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A B S T R A C T   

Pesticide resistance is a major challenge to increasing the resilience and sustainability of current food production 
systems. Preserving the susceptibility of pest organisms to chemical products is a key factor to optimize a 
pesticide-based strategy. However, resistance management strategies (RMSs) must consider unique species bi-
ologies, multiple resistance mechanisms, environmental factors, and pest management practices, which can make 
their implementation complex. 

Here, we develop a method to help manage this complexity using a grid-based simulation framework for 
pesticide resistance evolution including population growth and dispersal dynamics. This framework was applied 
to the fall armyworm, Spodoptera frugiperda, for which resistance evolution is a major concern. We explored the 
sensitivity of 13 parameters dealing with landscape structure, dispersal rate, chemical treatment protocols, 
chemical degradation rate, dose-response curves and transition rates (i.e., flux between sub-population driven by 
the mutation rate). From the sensitivity analysis of simulations, we computed heat maps of the influence of each 
parameter on a set of variables (total pest population size, fully resistant population size, and resistance 
frequency). 

Assuming a large but realistic range for each parameter, Sobol’s sensitivity index showed that resistant 
transition rate (from phenotypically susceptible to resistant sub-populations) and pesticide properties (in 
particular, degradation rate and dose-response curve) are more important in the outbreak of resistance compared 
with resistance ratio (i.e., the benefit of being resistant over susceptible in terms of fitness), chemical application 
intensity and landscape composition. In addition, using Pareto optimality, we assessed the performance of 
different pesticide application regimes according to total population size, population size of resistant individuals, 
the total amount of pesticide, and the total area of host plants suitable for S. frugiperda. Across the wide 
parameter space explored, we revealed the high volatility of outputs suggesting that the performance of treat-
ment protocols depends on the ecological context. Nevertheless, despite this variability, a “windowing” man-
agement strategy consisting of a single pesticide group applied per insect generation, provided the optimal 
control of S. frugiperda and resistance evolution outcomes. 

This work provides a set of tools to test RMS scenarios for the control of S. frugiperda and to understand how 
variabilities may arise at different management steps and geographical scales.   

1. Introduction 

Current chemical-based pest control strategies are challenged by 

sustainability goals (FAO, 2018) and eco-evolutionary responses that 
lead to increased tolerance and the evolution of pesticide resistance 
(Dermauw et al., 2018). Globally, agricultural pests have been 
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successfully managed for decades using pesticides and this has 
contributed to an increase by a factor of two to three in global food 
production throughout the "green revolution" (Evenson and Gollin, 
2003). However, there is increasing awareness of the negative 
side-effects of the widespread application of pesticides, such as impacts 
to human health, natural ecosystems and biodiversity (Bourguet and 
Guillemaud 2016), and the evolution of resistant populations requiring 
even higher chemical application rates (Sparks and Nauen 2015). 
Despite these issues and the progress that has been made in biological 
controls and other non-chemical options, synthetic pesticides are ex-
pected to play a key role in future control programs targeting agricul-
tural pests. 

Resistance, defined here as the heritable decrease in a population’s 
sensitivity to a chemical to which it is exposed over successive genera-
tions, remains one of the best documented examples of rapid contem-
porary evolution (Heckel 2012) and can render chemical applications 
ineffective in just a few generations (Nauen 2007; Umina et al., 2019a). 
To control resistance, management programs typically attempt to reduce 
the intensity of selection for resistance, which can be manipulated in 
various ways such as alternating chemicals and reducing the frequency 
and/or intensity of applications. However, these strategies are often 
only implemented after resistance appears. Sustainable and effective 
pest management strategies require a deep understanding of the 
evolutionary and ecological processes underpinning the emergence and 
spread of pesticide resistance. In the case of pest arthropods, this can be 
particularly challenging given the large dispersal capacity of many 
species (Miller and Sappington 2017), often requiring large heteroge-
neous landscapes to be considered, which may span a variety of cli-
mates, plant production industries, and land usages. Globally, more than 
580 arthropod species have been reported with resistance to approxi-
mately 325 different chemicals (Sparks and Nauen 2015; APRD, 2022) 
and these numbers continue to grow each year. 

Resistance Management Strategies (RMSs) aim to prevent or delay 
resistance evolving, or to help regain susceptibility in pest populations 
in which resistance has already arisen. The evolution of resistance is 
influenced by many factors, ranging from genetic inheritance to 
ecological factors that affect the life-history of a pest population. 
Consequently, RMSs are often perceived as part of a broader Integrated 
Pest Management program (Onstad 2013; Umina et al., 2019a), which 
employs a package of tactics to reduce pest pressures. Such approaches 
include: (i) the diversification of causes of mortality so that a pest is not 
selected by a single mechanism, (ii) reduction of selection pressure for 
each mortality mechanism, (iii) maintenance of a refuge or immigration 
to promote mixing of susceptible and resistant individuals, and (iv) the 
generation of baseline data and implementation of resistance moni-
toring programs (Onstad 2013; Umina et al., 2019a). 

