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ABSTRACT

Aim We conduct the first assessment of likely future climate change impacts

for biodiversity across the West African protected area (PA) network using cli-

mate projections that capture important climate regimes (e.g. West African

Monsoon) and mesoscale processes that are often poorly simulated in general

circulation models (GCMs).

Location West Africa.

Methods We use correlative species distribution models to relate species

(amphibians, birds, mammals) distributions to modelled contemporary cli-

mates, and projected future distributions across the PA network. Climate data

were simulated using a physically based regional climate model to dynamically

downscale GCMs. GCMs were selected because they accurately reproduce

important regional climate regimes and generate a range of regional climate

change responses. We quantify uncertainty arising from projected climate

change, modelling methodology and spatial dependency, and assess the spatial

and temporal patterns of climate change impacts for biodiversity across the PA

network.

Results Substantial species turnover across the network is projected for all

three taxonomic groups by 2100 (amphibians = 42.5% (median);

birds = 35.2%; mammals = 37.9%), although uncertainty is high, particularly

for amphibians and mammals, and, importantly, increases across the century.

However, consistent patterns of impacts across taxa emerge by early to mid-

century, suggesting high impacts across the Lower Guinea forest.

Main conclusions Reducing (e.g. using appropriate climate projections) and

quantifying uncertainty in climate change impact assessments helps clarify likely

impacts. Consistent patterns of high biodiversity impacts emerge in the early

and mid-century projections, while end-of-century projections are too uncer-

tain for reliable assessments. We recommend that climate change adaptation

should focus on earlier projections, where we have most confidence in species

responses, rather than on end-of-century projections that are frequently used.

In addition, our work suggests climate impact should consider a broad range

of species, as we simulate divergent responses across taxonomic groups.
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INTRODUCTION

Protected area (PA) networks are a core component of the

global effort to protect biodiversity from multiple and

increasing anthropogenic threats. Although much variation

exists in the quality of protection provided (Coad et al.,

2013), PA status can significantly reduce the impacts of these

threats (Butchart et al., 2012). However, climate change is

driving shifts in species’ ranges (Chen et al., 2011; Van Der

Wal et al., 2013) and this redistribution of species against a

background of static PA networks has the potential to

decrease their effectiveness as a conservation measure. Assess-

ing potential climate change impacts on biodiversity across

these networks is necessary for identifying impact hotspots/

coldspots and adaptation opportunities (Hannah et al., 2007;

Araujo et al. 2011).

Correlative species distribution models (SDMs) have been

the dominant methodology for assessing climate change

impacts to biodiversity (Guisan et al., 2013) and have been

applied to many different climatic regions (e.g. montane,

desert). The two dominant sources of uncertainty in SDM

projections have consistently been shown to derive from

choice of modelling methodology and general circulation

models (GCMs; Garcia et al., 2012; Bagchi et al., 2012), that

is the low-resolution physically based models used to simu-

late global climates. Uncertainty due to choice of GCM is

unusually incorporated into biodiversity impact assessments

by using multiple GCMs, giving biodiversity responses across

a range of climate trajectories (e.g. Garcia et al., 2012). How-

ever, GCMs are designed to model large-scale climatic fields

and are often poor at capturing key regional climate features

that are most likely to affect biodiversity (Cook & Vizy,

2006; Dosio et al., 2015). Consequently, climate change

impact assessments across many regions are unlikely to yield

useful indices of potential impacts because they poorly repre-

sent regional climates. The regional appropriateness of cli-

mate projections is seldom discussed in the ecological

literature, but should be the starting point for any assessment

of potential future impacts of climate change on biodiversity

as this will help reduce uncertainty (Christensen et al., 2013;

Flato et al., 2013).

The West African region contains high levels of biodiver-

sity and endemism (e.g. West Guinea forests) across multiple

taxonomic groups (Myers et al., 2000; Kier et al., 2009) and

is likely to be impacted severely by climatic changes (Dif-

fenbaugh & Giorgi, 2012). Assessing the potential resilience

of the region’s PA network to climate change is a priority,

especially given the high irreplaceability and biodiversity

value of many of the region’s PAs (Rodrigues et al., 2004).

However, like many biodiversity hotspots, the region’s cli-

mate is dominated by complex regional weather patterns, for

example the West African Monsoon (WAM). Most GCMs

have been shown to be poor at capturing the WAM, and in

a few models, this feature is entirely omitted (Cook & Vizy,

2006). Thus, without careful selection of climate data, a key

feature of a globally important biodiversity hotspot is likely

to be poorly captured by the climate projections, and this

alone should invalidate any assessment of future climate

change impacts.

