
2534  |  	﻿�  Ecology and Evolution. 2018;8:2534–2541.www.ecolevol.org

1  | INTRODUCTION

Urban habitats are characterized by increased temperatures and 
higher prevalence of environmental stressors that impact the bio-
logical processes of organisms relative to those living in rural envi-
ronments (Grimm et al., 2008; Oke, 1973). Already there is evidence 
that urban conditions are shaping species’ traits on a local scale 
(Diamond & Martin, 2016; Donihue & Lambert, 2015), and the ef-
fects of urbanization will likely vary geographically from one end of 
a species range to the other. For example, urban heating at cooler 
extremes of a species’ range may be beneficial, while heating could 

have a negative impact on species in the warmer extremes of their 
range where populations may already be close to their physiological 
limits (Diamond, Frame, Martin, & Buckley, 2011; Diamond et al., 
2013; Kingsolver, Diamond, & Buckley, 2013; Youngsteadt, Ernst, 
Dunn, & Frank, 2016). Likewise, organisms may be less tolerant 
of urban stressors (e.g., pollutants, fragmented landscapes, and 
changes in food resources) in parts of their range where they may 
be living close to their physiological limits. An understanding of how 
urbanization affects species across their range is therefore neces-
sary to predict the impacts of urbanization on species with broad 
distributions.
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Abstract
Many ectotherms show a decrease in body size with increasing latitude due to changes 
in climate, a pattern termed converse Bergmann’s rule. Urban conditions—particularly 
warmer temperatures and fragmented landscapes—may impose stresses on develop-
ment that could disrupt these body size patterns. To test the impact of urbanization on 
development and latitudinal trends in body size, we launched a citizen science project 
to collect periodical cicadas (Magicicada septendecim) from across their latitudinal 
range during the 2013 emergence of Brood II. Periodical cicadas are long-lived insects 
whose distribution spans a broad latitudinal range covering both urban and rural habi-
tats. We used a geometric morphometric approach to assess body size and develop-
mental stress based on fluctuating asymmetry in wing shape. Body size of rural cicadas 
followed converse Bergmann’s rule, but this pattern was disrupted in urban habitats. 
In the north, urban cicadas were larger than their rural counterparts, while southern 
populations showed little variation in body size between habitats. We detected no evi-
dence of differences in developmental stress due to urbanization. To our knowledge, 
this is the first evidence that urbanization disrupts biogeographical trends in body size, 
and this pattern highlights how the effects of urbanization may differ over a species’ 
range.
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Species with broad distributions often show predictable, clinal vari-
ation in body size and morphology (Blanckenhorn & Demont, 2004). 
Body size of endotherms tends to increase with increasing latitude 
while body size of ectotherms tends to decrease with increasing lati-
tude. These two patterns are known, respectively, as Bergmann’s rule 
and converse Bergmann’s rule (Bergmann, 1848; Mousseau, 1997) and 
have been found to hold often, if not always (Blanckenhorn & Demont, 
2004). In ectotherms, these patterns are likely due to direct effects of 
temperature and seasonal length on the fitness and physiology of in-
dividual organisms. This is particularly true for organisms that undergo 
molts, where warmer conditions may allow larvae and nymphs to grow 
larger before they molt and hence have a larger final size (Roff, 1980). 
Urban conditions, particularly urban heating, may disrupt ecological 
patterns in body size if they extend the growing season or change re-
source availability (Lowe, Wilder, & Hochuli, 2014).

While an organism’s developmental pathway is expected to buf-
fer itself against environmental disturbances (Markow, 1995), the 
compounded effects of urban stressors may compromise this ability 
(Hosken, Blanckenhorn, & Ward, 2000). Consequently, urban species 
may experience a breakdown in developmental stability that could 
cause a reduction in body size or increased levels of asymmetry, a sign 
of developmental stress. Higher levels of fluctuating asymmetry—a de-
viation from perfect, bilateral symmetry—would suggest fitness conse-
quences that impact survival and mate selection (Møller & Thornhill, 
1998; Parsons, 1990). In various ectotherms, fluctuating asymmetry 
has served as an indicator of environmental stress due to pollutants, 
radiation, malnutrition, or extreme temperatures (Beasley, Bonisoli-
Alquati, & Mousseau, 2013; Palmer & Strobeck, 2003). Thus, assessing 
changes in both body size and fluctuating asymmetry would provide 
further insight into how urban environments shape the evolutionary 
trajectories of these populations.