Statistical modelling can also play an important role in understand-
ing resistance risk. For example, models can identify correlations be-
tween agricultural factors (e.g., chemical practices, land usage or 
climatic patterns) and the emergence of resistance (Maino et al., 2018a; 
Umina et al., 2019b), while simulations of realistic scenarios can be 
compared with RMSs (REX, 2013; Papaïx et al., 2018). The majority of 
pesticide resistance simulations explore different treatment protocols, 
whereby multiple chemical groups are applied with various patterns in 
space and time: (i) uniform in space but heterogenous in time (e.g., 
temporal cycles, or a successive application without cycle); (ii) uniform 
in time but with a mosaic distribution in space (without overlap), or (iii) 
a combination of variation in both time and space (REX, 2013). These 
models will often consider complex processes, like the genotype basis of 
resistance (Sudo et al., 2018), the dispersal of pest populations (Miller 
and Sappington 2017) and ecological factors (e.g., density-dependency, 
abiotic factors) (Haridas and Tenhumberg, 2018). 

The present study aims to simulate realistic pesticide resistance 
scenarios by developing a spatially-explicit eco-evolutionary model that 
explores resistance dynamics of pest populations across heterogeneous 
environments (i.e., different climates, land use, pest management 

scenarios, and pesticide exposure). As a case study, we parameterize and 
apply the model to fall armyworm, Spodoptera frugiperda (J. E. Smith) 
(Lepidoptera: Noctuidae), to help inform RMSs in Australia as farmers 
adapt to this new pest. Spodoptera frugiperda is native to the American 
continent, where it is a sporadic pest (Bodkin 1913; Sparks, 1979). Its 
range has been widely extended to other continents: to Africa in 2016, 
then Asia, and since February 2020 to Australia. Spodoptera frugiperda 
has a permanent range restricted to warmer climates, but has substantial 
migration capacity and annually invades less suitable climatic regions 
during warmer periods (Nagoshi et al., 2012). Spodoptera frugiperda is 
highly polyphagous, particularly attacking Poaceae including maize 
(Zea mays), sorghum (Sorghum spp.), rice (Oryza sativa L.) and various 
species of pasture grasses, as well as other non-grass crops including 
cotton (Gossypium hirsutum L.) (Casmuz et al., 2010; Montezano et al., 
2018). 

2. Methods 

We use a spatially explicit approach that includes ecological and 
evolutionary components, leveraging a recent simulation study on the 
establishment and spread potential of S. frugiperda in Australia (Maino 
et al., 2021). The choice of a population-based model is particularly 
efficient when dealing with high spatial resolutions and to explore a 
large range of parameters for sensitivity analysis. Within this 
spatially-explicit population-based framework, we implement 
compartmental models where we define sub-populations of S. frugiperda 
according to their resistance to pesticides. 

The implementation of the model framework is generic (multi-spe-
cies, multi-pesticide) (Schouten et al., 2022; Github: cesaraus-
tralia/PopulationResistanceFramework), but in the present study we 
reduce the application to two generic pesticides with different Modes of 
Action (MoA) assuming different mechanisms that lead to the acquisi-
tion of resistance. For realism of the pesticide properties (e.g., degra-
dation rate, dose response, resistance ratio) we parameterized the model 
on chlorantraniliprole (MoA group 28) and indoxacarb (MoA group 
22A), which are denoted respectively as ‘C’ and ‘I’ in mathematical 
variables and parameters herein. These two chemicals are among the 
most important pesticides used to manage S. frugiperda globally, have 
different levels of toxicity and varying levels of field resistance (Bird 
et al., 2022). 

The model does not consider the genetic basis of resistance but 
focusses on phenotype, which has two benefits. First, this approach re-
lates directly to how resistance is normally measured (at the phenotypic 
level); most field resistance data are phenotypic and report the mean of 
survival endpoints over populations, and then assess the ‘resistance’ by 
comparing these to phenotypic endpoints for each population, giving a 
resistance ratio (Gutiérrez-Moreno et al., 2019). Second, the approach 
can account for multiple resistances, and in the present situation where 
we consider two pesticides and one species, this leads to only four 
phenotypes: ‘PCI’ for individuals resistant to chlorantraniliprole and to 
indoxacarb; ‘PC’ for individuals resistant to chlorantraniliprole but 
susceptible to indoxacarb; ‘PI’ for individuals resistant to indoxacarb but 
susceptible to chlorantraniliprole; and ‘PS’ for individuals susceptible to 
both pesticides. 

The evolutionary response of a population in the model is supported 
by three mechanisms. Considering that a local population at a simula-
tion step tn, denote Sn, is described by the size of the population for each 
phenotype: Sn = {NS, NC, NI, NCI}n . At the next time step, tn+1, the 
structure of the population Sn+1 results from three processes: 

1 The addition of individuals appearing within each phenotype cate-
gory and the removal of those dying. Only the mortality rate includes 
the effect of pesticides (denoted μC and μI in Table 2), since we do not 
account for other pesticide effects (e.g., reduced reproduction). 
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2 The results of dispersal for each phenotype between individuals that 
are removed because they move away from this local population and 
the addition of individuals from other locations.  

