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ABSTRACT

Climate change is driving a pervasive global redistribution of the planet’s species. Species redistribution poses new
questions for the study of ecosystems, conservation science and human societies that require a coordinated and
integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area,
emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and
the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest
implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from
ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in
conservation science and for designing conservation strategies that incorporate changing population connectivity and
advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental
management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes
an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we
demonstrate how ecological, conservation and social research on species redistribution can best be achieved by
working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies
should therefore integrate existing and complementary scientific frameworks while incorporating social science and
human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage
with managers, policy makers and the public to develop responsible and socially acceptable options for the global
challenges arising from species redistributions.

Key words: adaptive conservation, climate change, food security, health, managed relocation, range shift, sustainable
development, temperature.
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I. INTRODUCTION

Species across the globe, in all ecosystems, are shifting their
distributions in response to recent and ongoing climate
change (Parmesan & Yohe, 2003; Sorte, Williams & Carlton,
2010; Pinsky et al., 2013; Alofs, Jackson & Lester, 2014; Lenoir
& Svenning, 2015; Poloczanska et al., 2016; Scheffers et al.,

2016). These shifts are faster at greater levels of warming
(Chen et al., 2011) and are projected to accelerate into the
future with continued changes in the global climate system
(Urban, 2015). Thus, there is a clear need to understand the
impacts and consequences of global species redistribution for
ecosystem dynamics and functioning, for conservation and
for human societies (Pecl et al., 2017).

Species range dynamics and climate have an intertwined
history in ecological research going back centuries (Grinnell,
1917; Parmesan, 2006). However, research on species range
shifts driven by contemporary climate change is relatively
recent, dating back only 20 years (Southward, Hawkins
& Burrows, 1995). In the past decade, research on the
subject has increased dramatically (Fig. 1). While coverage
is far from complete methodologically, geographically or
taxonomically (Lenoir & Svenning, 2015; Brown et al.,

2016; Feeley, Stroud & Perez, 2017), this increased
research effort highlights growing awareness that species
are moving in response to climate change, worldwide (IPCC,
2014).

We believe that ‘species redistribution science’ has
emerged as a field in its own right. However, to date the
field has lacked strategic direction and an interdisciplinary
consideration of research priorities. Historically, researchers
have used ‘species range shifts’ or ‘species distribution
shifts’ as favoured descriptive terms for climate-driven
species movements. Here we use the term ‘species
redistribution’ to encapsulate not only species movement,
but also its consequences for whole ecosystems and
linked social systems. Despite accumulating evidence

of recent climate-driven species redistributions (Lenoir
& Svenning, 2015; Poloczanska et al., 2016; Scheffers
et al., 2016), integrated and interdisciplinary frameworks
that can effectively predict the ecological, conservation
and societal consequences of these changes remain
uncommon [but see Williams et al. (2008) for a framework
highlighting species vulnerability and potential management
responses]. A long-term strategy for the field of species
redistribution research is required to capitalise on, and
respond to, the ‘global experiment’ of large-scale changes
in our natural and managed ecosystems. What can
be implemented now to build scientific and social
capacity for adaptation to species redistribution over
the next decade, the next century and beyond (IPCC,
2014)?

The ‘Species on the Move’ conference (held in Hobart,
Australia, 9–12 February 2016) brought together scientists
from across the physical, biological and social sciences. Here,
we build on the outcomes of this conference by identifying key
research directions to meet the global challenge of preparing
for the impacts of climate-driven species redistribution on
the biosphere and human society. We focus on directions
and needs around three focal points for understanding
species redistribution and its impacts: (i) species redistribution
ecology, (ii) conservation actions, and (iii) social and
economic impacts and responses. For each focal point we
summarise recent trends in the field and propose priority
questions for future research. We identify promising research
directions and approaches for addressing these questions,
placing emphasis on the potential benefits from integrating
approaches across multiple disciplines and sub-disciplines. In
so doing, we argue that greater interdisciplinary synthesis is
fundamental to ensuring that species redistribution research
continues to advance beyond simple documentation of
species range shifts, to develop research programs and
achieve outcomes that will inform policy and management
decisions.
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Fig. 1. Publication trends for papers on species range shifts. (A) Proportion of publications addressing species redistribution over a
time, as a fraction of all papers in environmental sciences/ecology fields. (B) Number of journals publishing species redistribution
papers over time. (C) Median annual citation rate of species redistribution papers decreases to the median annual citation rate of
papers in the general environmental sciences/ecology field.

II. SPECIES REDISTRIBUTION AS A FIELD OF
RESEARCH

To support our synthesis of future directions, we first
establish how the research field of climate-driven species
redistributions has evolved and quantify, bibliometrically,
the prevailing research foci. To understand this history in
the context of the broader scientific literature, we analysed
publication trends in the peer-reviewed literature on species
range shifts over the past 25 years. In total we extracted
1609 publications from Thompson Reuters Web of Science

that contained search terms relating to distribution change
or range shift (see online Appendix S1 for details).