The aim of our study was to assess the effects of urbanization across 
the latitudinal range of periodical cicadas (Magicicada spp.). Periodical 
cicadas provide an ideal model for studying urban effects due to their 
long life cycle, synchronous emergence, and broad distribution across 
latitude and rural-urban gradients (Williams, Smith, & Stephen, 1991). 
Previous work has demonstrated that periodical cicadas show clinal 
variation in body size consistent with converse Bergmann’s rule, with 
smaller body size in cold, northern regions, and larger body size at the 
southern end of their range (Koyama et al., 2015). With the North 
American landscape projected to undergo significant changes due to 
urbanization (Terando et al., 2014) and the sensitivity of cicada devel-
opment and activity to temperature and landscape structure (Heath, 
1967; Karban, 2014; Moriyama & Numata, 2015), periodical cicadas 
may be particularly susceptible to the associated temperature and 
habitat changes (Cooley, Marshall, Simon, Neckermann, & Bunker, 
2013; Gilbert & Klass, 2006).

To assess the impact of urban environments on cicada develop-
ment, we launched a citizen science initiative to collect cicadas during 
the 2013 emergence of Brood II. Brood II is a population of single-aged 
periodical cicadas that emerge on a 17-year cycle in the eastern part 
of the United States with a range extending from Georgia in the south 
to Connecticut in the north (Simon, 1988). To determine whether 

urbanization increased signs of developmental stress, we quantified 
body size and fluctuating asymmetry in cicada wings. Because period-
ical cicadas have been found to follow converse Bergman’s rule with 
smaller body size in cold, northern regions and because cities tend 
to be warmer than the surrounding area (Koyama et al., 2015; Oke, 
1973), we expected to see an increase in cicada body size in cities 
compared with rural areas. Conversely, if cicadas at the southern end 
of their range are already living close to their physiological maximum, 
then we expected additional heat imposed by cities and other urban 
stressors to result in a reduction in body size and/or an increase in 
fluctuating asymmetry. By comparing rural and urban cicadas across 
their range, we evaluate how urbanization can have different impacts 
on development for cicadas and potentially other broadly distributed 
ectotherms.

2  | MATERIALS AND METHODS

2.1 | Study organism

Magicicada is a genus of periodical cicadas that is found exclusively 
in the eastern half of North America and is made up of seven species 
(Williams & Simon, 1995). They spend most of their lives underground 
as nymphs, developing for either 13 years or 17 years depending on 
the species. All groups pass through five instars before molting into 
the adult form (White & Lloyd, 1975). During an emergence year, a 
single-aged cohort of cicadas—known as a brood—emerge synchro-
nously (Williams & Simon, 1995). The number of individuals in a single 
brood can range from 30,000 to 3.5 million per hectare. Adult peri-
odical cicadas are characterized by having black bodies with orange-
veined wings and red eyes, easily distinguished from sympatric annual 
cicadas (Figure 1). They are most notable for their species-specific 
mating calls, which in large aggregations can range from 50 to 80 
decibels (Williams & Smith, 1991). Brood II is a 17-year cohort found 
along the eastern coast of the United States that consists of three 
species (M. septendecim, M. septendecula, M. cassini) (Simon, 1988). 
Because its geographic range occurs in the most populated part of the 

F IGURE  1 Magicicada septendecim
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United States, its emergence pattern is well-known and covers a range 
of urban and rural environments (Dybas & Lloyd, 1974).

2.2 | Sample collection

Periodical cicadas were collected during the 2013 Brood II emergence 
as part of the Urban Buzz: Periodical Cicada Citizen Science Project 
(http://robdunnlab.com/projects/urban-buzz/). Citizen scientists were 
recruited across the Brood II range and were instructed to collect 5-10 
dead, intact periodical cicadas from single locations and place them 
in a small plastic container with tissue paper or bubble wrap to en-
sure protection during transport. Each container was labeled with the 
citizen scientist’s name, email address, specific collection location (i.e., 
address, GPS coordinates), and date. Upon arrival in the laboratory, in-
dividuals were sorted and stored in a -20 freezer until further analysis. 
For consistency, we only used M. septendecim specimens because they 
make up the majority of individuals in Brood II as well as in our col-
lections (Leonard, 1964). M. septendecim was identified by the pres-
ence of broad orange stripes on the underside of the abdomen and 
orange coloration behind the eye (Leonard, 1964). Sex was identified 
by the presence (female) or absence (male) of the ovipositor. In total, 
citizen scientists collected 238 M. septendecim (of 272 total individuals) 
across five states from 29 independent locations during the emergence 
(Figure 2a). The sampling effort covered 88% of the latitudinal range of 
Brood II and 71% of M. septendecim’s overall latitudinal range.