Here, for the first time, we assess potential climate change

impacts for biodiversity across the West African PA network

using an ensemble of climate projections that provide good

simulations of the region’s historic climate and incorporate

the influence of mesoscale features (e.g. complex topography,

coastal features) on climate dynamics. Climate projections

were produced by downscaling regionally appropriate GCMs

(i.e. those that capture regionally important climate regimes)

to ecologically relevant spatial scales using a physically based

regional climate model (RCM). GCMs were selected from a

perturbed physics ensemble (PPE), in which model parame-

ters relating to the atmosphere are perturbed producing a

range of climate projections, and an ensemble selected that

can accurately represent historic climates and which encom-

pass a range of future outcomes (McSweeney et al., 2012).

RCM projections have been shown with ‘high confidence’ to

add value to GCM projections in regions with complex

topography and important mesoscale phenomenon (Di Luca

et al., 2012; Flato et al. 2013), providing better representa-

tions of precipitation cycles across western and southern

Africa (Dosio et al., 2015).

We modelled the relationship between contemporary spe-

cies distributions and climate using correlative SDMs and

accounted for species’ specific dispersal capabilities in pro-

jected range shifts. From this, we assessed the spatial and

temporal patterns of projected climate change impacts for

West African species for three vertebrate groups [amphibians

(n = 146), birds (n = 768) and mammals (n = 382)] across

the West African PA network. We quantified uncertainty in

these projections pertaining to different initial choices and

data sources in SDM creation (climate data, modelling meth-

odology and spatial dependency) and assessed the spatial and

temporal patterns of climate change impacts, and uncertainty

in impacts, for biodiversity across the PA network.

METHODS

Regional climate models

Climate projections were derived for the Africa CORDEX

domain: longitude range = �24.64, 60.28; latitude

range = �45.76, 42.24 (Giorgi et al., 2009). A perturbed

physics ensemble (PPE), in which uncertain model parame-

ters are systematically perturbed to produce a range of cli-

mates, was produced using the HADCM3 GCM for the

SRES A1B emissions scenario. Simulations from the individ-

ual ensemble members were compared to observed tempera-

ture and precipitation data from across Africa and against

climate regimes (e.g. spatio-temporal distributions of precipi-

tation maxima) from individual climatic regions (e.g. West

Sahel and Western Tropical Africa) following McSweeney

et al. (2012). Models that were unable to capture important

climate features across these three regions were discarded
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and, from the remaining models, a five-member ensemble

was selected that represented the breadth of future tempera-

ture and precipitation projections (Buontempo et al., 2015).

Each of the five ensemble members was downscaled to a

c. 50 km spatial resolution for the period 1949–2100, using
the Met Office Hadley Centre’s physically based PRECIS

(Jones et al., 2004) regional climate modelling (RCM) sys-

tem. To set the RCM within a global climate context, the

RCM is driven at the boundaries by time-dependent large-

scale fields (e.g. wind, temperature, water vapour, surface

pressure and sea surface temperature) provided by the five-

member PPE ensemble.

Four bioclimatic variables were calculated for each time

period from the monthly RCM data, for each of the five

ensemble members: mean temperature of the warmest

month, mean temperature of the coldest month, precipita-

tion seasonality (coefficient of variation of mean monthly

precipitation) and an aridity index (mean precipitation/

potential evapotranspiration). Such bioclimatic variables have

been shown previously to be good predictors of species

distributions across taxonomic groups in tropical and

subtropical systems (Ara�ujo et al., 2006; Barbet-Massin &

Jetz, 2014). For the baseline (1971–2000) and three future

periods (‘2040’ = 2011–2040; ‘2070’ = 2041–2070; ‘2100’

= 2071–2100), the variables were calculated as means over

these periods. Because the baseline data are derived from the

RCM, there are five different baseline dataset, each validated

against observed climate data. This has an advantage over

statistically interpolated observed data in regions where

ground climate observations are sparse (Sylla et al., 2013), as

the dynamic projections are able to capture greater spatial

heterogeneity across the region and uncertainty in contem-

porary climate records.

Species distribution modelling

Species distribution data for the breeding ranges were derived

from refined species distribution maps of all extant bird (from

BirdLife International & NatureServe, 2013), mammal and

amphibian (both from IUCN, 2014) species found breeding in

the West African region (see Fig. 1 for extent) and were inter-

sected with a 0.440 grid (ca. 50 km 9 50 km at the equator).

A species was considered to occur in a cell if the distribution

polygon overlapped ≥ 10% of the cell, which is a liberal

threshold that helps maximize the representation of species

with restricted ranges. All areas beyond the range extent are

incredibly unlikely to contain false absences and, therefore, for

modelling we consider all cells beyond the range to be true

absences. There is some potential for commission error when

using refined distribution maps. However, the availability of

reliable unbiased point data here is limited and refined species

distribution maps, when used at conservative spatial resolu-

tions, are likely to be representative of species climate toler-

ances. Species were only included in the analysis if ≥ 75% of

their breeding range occurred within the full RCM extent

(Table 1), thus, omitting species for which we were unable to

model a large proportion of the species–climate relationship.