3 The transition process accounting for genetic changes resulting in the 
introduction of resistant phenotypes from susceptible parents. This 
could involve a new dominant mutation appearing in the offspring, 
the expression of resistance through offspring inheriting recessive 
alleles from both parents, or (in the case of polygenic resistance) 
recombination events that result in resistance alleles being accu-
mulated in some offspring that results in resistance even if both 
parents are susceptible. Based on the four phenotype categories, we 
consider only four possible transitions: PS to PC, PS to PI, PC to PCI, 
and PI to PCI; with rates respectively denoted mS→C, mS→I , mC→CI, 
mI→CI. 

For this latter transition process, there are two additional assump-
tions. Firstly, we do not consider a multi-resistant transition, like for 
instance from a full susceptible, PS, to a full-resistant phenotype, PCI, 
because under the assumption that ‘single-resistant’ transitions are in-
dependent events, the following law would apply: mS→CI = mS→C ×

mC→CI, and therefore there is no need to define multi-resistant transi-
tions as mS→CI. Note however that mS→C is not a probability, but a rate, as 
it can theoretically be negative, but we do not explore negative transi-
tion rates. In the same vein, and this is the second assumption, we only 
assume that if a transition occurs, it’s only with a gain of resistance:, and 
never a gain of susceptibility. 

The model presented in Fig. 1 depicts the succession of variables and 
the rules of our approach, with quantitative details provided in the 
sections below. The simulation was initialized with a random landscape 
composed of three types of habitat cells (see section “2.1 Landscape 
structure”). Every cell of the grid is defined by the landscape with a 
realistic temperature time series that reflects North-East Australia, (lon 
140◦E-153◦E; lat 20◦S-30◦S), where S. frugiperda is currently causing 
economic impact (among other subtropical regions) (Plant Health 
Australia, 2020). The establishment of susceptible S. frugiperda in-
dividuals is computed based on population growth rates calculated from 
climatic and environmental data from SMAP (Soil Moisture Active 
Passive) at the 9 km resolution every 3 h (surface temperature and 
wilting based on soil moisture) (Reichle et al., 2017) and within suitable 
habitats. Population dispersal is based on the seasonal population 

development of S. frugiperda and the suitability of habitat at the land-
scape scale. Simultaneously, the exposure profiles of the two pesticides 
are computed based on the landscape mosaic of crop fields and chemical 
treatment protocols (see section “2.3.1 Treatment protocols”). Popula-
tion mortality is estimated from pesticide dose-response curves and 
resistance profiles (see section “2.3 Exposure and Toxicity”). 

The model is mechanistic in the sense that two runs with exactly the 
same parameterization would provide exactly the same output. How-
ever, for every simulation, we randomly selected 19 values (see Tables 1 
&2) giving 4500 unique outputs. All code required to replicate the 
analysis is provided in the online repository (Github: cesaraustralia/ 
PopulationResistanceFramework). 

2.1. Landscape structure 

We consider a local landscape with a grid of 200×200 pixels with 1 
pixel representative of 1 ha (i.e., a grid of 20×20 square km) with 3 land 
categories (see Fig. 2): (i) cropping areas where the crop grown is suit-
able for S. frugiperda development (named “crop habitat”), (ii) non- 
cropping areas that contain plant hosts that are suitable for 
S. frugiperda development (named “refuge habitat”), and (iii) non- 
cropping areas that do not contain any plants suitable for S. frugiperda 
development (named “no habitat”). For every simulation, a new land-
scape was generated based on a random set of proportions for each 
category. 

Fig. 1. Schematic of the statistical model used in this study. Dark grey boxes are layers representing spatialized data, while light grey rounded boxes are rules using 
the data-layers. The “Landscape” box is represents a spatial grid with non-time-variable land composition (i.e., “crop habitat”, “refuge habitat”, or “no-habitat”) on 
which chemical treatment is applied. The “Treatment protocol” rule depends on landscape composition and the Mode of action (MoA) of the chemical. The 
“Treatments” box represents the sequence of treatment layer applied on the landscape. “Temperature” is a grid time series of temperature. The “Growth rate function” 
rule parameterized with “Landscape” and “Temperature” layers results in the “Growth rate” grid time-series. “Growth rate” and “Dispersal” rules drive the population 
dynamic given by the “Population” grid-time series. Finally, “Dose-response” and “Resistance” rules control the sub-population dynamics based on the phenotypic 
sub-division of the population. 

Table 1 
Variable descriptions and symbols used in the model equations.  

Variable Symbol 

Total population density per cell N 
Sub-population of susceptible to both pesticides PS 

Sub-population of resistant to chlorantraniliprole PC 

Sub-population of resistant to indoxacarb PI 

Sub-population of resistant to both chlorantraniliprole and 
indoxacarb 

PCI 

Population density per cell NS, NC, NI, NCI  

V. Baudrot et al.                                                                                                                                                                                                                                



Ecological Modelling 483 (2023) 110416

4

2.2. Population dynamics 

2.2.1. Population growth 
The growth of populations follows a logistic growth rate within each 

cell with N the total population and Ni the size of sub-population group 
(i.e., NS: susceptible to both pesticides, NCI: resistant to both pesticides 
or NC and NI: resistant to a single pesticide – see Table 1 for further 
details). The carrying capacity is denoted K and is assumed to be the 
same for each cell (and we assume a symmetric effect of the carrying 
capacity on each group) and the growth rate r which is assumed the 
same for all sub populations (i.e., no cost of resistance, same fitness 
value), meaning that only differences in pesticide mortality responses 
distinguish the sub-populations. The growth rate r was estimated from 
data generated under optimized laboratory conditions (see Tables 1 & 
2), therefore, to take into account external disturbance on populations 
that may mitigate this optimized laboratory growth rate (e.g., predation 
or disease), we assume the possibility of an additional mortality rate 
linear with the population density denoted m0, which can be around 
50% (Varella et al., 2015). Calibrations of all parameters are given in 