2.3 | Wing morphology and body size measurements

All samples were carefully assessed for damage that would prevent 
accurate measurements of wing structure. In total, 163 individuals 
were used for morphological analysis. Wings were removed from the 
body and laid flat on a clear mounting tray. Images were captured 
using a digital camera (PowerShot SX510 HS, Canon) mounted on a 
tripod. For shape asymmetry and size measurements, we selected 26 
landmarks on wing vein intersections of the forewing (Klingenberg, 
Barluenga, & Meyer, 2002; Figure S1). Landmarks were digitized using 
TpsDig2.16 software (Rohlf, 2005). Because measurement precision 

is important for morphological analysis, we independently captured 
measurements three times to account for measurement error (Palmer 
& Strobeck, 2003). Measurements were taken in random order and 
blind to information on location and sex.

We used geometric morphometric techniques to test for mea-
surement error, assess presence of other developmental asymmetries, 
and extract fluctuating asymmetry (FA) and wing size values using 
MorphoJ software (Klingenberg, 2011; Klingenberg & Monteiro, 2005). 
Landmarks from both the left and right wing were superimposed and 
rotated to achieve the overall best fit between corresponding land-
marks by standardizing to a unit centroid size which we defined as an 
overall measure of wing size (Klingenberg & McIntyre, 1998). We then 
verified that wing centroid size was significantly correlated with thorax 
width, another standard metric used to estimate body size (r² = .24, 
p < .01). Thus, we used wing size as a proxy for overall body size of the 
individual, which is a common metric for quantifying insect body size 
(Gerard et al., 2015; Hoffmann, Collins, & Woods, 2002).

2.4 | Urbanization gradient and climate

We derived latitude/longitude coordinates from submitted addresses 
for each sample location using Google Earth (https://www.google.
com/earth/) and quantified urbanization by percentage impervious 
surface within 50 m using 2013 National Land Cover Database, NLCD 
(Fry et al., 2011). Impervious surface has been shown to be closely 
associated with urbanization factors, including land surface tempera-
ture and vegetation cover (Imhoff, Zhang, Wolfe, & Bounoua, 2010). 
A 50-m radius around each sample location was selected to account 
for dispersal distance of periodical cicadas (Karban, 1981). Locations 
with less than 9% impervious surface were categorized as rural, while 
values 12% and greater were considered urban (McKinney, 2002). We 
obtained mean annual temperature (°C) and mean annual precipitation 
for each sample location using PRISM Climate Group dataset at a scale 
of 4 km grid cells (PRISM Climate Group, Oregon State University, 
http://prism.oregonstate.edu, created 8 Nov 2016). Yearly averages 
spanned 1996-2013, which is the developmental period for the peri-
odical cicada population that emerged in 2013. Because temperature 

F IGURE  2  (a) Sampling locations during 
2013 emergence mapped over the major 
range of Brood II. (b) Regression analysis 
shows periodical cicadas in rural locations 
(solid line) follow a converse Bergmann’s 
rule with cicadas decreasing in size with 
increasing latitude. Urban cicadas in the 
northern part of the range (dashed line) do 
not follow the converse Bergmann’s rule 
pattern
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measured at this scale may not capture acute effects of urbanization, 
we used latitude as our prediction factor (latitude was strongly cor-
related with temperature (Figure S2, r² = .91, p < .01)).

2.5 | Statistical analyses

We used a Procrustes ANOVA in MorphoJ to test for measurement 
error and extract two measures of shape fluctuating asymmetry. The 
Procrustes distance is defined as the absolute measure of shape vari-
ation while the Mahalanobis distance is a transformation of the shape 
data so that there is equal variation in every direction (Klingenberg, 
2015; Klingenberg & Monteiro, 2005).