All species breeding within West Africa with a total range

Figure 1 Location of protected areas

that have a ‘dissimilar’ altitudinal profile,

as a surrogate for climate, from the cell

(s) in which they are embedded. A mean

difference > 100 m between the

altitudinal profile of the PA and the cell

(s) in which it is embedded is considered

to represent a difference that could affect

the biodiversity found in the PA.

Table 1 Summary statistics showing the initial number of species from each taxonomic group that breed within the West African

region (species pool), the number of species excluded by each criterion and the total number of species included in the analysis. The

results for the exclusion criteria are nested from left to right

Taxa

Regional species

pool

Number of species excluded by criteria (sequentially)
Number of species

included

Median AUC

(min, max)< 75% RCM overlap < 5 presences Single block

Amphibians 206 40 (19.4%) 14 (6.8%) 6 (2.9%) 146 (70.9%) 0.98 (0.89, 1.00)

Birds 830 60 (7.2%) 1 (0.1%) 1 (0.1%) 768 (92.5%) 0.97 (0.71, 1.00)

Mammals 407 17 (4.2%) 7 (1.7%) 1 (0.3%) 382 (93.8%) 0.97 (0.76, 1.00)
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extent occupying fewer than five cells were also omitted from

the analysis due to difficulties in modelling such sparse data

(see Table S1 & Fig. S1 in Supporting Information).

We used an approach to species distribution modelling

that quantified the uncertainty in projected distributions

caused by selecting different climate projections and model-

ling approaches, and due to potential spatial dependency in

species’ distributions.

For modelling, we divided the dataset into spatially disag-

gregated blocks, rather than random k-fold partitioning,

which allowed us to capture uncertainty due to spatial

dependency in our projections. For each of the five RCM cli-

mate projections, the dataset was divided into five blocks

(Fig. S2), such that the mean and variance of each biocli-

matic variable was approximately equal across the blocks (see

Bagchi et al., 2013 for details); thus, each block has the

potential to capture the species–climate relationship. Impor-

tantly, the spatial autocorrelation within each block is higher

than between blocks; thus, where spatial autocorrelation is

high, models trained on n�1 blocks (the jackknifing

approach adopted here), where n is the total number of

blocks, performed poorly when tested on the withheld block.

The variation in predicted probability of occurrence across

the withheld blocks can be used to assess the effect of spatial

autocorrelation on projected distributions.

We modelled the relationship between a species’ baseline

distribution (representing the period 1971–2000) and the

four contemporaneous bioclimate variables using all combi-

nations of four modelling methods [generalized linear mod-

els (GLMs), generalized additive models (GAMs), generalized

boosted models (GBMs) and random forests (RFs)] and five

RCM climate projections (20 combinations in total). We

conditioned each of these model combinations using the five

n�1 blocks of cells. Thus, for each species, 100 models were

fit to a subset of the baseline distribution data, that is each

combination of block (5), RCM climate projection (5) and

modelling methodology (4). For all four modelling

approaches, the median area under the receiver operating

characteristic plot (AUC) from across the five blocks was

used to assess final model accuracy. The model cross-valida-

tion protocol follows Bagchi et al. (2013). Ultimately, species

distributions models were developed for 1296 species across

all taxa (Table 1).

Species’ specific dispersal potential was incorporated into

projections of future range shifts by adjusting projected

climate suitability values by a colonization probability

(Barbet-Massin et al., 2012). This latter value was derived by

assuming that a species’ natal dispersal probability, as a func-

tion of distance, is described by a gamma distribution

[shape = (mean distance/standard deviation)2; scale = mean

distance/shape], and that independent natal dispersal events

across a time period (e.g. 30 years) can be described by

the sum of x gamma distributions, where x equals the num-

ber of generations expected within the period (length of

period [years]/minimum age first breeding [years]). The

colonization probability distribution over the focal time per-

iod was rescaled such that at distances at or below the dis-

tance at which the probability of dispersal is maximized,

the colonization probability equals 1. Climate suitability

was adjusted by colonization potential (climate suitability x

colonization potential), which is a function of distance. The

suitability of unoccupied cells located below the distance at

which the probability of dispersal is maximized remains

unaltered (i.e. climate suitability 9 1), but the suitability of

cells located beyond this distance is reduced proportional

to distance (see Barbet-Massin et al. (2012) for further

details).