Table 1 & Table 2. 

dNi

dt
= rNi

(

1 −
N
K

)

− m0Ni 

Fig. 2 provides an example of the initial population densities on cells. 
Since a different landscape is created at every simulation, a new initial 
population is also generated following landscape properties: “crop 
habitat”, “refuge habitat” and “no-habitat”. To account for cooler cli-
mates, we assumed a population growth period to be from August to 
March, with a non-growing period from April to July (see Fig. 3). 

2.2.2. Population dispersal 
Population dispersal followed an exponential dispersal kernel 

(Nathan et al., 2012) with parameter λ varying from 0.001 to 0.4 on a 
log-scale having a mean distance dispersal by time unit (i.e., days) of 2λ. 
Based on our understanding of Spodoptera frugiperda biology in 
North-East Australia, we assume S. frugiperda only disperse in suitable 
habitats, and only adult individuals can disperse long distances, so we 
distinguish between a stationary period and a dispersal period, and we 
fix the period of dispersion to be in October-November and 
February-March (Fig. 3). This allowed us to consider two distinct pop-
ulations of S. frugiperda per year in order to better understand the role of 
each period, stationary and dispersal. Over the whole Australia, the 
difference in climatic conditions and in particular of temperature exhibit 
more complex population dynamics and treatment protocols (Maino 
et al., 2018a), as for instance more generation in warmer regions likely 
related to a more frequent use of pesticide. We finally consider no 
dispersal during the cooler conditions experienced between April and 
July and during stationary life-stages (i.e., eggs, larvae, pupae), assumed 
to be in August–September and December–January. 

We assumed chemical selection only happens during stationary pe-
riods (where pesticides are used). While largely reflective of the situa-
tion in the field, we acknowledge adult S. frugiperda moths will be 
exposed to chemical applications (albeit at lower frequencies than sta-
tionary life-stages). The synchronicity of dispersal with pesticide- 
selection would be better suited with individual based models, since 
we would have to track the amount of pesticide collected by each in-
dividual during its dispersal journey to apply a dose-response 
relationship. 

2.3. Pesticide toxicity and exposure 

2.3.1. Treatment protocols 
We considered two pesticides, chlorantraniliprole and indoxacarb, 

with applications in two periods (August–September and 

Table 2 
Parameters of the statistical model used in this study.  

Parameter Symbol Units Fixed or range values 

Grid size – px 200×200 (1 pixel = 1 
ha) = 20×20 km2 

Proportion of land ‘crop 
habitat’ 

pcrop – Uniform [min = 0.1, 
max = 0.9] 

Initial population density N0 n/px NS = 105; NI = NC =

NCI = 0 
Carrying capacity K n/px 106 / pixel 
Growth rate r d− 1 Follow Temperature 

Model 
“Natural” death rate m0 d− 1 Log-Uniform [min =

0.01, max = 0.99] 
Dispersal rate λ px/d Log-Uniform [min =

0.001, max = 0.4] 
Amount of indoxacarb XI g a.i./ 

px 
Uniform [min = 30, 
max = 60] 

Amount of chlorantraniliprole XC g a.i./ 
px 

Uniform [min = 15, 
max = 45] 

Degradation rate of chemical d d− 1 Log-Uniform [min =
0.1, max = 20] 

Hill coefficient (slope) β – Log-Uniform [min =
0.5, max = 10] 

Resistance ratio R – Log-Uniform [min =
1, max = 10^4] 

Transition rate (PS to PC, PS to 
PI, PC to PCI , and PI to PCI) 

mS→C, mS→I , 
mC→CI, mI→CI, 

d− 1 Log-Uniform [min =
10^− 4, max = 10]  

Fig. 2. Example of a simulated landscape with (left) a random distribution of habitats suitable for S. frugiperda development (i.e., “crop habitat” and “refuge 
habitat”) and areas unsuitable for their development (“no habitat”), and (right) initial simulated population densities of S. frugiperda within the landscape shown in 
the left panel. Landscape is defined as a grid of 200×200 cells of 1 ha. For every simulation, a new landscape and initial population density is generated. 
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December–January) of each year which correspond to stationary periods 
of S. frugiperda in northern Australia (see Fig. 3). Three pest manage-
ment strategies were implemented: (i) a “windowing” strategy, where a 
single pesticide is applied to each generation (chlorantraniliprole on the 
first generation during the August-September period and indoxacarb on 
the second generation during the December-January period); (ii) a 
“subsequent” strategy where both pesticides are applied subsequently 
on each generation with a month delay; and (iii) a “simultaneous” 
strategy, where both pesticides are applied at the same time and on both 
the first and second generations. These strategies were chosen based on 
industry consultation and reflect the range of management options 
presently being used and/or being considered by Australian farmers to 
control S. frugiperda in grain crops. 