In 2006, both the proportion of range shift publications
in the ‘environmental sciences’ and the diversity of journals
publishing research on range shifts showed a clear increase
(Fig. 1). At the same time, citation rates dropped relative
to the discipline’s baseline heralding that publications about
range shifts had shifted from a few high-profile publications
to mainstream ecological science (Fig. 1).

We analysed this corpus to identify research trends in
two ways. First, we identified ‘trending’ terms. Terms were
defined based on word stems, and trending terms were those
that showed a significant increase in use in titles, abstracts or
key words since 1995. Second, we identified ‘high-impact’
terms, i.e. those associated with higher than average citation
rates, once we had accounted for the confounding effect of
publication year. The trends analysis indicated that range
shift science has become increasingly interdisciplinary over
time. Terms associated with socioeconomic approaches,
such as ‘ecosystem services’ have also become increasingly
prevalent and tend to be associated with high-impact
papers (Fig. 2). Management-oriented studies, with terms
including ‘priority’ (referring to management priorities) are
also increasing in use. Both socioeconomic (‘social’, ‘socioe-
conomic’) and management-related terms (‘complement*’
referring to complementary protection) were associated

with higher than average citation rates during the period
2010–2015 (Fig. 2). Thus, we find clear evidence for the
emergence of a new field that is generating increasing
interest, while expanding to link with other existing and
emerging fields.

III. SPECIES REDISTRIBUTION ECOLOGY

Species redistribution has been widely documented (Scheffers
et al., 2016) and well-developed theories have been proposed
to explain how and why range shifts occur (Bates et al.,
2014) and how future species redistribution may proceed
under global climate change (Urban et al., 2016). Hence,
we can consider the ecology of species redistribution
under two broad and complementary areas: explanatory
ecology and anticipatory ecology. Explanatory ecology
generally aims to evaluate models and theory to enhance
scientific understanding of the processes that drive species
redistribution. For detailed reviews on subject areas specific
to explanatory ecology we refer the reader to Somero (2010)
(physiological factors), Blois et al. (2013) (biotic interactions),
Maguire et al. (2015) (historical ecology), and Garcia et al.
(2014) (climate trends/extreme events). Anticipatory ecology,
by contrast, intends to forecast future states by inferring
possible trajectories or behaviours of the system, based
on parameters likely to be impacted by anthropogenic
factors, such as predicting the effects of climate change on
species, communities and ecosystems. For detailed reviews of
anticipatory ecology we recommend Urban et al. (2016) and
Cabral, Valente & Hartig (2016).

In this section, we do not duplicate former reviews
of the explanatory and anticipatory ecology of species
redistribution. Our review focuses, instead, on gaps in
explanatory and anticipatory ecology (Table 1) that need
to be filled in order to predict the impacts of species
redistribution on biodiversity and human well-being.

Biological Reviews 93 (2018) 284–305 © 2017 Cambridge Philosophical Society



288 Timothy C. Bonebrake and others

Fig. 2. Analysis of trends used within the species redistribution literature: (A) top 20 trending words that increased significantly in
usage, and (B) top 20 high-impact words that correspond with increased citation rates of papers published between 2010 and 2015.
See online Appendix S1. sdm, species redistribution model.

To achieve this aim, we examine multiple elements
of explanatory ecology, including the physiological and
ecological factors underpinning species redistribution, biotic
interactions and historical ecology, as well as climate trends
and extreme events. We conclude this section with a
discussion of the challenges of anticipatory ecology.

(1) Physiological and ecological factors
underpinning species redistribution

Climate change is causing pervasive impacts on ectothermic
animals because of their reliance on environmental
temperature to regulate body temperature (Deutsch et al.,
2008; Kearney & Porter, 2009). Thermal performance
curves, which quantify how an ectotherm’s body temperature
affects its performance or fitness, are used to understand
range shifts and to predict future distributions (Sunday,
Bates & Dulvy, 2012; Sunday et al., 2014). While thermal
tolerance and performance patterns have been well studied
for ectothermic taxa (Dell, Pawar & Savage, 2011), similar
trends in large-scale patterns of climatic niche, e.g. heat
tolerance conserved across lineages, are also apparent
for endotherms and plants (Araújo et al., 2013). The
use of thermal performance curves in predicting species
distributions often disregards ecological interactions (e.g.
competition, predation, mutualism) that may be critical to
population establishment and persistence (but see Urban,
Tewksbury & Sheldon, 2012). In addition, the form of each
species’ performance curve has important effects on species

interactions, with asymmetries in the thermal performance
curves between interacting species likely having important
impacts on the strength and outcome of interactions (Dell
et al., 2011; Dell, Pawar & Savage, 2014). Physiological
plasticity (e.g. thermal acclimation), resource specialisation,
competitive interactions and behavioural thermoregulation
(Thomas et al., 2001; Burton, Phillips & Travis, 2010; Feary
et al., 2014; Sunday et al., 2014; Tunney et al., 2014; Tedeschi
et al., 2016) are additional factors that can modify thermal
performance curves and/or impact the nature and outcome
of species range shifts.