Species-specific estimates of mean natal dispersal distance

and age of first breeding were available for all birds (from

BirdLife International; Table S2). For non-volant mammals,

we obtained species’ specific body mass and age-of-first-

breeding data from two data sources (Ernest, 2003; Jones

et al., 2009), with missing values inferred as the mean of val-

ues from closest relatives, and used allometric equations to

estimate median dispersal distances from these data (Suther-

land et al., 2000; Table S3). For Chiroptera, there are no

similar allometric equations; however, categorical mean natal

dispersal estimates are available from IUCN (Carr et al.,

2014). We used the mid-point of these categorical estimates

as the mean natal dispersal for these species. No similar data

are available for amphibians, but a literature search suggested

that mean annual dispersal distances of 0.2 km yr�1, with

infrequent longer distance dispersal events, are representative

(e.g. Ara�ujo et al., 2006; Smith & Green, 2006). We therefore

set mean natal amphibian dispersal to 0.2 km and assumed

annual dispersal events. Comprehensive estimates for the

standard deviation of natal dispersal were unavailable for any

of the taxonomic groups, so we used a value [mean 9 1.5]

to approximately match the typical standard deviations of

natal dispersal estimated for European birds based on recap-

ture data (Paradis et al., 2002).

The median (95% quantiles) dispersal-adjusted climate

suitability was obtained for each cells in the study region,

derived from the 100 estimates of suitability (climate ensem-

ble [5] 9 SDM [4] 9 block [5]), thus accounting for

uncertainty in climate projections, modelling methodology

and spatial dependency.

Protected area impacts

PA polygons were obtained from the World Database on

Protected Areas (WDPA: IUCN & UNEP-WCMC, 2013) and

gridded on to a 0.440 grid, calculating the percentage overlap

of each PA with each grid cell. For this analysis, we only

include PAs that had known boundaries (Visconti et al.,

2013), and thus excluding 195 PAs currently only mapped as

a point locations. All PAs with spatial boundaries were

included regardless of their IUCN category because a very

large proportion of PAs across the region currently still lack

this information in the WDPA, but are likely to have consid-

erable biodiversity value compared to areas not designated.

However, following standard practice for handling WDPA
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data (e.g. Venter et al., 2014; Butchart et al., 2015), Bio-

sphere Reserves (n = 16) were excluded because they may

include large areas that are not considered PAs (Dudley,

2008; Coetzer et al., 2013). Across the region, a total of 1926

PA polygons were selected for final analysis.

For PA-specific assessments, we took a conservative

approach by assuming the PA had the suitability of the

cell(s) in which it is embedded. Such an approach is likely

to perform well where a PA is representative of the aver-

age climate in a cell, but may provide poor representation

of a PA’s climate where the site is positioned in a location

atypical of the grid cell (e.g. a mountain top). We assessed

where this is likely to occur by comparing the altitudinal

profiles of each PA with the profile of the cell(s) in which

it is embedded using 90 m2 elevation data (Jarvis et al.,

2008). For each PA, we calculated the mean difference in

altitude between a sample of 200 altitudinal units taken

randomly from within the PA and a sample of 800 from

the cell(s) as a whole. Where a PA occurred across multi-

ple cells, samples were taken from across the cells

weighted by the proportion of the PA overlapping each

cell. Figure 1 shows the PAs where the mean difference

between the altitudes for the two samples was > 100 m

(c. equal to a 1 °C difference based on lapse rate; Daniel-

son et al., 2003), which might suggest a biologically mean-

ingful outlier.

For each PA, a weighted mean of suitability for each spe-

cies was calculated, with weights equal to the percentage of a

PA’s extent that overlaps a cell. Species turnover for each PA

j (Tj[t]) between the t1 = baseline (1971–2000) and

t2 = future [2040; 2070; 2100] time periods was calculated

using the Bray–Curtis index (a continuous analogue to com-

monly used turnover metrics, e.g. Hole et al., 2009), a mea-

sure of dissimilarity between two communities, using the

weighted suitability, as:

Tj½t� ¼
Ps

k¼1 jPjk½t2� � Pjk½t1�jPs
k¼1 Pjk½t1�þ

Ps
k¼1 Pjk½t2�

where Pjk = weighted suitability of species k (s = total num-

ber of species) in PA j. Species turnover was calculated sepa-

rately for each of the 100 projections, and the 95% quantiles

from across these values were used to assess uncertainty. Spe-

cies turnover is measured relative to the current community

composition, providing the likely range of impacts at a site/

area-specific level, and needs to be judged with consideration

of patterns of regional biodiversity.

The contribution of each component of uncertainty to

projected impacts was assessed by partitioning the variance

in turnover estimates across the PA network between each of

the potential sources of uncertainty (including all two-way

interactions) using ANOVA. The percentage of the total sum

of squares attributable to each component was calculated by

dividing the sum of squares for each variable or interaction

by the total sum of squares (i.e. Diniz-Filho et al., 2009).

Species turnover values were logit-transformed prior to

analysis to conform to the assumption of normally distrib-

uted residuals.

