have discovered the existence of a
MAR and provided a mathematical frame-
work to forecast genetic diversity loss with
shrinking geographic species ranges. The
MAR contrasts with existing studies on
the risk of losing entire species by focus-
ing on quantifying the magnitude and dy-
namics of genetic diversity loss that is
likely ongoing in most species. This frame-
work demonstrates that even with conserv-
ative estimates, substantial area protection
will be needed to meet the UN Sustain-
able Development Goals. For vulnerable or
endangered species, we have likely already
failed.
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Declining genetic diversity

Habitat loss is one of the major drivers of species extinctions and declines of species richness at local scales. Smaller
areas of remnant habitat also harbor smaller populations and lower genetic diversity, which may limit potential
adaptation to environmental change. Exposito-Alonso et al. developed a framework to predict decreases in naturally
occurring mutations, and thus genetic diversity, with habitat loss (see the Perspective by Ruegg and Turbek).
Georeferenced genomic data from across the native ranges of the small mustard plant Arabidopsis thaliana and 20
other species suggest that the mutation-area relationship follows a power law. This relationship predicts that many
species have already experienced substantial genetic diversity loss. —BEL
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