We used a forward stepwise model selection approach to first 
determine the best model for our data, including predictor variables 
such as sex, latitude, habitat, state (to reflect citizen scientists’ sam-
pling effort across range), and habitat–latitude interaction. Based on 
the minimum AICc criteria, we determined that all predictors, exclud-
ing state, provided the best model for our data (Table S1). We used 
a general linear model approach to assess body size as a function of 
habitat (rural vs. urban), sex, latitude, and habitat–latitude interaction. 
Because data for shape FA were not normally distributed, we used a 
generalized linear model (GLM) with a Poisson distribution to assess 
shape FA as a function of our predictors and their interaction. To ac-
count for any differences in development associated with sex, we an-
alyzed shape and size for males and females independently (Leonard, 
1964; White & Lloyd, 1975). Additionally, we ran a Wilcoxon rank sum 
test on urban and rural cicadas at the extreme ends of the range (36°N 
for southernmost range and 41°N for northernmost range) to compare 
body size and shape FA. All analyses were performed using JMP Pro 
11.2.0 (SAS Institute, Cary, NC, USA).

3  | RESULTS

3.1 | Urbanization, latitude, and body size

In line with previous research (Koyama et al., 2015), we found that in 
rural areas the body size of cicadas was negatively associated with lati-
tude, which is to say, southern cicadas were bigger and overall rural cica-
das followed converse Bergmann’s rule (Table 1; Figure 2b). However, 
this pattern was disrupted for cicadas collected in urban habitats 
(Figure 2b). In the northern part of the range (latitude 40°N and greater), 
urban cicadas were significantly larger than rural cicadas (Wilcoxon test, 
Nrural = 28, Nurban = 10 x2 = 6.0176, p = .01). However, rural and urban 
cicadas did not differ in body size in the south (latitude 36°N - 37°N) 
(Wilcoxon test, Nrural = 26, Nurban = 34 x2 = 0.0080, p = .93).

When comparing body size by sex, both males and females de-
creased in size with increasing latitude among rural sites (Table 1; 
Figure 3). The change in male body size across rural and urban habitats 
was statistically significant (Table 1; Figure 3). In the northern part of 
the range, male cicadas in urban habitats were 4% larger than those 
in rural habitats. We did not detect a significant difference in female 
body size between rural and urban habitats; however, few female cica-
das were collected in urban habitats in the northern part of the range, 

which decreased our ability to detect differences in body size between 
rural and urban female cicadas in the north (Table 1; Figure 3).

3.2 | Urbanization, latitude, and 
fluctuating asymmetry

Results from the Procrustes ANOVA indicated no significant effect of 
measurement error (Table 2). In addition to fluctuating asymmetry, where 
deviations from perfect symmetry occur randomly towards the left or 
right side, we detected the presence of directional asymmetry, which 
is a consistent bias in development toward only one side (Bookstein, 
1991; Klingenberg & Monteiro, 2005; Table 2). Directional asymmetry is 
present in many organisms, including some insect species (Klingenberg, 
2015), and we found evidence that cicada wings have a bias towards the 
left side. Thus, we used only transformed shape data (Mahalanobis dis-
tance) for all FA analyses as recommended by Klingenberg, 2015.

Overall, we found no effect of urbanization, latitude, or their in-
teraction on levels of fluctuating asymmetry in M. septendecim wings 
(Table 3). Males and females analyzed independently also did not show 
a significant pattern in fluctuating asymmetry (Table 3), nor did com-
parisons of rural and urban cicadas at the extreme ends of the range 
(Southern: Wilcoxon test, Nrural = 26, Nurban = 34 x2 = 0.0376, p = .85; 
Northern: Wilcoxon test, Nrural = 28, Nurban = 10 x2 = 3.4462, p = .06).