To identify sites that are consistently projected to experi-

ence the highest or lowest impacts from climate change

across taxonomic groups, using species turnover as a metric

of impact, we determined the proportion of times each PA

was ranked in the upper and lower quartile across the 100

jackknife projections of species turnover. Those PAs in which

≥ 95% of the turnover estimates fell within the upper or

lower quartiles were termed ‘high impact’ or ‘low impact’,

respectively.

For each species, the change in climate suitability across

the PA network was measured as the summed suitability

across all PAs for the future period divided by the suitability

for the baseline period. Where this value was > 1, a species

was projected to gain suitability across the PA network, and

where this value was < 1, a species was projected to lose suit-

ability. For each species, this projected change in suitability

was calculated for each of the 100 projections and the 95%

quantiles used to assess confidence in the projections. Where

95% CI of these projections do not span unity (i.e. there is a

consensus on projected change), we term changes as ‘extre-

mely likely’. Additionally, we assessed separately species of

conservation concern (IUCN, 2014), which might particu-

larly susceptible to the impacts of climate change and are

important for setting conservation priorities.

RESULTS

Models for all species within each taxon showed good model

discrimination throughout (Table 1). For 11% of PAs (219),

the mean elevation difference between the PA and the 50 km

cells in which it is embedded was > 100 m, suggesting that

the PA’s climate could be dissimilar from the mean climate

of these cells (Fig. 1). The results for these PAs should be

treated with some additional caution.

Species turnover across the PA network

For all three taxonomic groups, species turnover is projected

to increase across the next century, with the median turnover

across the region’s PA network projected to exceed 35% for

all three taxonomic groups by 2100 (Fig. 2). Amphibians are

projected to experience the highest levels of turnover across

the network, with a median (95% quantiles) projected turn-

over of 42.5% (30.1, 68.6) by 2100. Bird and mammal spe-

cies turnover is projected to be slightly lower than

amphibians, with bird turnover projected to increase from a

median of 16.3% (14.1, 22.4) by 2040 to 35.2% (25.5, 46.0)

by 2100 and mammals to increase from 18.4% (16.1, 24.2)

to 37.9% (26.2, 55.7) over the same period.

However, uncertainty in projected turnover also increases

through the century for all three taxonomic groups, with

projections for amphibians and mammals least certain

(Figs. 3a,b). Uncertainty is lowest for all three groups up to

the 2040. During this period, the variation in turnover
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among models for the majority of PAs for birds and mam-

mals is < 20 percentage points (for example: 21–40% turn-

over at a single site). Uncertainty for amphibians is higher

across the majority of PAs, even in this earlier time period.

By 2100, estimates of uncertainty in species turnover for

amphibians exceed 40 percentage points at 70% of sites

(Fig. 3b). Similarly, uncertainty in species turnover for birds

and mammals increases by this period, such that turnover

Figure 2 Median (95% quantiles)

projected species turnover calculated

across the West African PA network

(n = 1926 polygons) in three time

periods for amphibians, birds and

mammals.

(a) (b)

Figure 3 Projected species turnover (Bray–Curtis index), as a measure of change in community composition reflecting both gain and

loss of species, for the West African protected area network between the baseline (1971–2000) and future time periods for amphibians,

birds and mammals. (a) The spatial pattern of species turnover across the region’s PA network for two focal future time periods (2040

and 2100). The focal plot shows the Guinea forest region, where many of the highest impacts are projected to occur for all three

taxonomic groups. Colours reflect the category encompassing the median projected turnover. Colour intensity reflects uncertainty in

turnover projections; the intensity indicates the range of all turnover values encompassed by 95% of the projected estimates of turnover

for each PA. (b) The number of PAs falling within each uncertainty category for each time period and taxonomic group. Note: the

region shown in (a) is cropped to allow clearer visualization of the results and, consequently, not all PAs are shown.
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estimates for the majority of PAs exceed 20 and 30 percent-

age points, respectively.

The major sources of variation in species turnover across

the PA network were consistent for all three taxonomic

groups in all time periods, the majority of variation being

accounted for by modelling methodology and climate projec-

tions (Fig. 4; results shown for 2100 only). The interaction

between climate projection and modelling methodology also

accounted for on average c. 10% of variability in turnover

estimates. By contrast, spatial autocorrelation and the

remaining interactions contributed little to the overall uncer-

tainty for the majority of PAs.

Species’ climate suitability across the PA network

Based on the median change in suitability (i.e. calculated

across jackknife projections), the majority of species in each

taxonomic group are projected to have decreasing suitability

across the PA network by at least 2070 [Fig. 5: amphibi-

ans = 63% of spp. (92 spp.); birds = 55% (419); mam-

mals = 63% (239)]. Uncertainty in these projections means

that for many of these species, there is no overall consensus

in the directional trend (increase vs. decrease). By 2100, there

is only directional consensus in changing suitability (i.e.