We assumed a spike of pesticide on the day of application and then 
an exponential degradation of treatment (i.e., dXi(t)

dt = − kXi(t), with 
Xi being either XCor XIas defined in Table 2) (EFSA, 2014). The amount 
of pesticide per ha was randomly selected within a range following 
permitted chemical application rates, which is 70-90 g/ha for chloran-
traniliprole (350 g/kg) (permit number – PER89366) and 400-500 
mL/ha for indoxacarb (150g/L) (permit number – PER89530). 

2.3.2. Exposure-response relationship 
The relationship between pesticide exposure and survival follows a 

classical sigmoidal shape based on data for the two chemical compounds 
against S. frugiperda (Hardke et al. 2011; Belay, Huckaba, and Foster 
2012). The sigmoid shape is modeled with a log-logistic function given 
by: 

f (x) =
x

1 + (x/LC50)
− β  

where x is the pesticide concentration, LC50 is the lethal concentration 
for 50% of the population and β the Hill coefficient defining the shape, 
or the slope, of the curve. 

For chlorantraniliprole, Hardke et al. (2011) estimated an LC50 value 
(and 95% Confidence Intervals - C.I.s) after 72 h of 0.068 (0.060 – 0.077) 
ppm, with a slope (and s.e.) of 2.55 (± 0.23), while Deshmukh et al. 
(2020) found results with an LC50 value of 0.0129 (0.0092–0.0229) ppm 
and a slope of 0.9 (± 0.1) at 24 h after exposure. A different study found 
25%, 50% and 85% mortality of S. frugiperda after 16 h, 48 h and 96 h, 
respectively when chlorantraniliprole was applied in the field at a rate of 
85 g/a (Belay et al., 2012), while an average LC50 value (and 95% C.I.s) 
of 0.055 (0.052- 0.058) ppm with a slope (and s.e.) of 2.4 (± 0.1)(Bird 
et al., 2022) was estimated after an exposure period of 7 days. 

For indoxacarb, an LC50 value was estimated at 0.392 (0.317–0.481) 
ppm after 72 h, with a slope of 2.35 (± 0.25) (Hardke et al., 2011), and 
0.290 (0.145–0.435) ppm, with a slope of 0.6 (± 0.1) after 24 h 
(Deshmukh et al., 2020). When applied in the field at a rate of 85 g/a, 
mortality of S. frugiperda was measured to be 15%, 20% and 80% after 
16 h, 48 h and 96 h, respectively (Belay et al., 2012). 

While bioassay methods are different, we observe a great variability 
of toxicological values. In order to explore the largest range of possibility 
in the sensibility analysis, we considered a large range of toxicological 

value with an LC50 value ranging between 0.01 and 0.99 and a slope 
from 0.5 to 10 for both pesticides and distinguished these based on the 
amount of pesticide applied (see Table 2). 

2.3.3. Pesticide resistance ratios 
One study (Gutiérrez-Moreno et al., 2019) provides resistance ratios 

for chlorantraniliprole, denoted R, calculated by dividing the LC50 or 
LC90 values of field populations of S. frugiperda by the LC50 or LC90 
values of a laboratory insecticide-susceptible colony. The resistance 
ratio for chlorantraniliprole was 160 when using LC50 values and 500 
when using LC90 values. Other studies have shown far lower levels of 
field resistance, for instance a resistance ratio of 1–2 (Zhang et al., 
2021). There have been no reported cases of field resistance to indox-
acarb in S. frugiperda (e.g. Zhang et al., 2021). Additionally, Yu and 
McCord (2007) found no evidence for resistance to indoxacarb after 20 
generations of exposure and selection in the laboratory. 

2.4. Sensitivity analysis 

A sensitivity analysis was conducted to identify the key factors and 
their interactions driving population dynamics in the stochastic spatio- 
temporal model. Our objective being to find how each of the parame-
ters (and their combinations) influence the emergence of fully resistant 
populations of S. frugiperda at the landscape scale. We simulated 4500 
scenarios, each corresponding to a duration of 4 years. 

The sensitivity analysis consisted of four key steps:  

1 Definition of the target parameters and their respective ranges of 
interest (Table 2).  

2 Definition of the target simulation outcome statistic on which the 
sensitivity analysis is applied. Here, we computed the mean size of 
fully resistant populations, NCI over the landscape for every time step 
over the final simulation year.  

3 Sampling parameter values from an appropriate distribution defined 
by the parameter range (Table 2).  

4 Computation of sensitivity indices (see below). 

Sobol’s index is a variance-based measure of sensitivity providing the 
sensitivity of an output variable to a selected input parameter. To 
compute Sobol’s sensitivity index, 4500 simulations were conducted 
across "gridded-parameter space". The first order Sobol’s index quan-
tifies the contribution of the regression E[Y|Xi] to the variance of Y 
(Saltelli et al., 2008). 

Soboli =
Var[E[Y|Xi]]

Var[Y]

In parallel with the Sobol’s index, we computed the Pareto’s frontier 
in order to find the best trade-off between resistance increase, pest 
density and chemical inputs. The Pareto’s frontier is the set of param-
eterization having the same and maximal Pareto optimality considering 
a set of variables, that is the best trade-off where we cannot increase one 
variable without reducing at least one of the others (Roocks 2016). 