4  | DISCUSSION

Urbanization is predicted to affect the physiological and metabolic 
condition of animal populations due to increased environmental 

TABLE  1 Results of general linear model analysis with habitat 
(rural vs urban), latitude, and interaction for wing size (Centroid size) 
in periodical cicadas (N = 163; 73 females and 90 males). Bold value 
indicate models that are statistical significance

Source Estimate SE t p

Whole model

 Intercept 830.68817 47.68551 17.42 <.01

 Sex 13.671733 2.350126 5.82 <.01

 Habitat −2.578255 2.273218 −1.13 .26

 Latitude −4.411861 1.255794 −3.51 <.01

 Habitat*Latitude −3.494172 1.17189 −2.98 <.01

Female

 Intercept 942.1044 96.90706 9.72 <.01

 Habitat 0.653786 3.535451 0.18 .85

 Latitude −7.05692 2.622771 −2.69 .01

 Habitat*Latitude −1.34508 2.622771 −0.51 .61

Male

 Intercept 789.6384 61.40458 12.86 <.01

 Habitat −4.06548 3.172457 −1.28 .20

 Latitude −3.70015 1.585738 −2.33 .02

 Habitat*Latitude −4.09716 1.585738 −2.58 .01
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stressors (e.g., disturbance, pollutants, etc.) as well as urban heating 
(the “urban heat island” effect). We found that urbanization disrupted 
a latitude–size relationship that is common to all periodical cicadas 
(Koyama et al., 2015). In rural populations, cicadas were larger at the 
southern end of their range compared with the northern end, which 
is consistent with the converse Bergmann’s rule. In northern cities, 
however, urban cicadas were larger than rural cicadas and more simi-
lar in size to cicadas living to the south. A cicada living in an urban 
habitat in Poughkeepsie, NY, for example, was the same size as a ci-
cada living 400 km to the south in rural Maryland. In contrast, cicadas 
living in cities in the southern end of their range did not differ in size 
from rural cicadas. Previous research has shown that introduction of 
invasive species (Blanchet et al., 2010) and changes in diet (Diamond 
& Kingsolver, 2010) can disrupt latitude–body size relationships in 
animals, and our results show that urbanization may be an additional 
disruptor.

Urban warming in the northern sites has created thermal condi-
tions similar to those in southern rural sites, which could have allowed 
northern cicadas to achieve as much growth in cities as they would in 
rural environments to the south. In the daytime, temperatures in the 
city can be up to 8°C warmer than temperatures in rural habitats, and 
the effects of urban heating are particularly strong in cities in the east-
ern United States (Imhoff et al., 2010).). Cicadas that are pushed closer 
to their thermal optimum may therefore increase in body size (Karban, 
1983, 1997; Lloyd & Dybas, 1966). The fitness consequences for the 
population remain to be explored. On the one hand, larger body size in 
urban cicadas may lead to increased fecundity in females and more at-
tractive mating calls in males (Angilletta, Steury, & Sears, 2004; Brown 
& Chippendale, 1973). Alternatively, cicadas pushed away from an 
evolved physiological optimum may experience a reduction in fitness 
if, for instance, urban warming disrupts the timing of emergence and 
the availability of mates between urban and rural populations.

Periodical cicadas may be sensitive to a converse Bergmann’s rule 
effect because they feed primarily on xylem fluid in tree roots, which 
consists of water and inorganic ions, and consequently grow very 
slowly (White & Strehl, 1978). Urbanization, whether through warm-
ing, landscape fragmentation, or pollution, may affect xylem quality 
and availability. Urban trees tend to have higher incidences of xylem 

F IGURE  3 Body size for females and males in rural and urban habitats along Brood II’s latitudinal range. Body size trends are disrupted in 
urban habitats for both sexes compared to rural populations (p = .02)
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TABLE  2 Procrustes ANOVA of centroid size and shape of 
Magicicada septendecim forewings (N = 163) to assess the presence 
of measurement error, directional asymmetry (side), and fluctuating 
asymmetry (individual × side). Bold value indicate models that are 
statistical significance

MS df F p

Centroid size

 Individual 13980.7 27 9.95 <.01

 Side 944968.7 1 672.39 <.01

 Individual × side 1405.4 27 54.26 <.01

 Measurement 25.9 56 0.03 1

Shape

 Individual 0.00017 1296 3.68 <.01

 Side 0.014 48 304.82 <.01

 Individual × side 0.000046 1296 6.01 <.01

 Measurement 0.000007 2688 0.19 1

TABLE  3 Results of GLM with habitat (rural vs urban), latitude, 
and interaction for wing shape FA (Mahalanobis) in periodical cicadas 
(N = 163; 73 females and 90 males)