‘extremely likely’) for fewer than 37% of species in each tax-

onomic group, and the greater proportion of these species

are ‘extremely likely’ to experience decreasing suitability

across the network [amphibians (increase vs. decrease) = 7%

(10) vs. 20% (29); birds = 12% (88) vs. 19% (149); mam-

mals = 9% (36) vs. 20% (75)]. For birds, there is a change

in the proportion of species expected to be favourably/

adversely impacted by climate change over the century. Many

birds are projected to experience increased suitability up to

2040, but between 2070 and 2100, most birds are projected

to be adversely affected (Fig. 5).

(a)

(b)

(c)

Figure 4 The proportion of the total sum of squares attributed

to each component of uncertainty (CLIM = climate data;

SDM = modelling methodology; SA = spatial autocorrelation;

and RESID = residual variation) for a protected area calculated

by dividing the sum of squares for each factor by the total sum

of squares. Results for amphibians (a), birds (b) and mammals

(c) are shown for the 2100 time period only.

Figure 5 Number of species within each taxonomic group, and

in each time period, projected to experience increasing or

decreasing climate suitability across the West African PA

network. Light shading shows the number of species with

increasing or decreasing suitability across the network based on

the median estimate of suitability (calculated across 100

jackknife estimates of suitability) in each time period, and dark

shading indicates species where 95% of the projected estimates

of change in climate suitability for a species showed directional

consensus (increasing or decreasing).
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Among the species included here, 39 amphibian, 44 bird

and 51 mammal species are of conservation concern. Among

these species, amphibians are projected to be most impacted

by climate change with > 75% of amphibians projected as

‘extremely likely’ to experience a decline in climate suitability

across the PA network in all time periods (Table 2). For

birds and mammals of conservation concern, the uncertainty

is higher, with > 70% and > 49% of species, respectively,

showing no consensus in the direction of their projected

change in climate suitability across the network in all time

periods. No species of conservation concern were projected

to be ‘extremely likely’ to experience increasing suitability.

Identifying robust ‘high-’ and ‘low’-impact PAs and

assessing congruence between taxonomic groups

Although uncertainty is high, some PAs are consistently

(≥ 95% of turnover estimates) ranked in the upper or low

quartiles (Fig. 6) and there is some taxonomic congruence

between these sites (Table 3). By 2070, the majority of PAs

that are consistently projected to experience the highest cli-

mate change impacts are located in the Upper Guinea forests

and are primarily located in Ivory Coast. These high-impact

sites also extend west of the Ivory Coast for birds (Table 3).

By 2070, 32 PAs are consistently projected to be ‘high-

impact’ sites for two or more taxonomic groups, indicating

some potentially important congruence in impacts, although

this declines over time. The number of PAs projected to be

‘high-impact’ sites for a single taxonomic group fell from 96

to 39 between 2040 and 2100. There are few PAs consistently

projected to be ‘low-impact’ sites. Those that do occur are

found across the eastern portion of the region, for example

Nigeria and Benin. Importantly, the spatial pattern of these

sites changes across time, suggesting different priorities at

different time periods.

DISCUSSION

This study provides the first assessment of climate change

impacts to species from a range of taxonomic groups across

the biodiversity-rich West African PA network. To our

knowledge, this is the first tropical biodiversity impact study

that uses climate models validated against regional climate

observations and dynamically downscaled to an ecologically

relevant spatial scale. Our results suggest that climate change

has the potential to severely impact regional fauna and to

reduce the effectiveness of the PA network to conserve the

region’s biodiversity. This assessment should serve to raise

awareness of the potential threat the climate change poses to

this region and aid in the targeting of in situ research and

monitoring and the identification of appropriate adaptation

measures with the aim of strengthening the existing PA net-

work (Schwartz, 2012; Guisan et al., 2013). Using a region-

ally appropriate, dynamically downscaled ensemble of

climate projections, which captures both large-scale (e.g.

West African Monsoon) and local climate regimes, we have

attempted to reduce the uncertainty associated with projec-

tions across climatically complex regions. Our projections of

climate change impacts account for as much uncertainty as

is currently feasible (i.e. climate projections, modelling meth-

odologies and spatial autocorrelation of species’ ranges),

meaning that we can explicitly acknowledge the uncertainty

associated with such assessments.

Our results indicate that there is considerable spatial heter-

ogeneity in projected impacts, both within and between taxo-

nomic groups, with the average severity of projected impacts

and their uncertainty increasing towards the end of century.