Fig. 3. Calendar of treatment protocols simulated in this study. “C” represents chlorantraniliprole and “I” represents indoxacarb. Three periods are considered: (i) a 
treatment period in dark-grey where S. frugiperda is considered to be stationary (i.e., eggs, larvae and pupae), (ii) a dispersal period (dark-grey) where only adults 
move over the landscape area, and (iii) a cool climatic period without growth and dispersal population dynamics. The selection processes happen during the sta-
tionary life-stages, allowing dispersed only for selected individuals, and overcoming the need to consider exposure of each individual during dispersal. 
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3. Results 

3.1. Response of resistance evolution to parameter variation 

To better understand the correlation between variables, we 
computed pair-plots (Figure 4), which represent the mean amount of 
each sub-populations (i.e., PCI, PC, PI, and PS) summed over the last year 
of the simulation, following: 

∑

last year
(Meanlandscape(Ni)). This was per-

formed for 13 parameters. For each pair-plot representing pairwise plot 
of sub-population density vs. parameter, one black point corresponds to 
one simulation. 

We then computed heatmaps, which correspond to the distribution 
density of the simulation endpoints for each pair-plot (Fig. 4). The 
heatmap allows for comparisons of parameters, for instance the amounts 
of chlorantraniliprole, XC, and indoxacarb, XI, exhibit a very similar 
pattern because of their identical role in the model. The pesticide killing 
rate, μ, also has the same pattern as the amount of pesticide, while the 
degradation rate, d, mirrors these patterns. 

We used classical regression models applied over scatter plots (i.e., 
linear model, square model, second order polynomial model) to capture 
the trend of repartition of the endpoints. The graphics show that linear 
regressions are unable to capture the large variability in simulation re-
sults. It illustrates the non-linearity of density responses to changes in 
parameters, except, eventually, for the transition rates between pheno-
types. While the three parameters driving transition rate have a strong 
influence on simulated resistance outcomes, all other parameters are 
much more difficult to interpret (Fig. 4). 

3.2. Sensitivity indices: Sobol’s index 

The computation of sensitivity indices (Sobol’s index and Pareto 
optimality) helps to provide another perspective. Fig. 5 presents the 
first-order Sobol’s indices for the 13 parameters on the mean number of 
fully resistant populations to chlorantraniliprole and indoxacarb. As 

expected from the regression analysis and pair-plots shown in Fig. 4, 
transition rates between phenotypic states showed the strongest influ-
ence on densities of S. frugiperda. Unsurprisingly, mS→C and mS→I rates 
had a strong influence on the susceptible and mono-resistance pop-
ulations while mC/I→CI had a strong influence on the bi-resistant popu-
lation (PCI). 

The second most influential group of mechanisms impacting the 
population dynamics of S. frugiperda was the properties of each pesticide 
(i.e., degradation rate, dose response and slope). Surprisingly, the 
amount of pesticide applied in the model had a lower impact than the 
pesticide properties. We note that since chlorantraniliprole was applied 
prior to indoxacarb (which is an artifact of the model), but is also more 
toxic to S. frugiperda as evidenced by published LC50 values (Bird et al., 
2022), chlorantraniliprole had a stronger effect on population dynamics 
than indoxacarb. Finally, landscape composition and the dispersal rate 
of individual S. frugiperda had a relatively weak role in the population 
dynamics in our model. 

3.3. Sensitivity indices: Pareto optimality 

Representing simulation endpoints according to their Pareto opti-
mality provides a Pareto frontier, which enables each treatment scenario 
to be ranked, thus indicating the overall best scenario globally. Fig. 6 
provides the ranking of Pareto optimality according to different formula: 
“a” had the formula low(NCI) ∗ low(N) ∗ high(pcrop) ∗ low(XC) ∗ low(XI),

which means that the parameterization was optimized in order to 
minimize the population density of S. frugiperda resistant to both pes-
ticides, minimize the total population size of S. frugiperda, obtain a high 
proportion of land as “crop habitat” and minimize the input of each 
pesticide; “b” was optimized to minimize the population density of 
S. frugiperda resistant to both pesticides and minimize the input of each 
pesticide; “c” was only constrained to minimize the population density 
of S. frugiperda resistant to both pesticides; “d” was parameterized to 
minimize the population density resistant to both pesticides and to 
minimize the population density of the total S. frugiperda population; “e” 

Fig. 4. Two dimensional-density plots, displaying the mean S. frugiperda abundance of each sub-population group (9km2) summed over the final year of the 
simulations according to the range of parameters used in the sensitivity analysis. From the top row moving downwards PCI is a fully resistant sub-population, PC is 
resistant to chlorantraniliprole and susceptible to indoxacarb, PI is susceptible to chlorantraniliprole and resistant to indoxacarb, and, PS is a fully susceptible sub- 
population. Lines corresponds to the regression models: (blue) linear model, (green) square model, (red) second order polynomial model. 
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” was parameterized to minimize the input of each pesticide; and “f” was 
parameterized to minimize the input of each pesticide and minimizing 
the total population size. 