Source df L-R x² p

Whole model

 Habitat 1 0.0173604 .90

 Sex 1 0.0218162 .88

 Latitude 1 0.3412416 .56

 Habitat*Latitude 1 0.260124 .61

Female

 Habitat 1 0.007959 .93

 Latitude 1 0.151667 .70

 Habitat*Latitude 1 0.116893 .73

Male

 Habitat 1 0.062405 .80

 Latitude 1 0.058798 .81

 Habitat*Latitude 1 0.215907 .64
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cavitation due to urban warming (Bush et al., 2008; Litvak, McCarthy, 
& Pataki, 2012; Savi, Bertuzzi, Branca, Tretiach, & Nardini, 2015) and 
are of poorer quality compared to rural trees (McDonnell et al., 1997). 
Conversely, urban horticultural practices, such as the use of fertilizer 
and water supplementation, may have a positive impact on the quality 
of xylem fluid as cicadas associated with fertilized trees develop faster, 
have larger body sizes, and are found typically in higher densities 
(Karban, 2014; White & Lloyd, 1985; White, Lloyd, & Zar, 1979). The 
degree to which urban resource quality impacts cicada fitness along a 
latitudinal gradient remains unclear but given that early cicada growth 
appears to be sensitive to food availability and quality (White & Lloyd, 
1975) one might expect these conditions to impose a differential se-
lective pressure on body size if, for example, resources are more read-
ily available in the south compared to northern end of the range.

We found no significant effect of urbanization on fluctuating 
asymmetry—a measure of developmental stress—in M. septendecim 
despite their exceptionally long lifespan and long-term exposure to 
potential stressors. Our findings are similar to studies that have in-
vestigated insects in rural–urban habitats and found no significant 
change in fluctuating asymmetry (Elek, Lövei, & Bátki, 2014; Weller 
& Ganzhorn, 2004). One limitation of assessing developmental stress 
in the field is measuring the degree of selection against developmen-
tally unstable individuals (Møller, 1997). More asymmetrical individu-
als may be removed from the population prior to sampling and thus 
stressed populations may appear more symmetrical (and larger). We 
also detected directional asymmetry in our populations, which would 
also affect our ability to detect differences in fluctuating asymmetry 
due to environmental stressors. While there is evidence that direc-
tional asymmetry and fluctuating asymmetry are often interrelated 
(Graham, Emlen, Freeman, Leamy, & Kieser, 1998; Lens et al., 2000), 
it remains unclear from our study whether or not M. septendecim is 
experiencing developmental stress in urban habitats based on results 
from fluctuating asymmetry alone. Therefore, we cannot completely 
rule out the possibility that urbanization negatively impacts cicada 
development.

The disruption of the latitude–size relationship in urban cicadas 
raises evolutionary questions about how the expansion of urban areas 
will affect cicada populations. A key feature of a population’s ability to 
respond to environmental change is the degree of developmental plas-
ticity in the population (Sgrò, Terblanche, & Hoffmann, 2016; West-
Eberhard, 2005). Periodical cicadas exhibit some degree of plasticity in 
life cycle development as indicated by incidences of nonsynchronous 
emergences due to changes in environmental cues (Marshall, Cooley, 
& Hill, 2011). Our finding of changes in body size across the rural–
urban gradient adds support to the possible role of plasticity in cicada 
evolution. Urbanization may constrain or speed up the population’s 
adaptive response to the environmental changes, and this is particu-
larly relevant given current predicted changes associated with climate 
change.

There is strong public concern for the status of periodical cica-
das, which is exemplified by the citizen scientists who contributed 
to this project as well as a host of other citizen science projects 
that focus on periodical cicadas (Beasley, Benson, Welch, Reid, & 

Mousseau, 2012; Kritsky, 1992). Periodical cicadas only occur in 
the eastern part of North America, an area that is already the most 
urbanized of the United States and is likely to become much more 
urbanized in the next decades (Terando et al., 2014). Two periodi-
cal cicada broods have gone extinct within the last 150 years, one 
of which—the Floridian brood, XXI—was distributed farthest to 
the south (Young, 1958). We propose that continued monitoring 
of periodical cicadas in urban habitats, including a more fine scale 
assessment of habitat conditions, is needed to understand how ur-
banization could affect cicadas over longer time scales and in earlier 
development stages.

In conclusion, our study further illustrates the implications of in-
creasing urbanization on the cicada’s evolutionary trajectory and how 
the degree and direction of those impacts may vary depending on a 
species geographic range.
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