The high uncertainty associated with the end-of-century pro-

jections across much of the region brings into question their

value in climate change impact assessment (see also

Chapman et al., 2014), but the uncertainty associated with

Table 2 Change in species’ specific climate suitability across the PA network between the baseline period (1971–2000) and each of the

three focal future time periods for species of conservation concern

Taxonomic

group Period

IUCN Status

Change in climate suitability between the baseline and

future time periods

CR EN VU NT Increase Decrease

No

consensus

Amphibians 2040 1 13 13 12 0% 87.2% (34) 12.8% (5)

2070 0% 87.2% (34) 12.8% (5)

2100 0% 74.4% (29) 25.6% (10)

Birds 2040 0 3 20 21 0% 29.6% (13) 70.4% (31)

2070 0% 25% (11) 75% (33)

2100 0% 27.3% (12) 72.7% (32)

Mammals 2040 5 12 17 17 0% 51% (26) 49% (25)

2070 0% 43.1% (22) 56.9% (29)

2100 0% 49% (25) 51% (26)

Reported are the percentages (number) of species classified as ‘extremely likely’ to experience increasing or decreasing climate suitability across

the network in each time period (95% quantiles show directional consensus). Those species showing no directional consensus in the change in

suitability are reported as ‘no consensus’. The numbers of species in each IUCN threat category are reported: CR = critically endangered;

EN = endangered; VU = vulnerable; and NT = near threatened.
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early- and mid-century projections is lower and distinct pat-

terns emerge despite the uncertainty. Such spatio-temporal

variation in confidence in climate change impacts adds an

additional layer of complexity to dilemmas over when to

undertake monitoring or research versus conservation action

(McDonald-Madden et al., 2010).

By 2070, the eastern region of the Upper Guinea forest

contains the greater proportion of PAs that are consistently

projected to experience the highest impacts across the net-

work for all three taxonomic groups. The PAs of southern

Nigeria are also consistently projected to experience some of

the highest impacts for mammals by 2040, which is concor-

dant with the projections of mammal species loss over a sim-

ilar period (Visconti et al., 2011). Hole et al. (2009)

projected severe impacts of climate change for birds in

northern Senegal using different species distributions, climate

data and modelling approaches. Our results suggest greater

caution must be taken in assuming severe impacts in this

region due to the substantial uncertainty in projections.

The congruence in projections of high impacts across tax-

onomic groups by mid-century suggests a potential opportu-

nity for conservation management that could benefit a broad

suite of species. However, there are also differences in the

spatial and temporal patterns of impacts across the three tax-

onomic groups that could have important implications for

prioritizing conservation efforts based on taxonomically

biased assessments. Currently, much better data exist globally

on the distributions of birds and mammals compared to

other terrestrial taxa (Darwall et al., 2011; Feeley & Silman,

2011). As a result, most climate impact assessments on bio-

diversity in the tropics tend to focus on these groups and, as

a result, potentially overlook key sites for other taxonomic

groups. Thus, it is important to note key differences in both

the spatial and temporal patterns of impacts across

Figure 6 West African PAs that are quantified as being ‘high-impact’ and ‘low-impact’ sites under projection of future climate change,

determined by whether the projected turnover for the PA was consistently (≥ 95% of jackknifed projections) ranked in the upper (‘high

impact’) or lower (‘low impact’) quartile of turnover estimates across the network in each of the three focal time periods and for each

taxonomic group. Note: the region shown in cropped to allow clearer visualization of the results and, consequently, not all PAs are

shown.

Table 3 The number of protected areas (PA) consistently

(≥ 95% of jackknifed projections) ranked in the highest or

lowest quartile for species turnover across estimates of

uncertainty in each time period

Time period

Number of PAs in

highest impacts

group for 1–3

taxonomic groups

Number of PAs in

lowest impacts

group for 1–3

taxonomic groups

3 2 1 3 2 1

2040 5 8 96 0 18 65

2070 11 21 70 0 23 65

2100 0 6 39 0 15 87

The confluence in projected climate change impacts across taxo-

nomic groups is indicated by the number of PAs that were classified

as either ‘high-impact’ or ‘low-impact’ sites for two or three taxo-

nomic groups in each time period.
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taxonomic groups, which are relevant to conservation moni-

toring, planning and prioritization (Myers et al., 2000).

The mismatch between the spatial resolution of climate

data and the spatial scales relevant to the persistence of many

of the studied species (Wiens & Bachelet, 2010) will inevita-

bly introduce additional uncertainty into the projections (e.g.

Gillingham et al., 2012). For example, fine-scale spatial vari-

ability in climatic conditions could provide refugia for spe-

cies despite the surrounding landscape experiencing

conditions that are broadly incompatible with a species’ per-

sistence (Scheffers et al., 2014). The climatic conditions pre-

dicted for single grid cells are representative of the mean

climate expected in a cell, but cannot capture the finer-scale

climatic variability. PAs with climate conditions that are par-

ticularly distinct from those in the surrounding landscape

could facilitate the persistence of species at fine spatial scales,

and this could be particularly relevant in areas of high relief,

where PAs are often located (Joppa & Pfaff, 2009). For the

current analyses, this possibility is of less concern as West

Africa is almost uniformly of low relief. Nonetheless, we have

highlighted PAs where extra caution should be used when

interpreting the results.