The Pareto optimality indicates that on average, the “windowing” 
treatment scenario was optimal for five of the seven formulae investi-
gated. More specifically, as long as the size of population or sub- 
population was considered within the Pareto formula, the windowing 
scenario provided the best fit as indicated by the medians. We also 
pooled these rankings into a single group (“all”), which although is not a 
Pareto optimality ranking, it does enable the combination of all these 
scores to be visualized (Fig. 6). 

4. Discussion 

The development of RMSs is challenging because of the numerous 
genetic mechanisms, ecological processes and socio-economical con-
straints that are involved (REX, 2013; Gould et al., 2018). More spe-
cifically, the spatial component in RMSs for insecticide application and 
population dispersal is a crucial parameter (Yamamura 2021). Here, we 
explored the sensitivity of 13 parameters dealing with landscape struc-
ture, dispersal rate, treatment protocols, chemical degradation rate, 
dose-response curves and transition rates between sub-populations of 
the highly invasive global pest, S. frugiperda. From sensitivity simula-
tions, we were able to develop a set of heat maps showing the influence 
of each parameter on a set of variables. The modelling approach we used 

Fig. 5. First-order Sobol’s indices for 13 target parameters on the mean number of S. frugiperda in a fully resistant population (PCI), a population resistant to 
chlorantraniliprole and susceptible to indoxacarb (PC), a population susceptible to chlorantraniliprole and resistant to indoxacarb (PI), and a population susceptible 
to both pesticides (PS ). The grey bars correspond to scenarios of treatment protocols depicted in Figure 3. 

Fig. 6. Ranking of treatment scenarios using Pareto optimality, whereby the formulae used are: (a) low(NCI) ∗ low(N) ∗ high(pcrop) ∗ low(XC) ∗ low(XI); (b) low(NCI) ∗

low(XC) ∗ low(XI); (c) low(NCI); (d) low(NCI) ∗ low(N); (e) low(XC) ∗ low(XI); and (f) low(N) ∗ low(XC) ∗ low(XI). (all) represents a pool of all these rankings into a single 
group, which is not a Pareto optimality. 
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is heuristic in the sense that it uncovers the complexity behind resistance 
management and provides a working example of how spatially explicit 
mechanistic models can help to tackle this complexity. The purpose is to 
consider idealized scenarios where underlying constraints can be 
manipulated to reveal key processes and their measures that could lead 
to effective resistance management (Storer et al., 2003). 

4.1. No isolated drivers of resistant outbreaks 

A clear output of the modelling approach is the lack of a single 
obvious parameter that drives the population dynamics, and conse-
quently the outbreak of resistance within a population. In other words, 
the challenge facing resistance management is the need to consider 
multiple disparate processes within the same approach, as previously 
conveyed by others (e.g. Onstad 2013; Gould et al., 2018). While we 
reduced the complexity of the system to account for only 13 parameters 
driving the population dynamics of four phenotypes in S. frugiperda, the 
high variability prevents the identification of any discrete RMS that is 
optimal in minimizing resistance in this species. But knowing this can 
work as a “null” model (see Harte 2004), the non-linearity (no identi-
fiability of pattern) between parameters and variables of interest sup-
ports the notion that accurate resistance predictions are only possible 
when considering the whole complexity. That being said, our model is 
generic and the parameter space we explored was quite large. The fail-
ure of our model to identify simple recommendations demonstrates the 
need to reduce parameter uncertainty with empirical testing in 
S. frugiperda (Harte 2004) and/or to test the sensitivity of inputs on the 
model outputs. 

4.2. Sensitivity indices to optimize control strategies 

The exploration of a large range of parameter values illustrates that 
the emergence of resistant populations is highly dependent on the 
ecological context. The sensitivity analysis shows that the transition rate 
between phenotypic states has the strongest influence on the dynamics 
of S. frugiperda populations. This is expected since they account for the 
introduction of new phenotypes to be selected through other variables 
(particularly pesticide applications). Then, as a consequence of selection 
pressure and pesticide properties, such as the degradation rate of the 
product after spraying and dose-response properties (i.e., killing rate 
and slope), resistance outbreaks occur. Pesticides are by design a strong 
selective force that can lead to rapid evolution (Hawkins et al., 2019), 
which is widely acknowledged to be highly influenced by the properties 
of the pesticide (e.g., see Bird et al., 2022). 

Conversely, the landscape composition and the dispersal rate of in-
dividuals appears to play a relatively small role in the population dy-
namics of S. frugiperda. Mechanistically, from the model structure, 
(Fig. 1), landscape parameters are the farthest in the chain of events 
leading to population density and so it may be difficult for sensitivity 
indices, like Sobol’s index, to reveal a non-monotonic (e.g., bell-shaped, 
concave) link between the model input and output (Allard and Fischer 
2009). Looking at the pair-plots (Fig. 4), the dispersal parameter, λ ex-
hibits a concave shape, meaning that the middle of the range is a min-
imum (PS and PI) or a maximum (PC and PI). An explanation is that 
dispersal is required for the invasion of resistance once it emerges, but 
very high dispersal rates may compromise the emergence of resistant 
individuals, due to competition with susceptible individuals that invade 
crop fields after the degradation of pesticides. At extremely high 
dispersal rates the whole landscape becomes homogeneous, and refuges 
for susceptible individuals limit the invasion of resistant phenotypes 
through genetic dilution, fitness costs and competition (Takahashi et al., 
2017). The trade-off between competition and dispersal may limit the 
coexistence of multiple-phenotypes as already demonstrated in hetero-
geneous landscapes (Snyder and Chesson 2004; North and Ovaskainen 
2007). 

4.3. Practical implications and limitations 

Our model was necessarily simplified compared with the reality 
experienced in the field, due to several of the assumptions of the un-
derlying processes. While variation in parameter values partially reflects 
the uncertainties, it can also reflect differences in management prac-
tices. For instance, while it is hard to manipulate the transition rate 
(which includes the genetic resistance mutation rate between sub- 
populations) or dispersal of pest populations, farmers have influence 
over the amounts of pesticides used, the treatment protocols followed 
and the proportion of different crop types grown within a landscape, and 
agri-chemical companies may change the toxicological properties of 
their pesticide products. The development of RMSs is ultimately a matter 
of co-construction between different stakeholders, since each has a 
manageable variable on which to play (Gould et al., 2018). 

The discontinuous fall armyworm activity and insecticide regimes 
tested in our study do not cover the full spectrum of population dy-
namics and treatment protocols that are seen in practice across 
Australia. For example, in warmer regions there will be larger number of 
generations, more continuous pest activity and a (generally) higher 
frequency of insecticide use. Under these circumstances it is likely that 
resistance would develop faster due to the stronger selection pressure. 
Conversely, in cooler climates, pest activity would be less (low intensity, 
with more frequent or longer periods of no activity). In these situations, 
it is likely that resistance would develop more slowly. Indeed, other 
studies focussing on the climatic effects of resistance evolution support 
these general relationships (Maino et al., 2018b). In any case, resistance 
management strategies can be locally designed so they are appropriate 
to different regional ecological and farm management contexts. 

Our modelling suggests a key driver for an increase of resistant in 
S. frugiperda is transition rate, which farmers have little control over (if 
not by keeping the population size low enough to reduce the chance of 
mutations arising) highlighting the difficulty of applying pre-emptive 
RMSs. However, the degradation rate of pesticides, which in part is 
influenced by the product formulation, also has an important influence 
on resistant levels and warrants greater attention by field practitioners 
and others designing RMSs. Interestingly, while degradation rate (i.e., 
decay rate) of the pesticides seems very important for risk-assessment of 
non-target species (Ali et al., 2021) and in product formulation and 
design (Cloyd 2011), to our knowledge, this factor is not well integrated 
into RMSs although it is a component of some older models (C. E. Taylor 
and Georghiou 1982; Charles E. Taylor et al., 1983). 

4.4. Comparison of treatment protocols 

Avoiding the repeated use of the same chemical pesticide, or the 
same MoA group, is a recommended approach to limit pesticide resis-
tance and has been termed “windowing” (Sparks and Nauen 2015). The 
two pesticides we consider here, chlorantraniliprole and indoxacarb, 
have different modes of action, the first one disrupts muscle functioning 
that leads to paralysis and the second blocks neuronal activities (IRAC - 
Mode of Action Database 2022). As such, we assume the resistance 
mechanism for one of these pesticides would not affect resistance to the 
other one (Bird et al., 2022). Furthermore, our model does not include a 
consideration of the precise resistance mechanism but assumes inde-
pendence between selective responses. 

In this study, we simulate three strategies: (i) “windowing”, which 
involves the application of a single pesticide at each generation of 
S. frugiperda; (ii) “subsequent”, which introduces a weak-windowing 
strategy as the two generations of S. frugiperda receive both pesticides 
but sequentially, and (iii) “simultaneous”, which involves the applica-
tion of both pesticides at the same time but only once in each generation. 
The global sensitivity analysis does not reveal a strong difference be-
tween treatment protocols in the presence of large uncertainty in other 
model parameters, but the Pareto optimality ranking indicates that the 
“windowing” strategy, on average, performed better than the other two. 
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It is also interesting to see that the “simultaneous” strategy (which in-
volves no windowing of pesticides) was the worst-performing, on 
average. It is important to note that model assumes a clear separation of 
generations in the field, which was important to allow for heritable 
phenotypes. However, S. frugiperda can produce multiple and over-
lapping generations in a given year (Nagoshi et al., 2014), which is likely 
to reduce the effectiveness of a windowing strategy. 

5. Conclusion 

The objectives of this study were to (i) implement a generic frame-
work of population resistance at landscape scale to explore a large set of 
parameters that are known to be important in field resistance, and (ii) 
use this framework to explore three different control strategies available 
to farmers ("windowing”, “sequential”, “simultaneous”). Unfortunately 
for Australian growers wishing to implement a standardized RMS for 
S. frugiperda, we did not find a universal treatment strategy that was 
predicted to outperform all other strategies. Furthermore, we only found 
a strong predictive signal between the emergence of resistance and 
transition rate (i.e., flux between sub-population driven by the mutation 
rate), which beyond suppressing the total population size, is not a 
manageable process. Future research aimed at developing resistance 
management strategies for fall armyworm should focus on reducing the 
uncertainty in biological parameters (e.g. through experimental 
studies), and more carefully consider local ecological and management 
conditions. 
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