Current understanding of natal dispersal is poor for most

species and, therefore, approximations based on surrogate

species data (including allometric equations) and simple

‘buffer’ approaches are often used where data limitations

prevent more complex dispersal simulations (Bateman et al.,

2013). Dispersal assumptions can substantially alter projec-

tions of climate change impacts (Early & Sax, 2011) and,

therefore, consideration of dispersal potential, even if crude,

can be important for assessing extinction risks. The dispersal

estimates used in this study are potentially at the upper end

of realized dispersal potential because, for example, they

include no consideration of landscape permeability (Schloss

et al., 2012) and barriers to dispersal (e.g. physical, cli-

matic). The velocity of climate change is likely to differ

between landscapes, for example savanna vs. montane, creat-

ing strong spatial heterogeneity in the rates of range shift

required to keep pace with shifting climate spaces (Loarie

et al., 2009; Schloss et al., 2012). Furthermore, vegetation

and human responses to climate change will affect land use

patterns over time, creating greater imperative for range

shifts, but also potentially altering landscape permeability

(Mahmood et al., 2014). However, where climate change

impact assessments are made across multiple taxonomic

groups and large geographic regions, adopting even a simple

approach to incorporate dispersal is often better than

assuming either no dispersal or unlimited dispersal scenar-

ios.

A frequent problem for multitaxa analyses conducted

across broad spatial scales and at relatively coarse resolutions

is the inevitable omission of species with small range extents

that are difficult to model due to a paucity of data. Many of

these species are classified among those of greatest conserva-

tion concern. Their omission from assessments could there-

fore bias adaptation strategies towards more widespread taxa

(Platts et al., 2014). The primary limitation here is the spatial

resolution of the gridded climate data, which becomes

increasingly uncertain at finer resolutions (Isotta et al.,

2014). Fine-scale climate data enables more species with

small ranges to be modelled (Ochoa-Ochoa et al., 2012), but

the results must be viewed with caution due to the likely

high uncertainty in the underlying climate data. Species with

a range too restricted to be included in such modelling pro-

cesses could be separately considered using, for example,

expert elicitation of threats and tolerances, and the two

approaches combined to provide a holistic overview of

threats for all taxa.

Large-scale impact assessments serve to highlight potential

spatial and temporal heterogeneity in climate change impacts

and should be used to guide the targeting of monitoring,

further research and identification of conservation action

and adaptation interventions (Guisan et al., 2013). In regions

with high spatial and temporal resolution data on the distri-

bution and abundance of species, broad-scale analyses have

been used with some confidence to set conservation targets

and even establish new PAs (Carroll et al., 2010; Struebig

et al., 2015). However, such data are lacking for the majority

of biodiversity-rich areas and, consequently, here the princi-

ple objective is to guide the targeting of in situ research and

monitoring and to identify sites at which appropriate adapta-

tion actions need to be most urgently implemented (Hole

et al., 2011). Monitoring is crucial for determining whether

projected impacts eventuate and for assessing the efficacy of

adaptation responses. Our study facilitates the identification

of those locations and taxa for which climate change impacts

may be experienced earliest, and therefore helps to set moni-

toring priorities in the region. Further research is required to

establish the potential for habitat or climate barriers to pre-

vent species from tracking shifting climate or for species’

persistence to be maintained by the availability of suitable

microclimates. An understanding of uncertainty in projected

impacts helps determine the practical value of research,

where high uncertainty suggests a focus on basic data, moni-

toring and iterative decision-making in response to changing

circumstances (Polasky et al., 2011).

In conclusion, climate change across West Africa is pro-

jected to have a large impact on species distributions and

reduce the effectiveness of the PA network to protect the

region’s fauna. However, we also show that there is high

uncertainty in projected impacts and that this uncertainty

tends to increase through time and can vary considerably

between taxonomic groups. As a result of this, we make two

recommendations: (1) adaptation planning should primarily

consider early-, and possibly mid-, century impact projec-

tions in order to have most confidence in species responses

(Chapman et al., 2014) and (2) future studies of climate

change impacts should incorporate a broad suite of species

and use multiple approaches to balance biases present in dif-

ferent approaches (e.g. correlative, trait-based, expert opin-

ion). These recommendations should help to reduce

unforeseen consequences arising from adaptive management
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based on the current norm of using long-term projections

with high uncertainty and a taxonomic bias due to a

restricted sample of species.
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