Future research would therefore benefit from approaches
that connect mechanistic processes across biological levels
of organisation, from genes to ecosystems. For example,
because selection acts on individual genotypes/phenotypes,
an understanding of intraspecific variation in key functional
traits will help in forecasting species’ breadth of tolerance
and capacity for range shifts (Norin, Malte & Clark, 2016). In
general, both low and high variability in thermal tolerances
can exist within and among populations and may vary with
extrinsic factors such as environmental filtering, which causes
a convergence in tolerance (i.e. heat hardening; Phillips et al.,
2015), or intrinsic factors such as body size or life-history
stages, which might result in thermal tolerance dispersion
(Ray, 1960; Angilletta, Steury & Sears, 2004; Daufresne,
Lengfellner & Sommer, 2009; Cheung et al., 2013; Scheffers
et al., 2013).

The mechanistic basis behind variability in thermal
tolerance remains poorly understood (Clark, Sandblom &
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Table 1. Key questions posed by attendees of the 2016 Species on the Move conference and additional questions developed for each
research focus: Ecology, Conservation and Society. Also included for each key question are cross-cutting themes (sensu Kennicutt
et al., 2015). ECO, Ecology; CONS, Conservation; SOC, Society; SDM, species redistribution model

Key questions and topics
Approaches and interdisciplinary

cross-cutting References

Ecology
To what extent will novel species combinations

impact future change to ecological communities?
CONS/SOC

Experimental manipulation
Modelling

Urban et al. (2012) and Alexander et al.
(2015)

How much do biotic interactions affect range shifts,
compared to the effects on ranges from species
traits, geographic context and physical rates of
change? CONS

Incorporation of species interactions
into SDMs

Palaeoecological methods

Ferrier et al. (2007), Wisz et al. (2013),
Blois et al. (2013) and Fitzpatrick et al.
(2013)

How can we predict species responses to extreme
events? Much empirical physical research is
focused on extreme events, but most
biological/ecological modelling evaluates slow
long-term change. CONS/SOC

Incorporate extreme climatic events
into modelling/predictions

Measure key mechanistic processes

Zimmermann et al. (2009), Azzurro et al.
(2014) and Briscoe et al. (2016)

What is the role of plasticity (physiological,
behavioural) in mediating species responses within
and between populations, and how does plasticity
affect modelling predictions? CONS

Accounting for intraspecific differences
in realised niche

Valladares et al. (2014) and Bennett et al.
(2015)

What are the main determinants of time lags in biotic
responses to climate change (the climatic debt)?
CONS

Explaining magnitude of lags in
response to climate change in
addition to the magnitude of the shift

Bertrand et al. (2016)

How will uncertainty in climate change projections
affect predictions of species redistribution? CONS

Multi-model ensemble averaging Fordham et al. (2011)

How can co-occurring taxa/communities best be
modelled under changing climates? CONS

Community-level models Maguire et al. (2016)

Conservation
How can we integrate uncertainty into the

conservation planning process? What time frame
allows for robust actions while minimising
uncertainty? SOC

Decision science Shoo et al. (2013)

How can we monitor large-scale landscapes and
seascapes and complex natural and social
interactions best across regions? ECO/SOC

Monitoring to adjust (adaptive)
conservation actions continuously

Interpretation of satellite
remote-sensing, population surveys

Tøttrup et al. (2008), Pettorelli et al.
(2014) and Kays et al. (2015)

What are the values and risks associated with novel
communities that arise from individual species
range shifts? What are the effects of invasive
species on the maintenance of phylogenetic and
functional diversity? ECO

Assessing functional and phylogenetic
diversity

Palaeoecological methods

Buisson et al. (2013) and Albouy et al.
(2015)

How do we apply prescriptive/assisted evolution to
accommodate species redistribution? ECO

Molecular ecology
Conservation genomics

Smith et al. (2014) and Hoffmann et al.
(2015)

How can we build dynamic conservation
management strategies that cope with changes in
species distributions? SOC

Sequential dynamic optimsation Alagador et al. (2014)

How does climate change interact with other drivers
of biodiversity change (e.g. invasive species, land
use and fire) to influence outcomes for biodiversity
(all species)? ECO/SOC

Management of local stressors
Coupled population and SDMs

Russell et al. (2009), Bonebrake et al.
(2014) and Jetz et al. (2007)

Will microrefugia allow species to persist locally as
climate changes? If so, where are they? ECO

Climate change metrics
Fine-scale grids

Keppel et al. (2012) and Ashcroft et al.
(2012)

Society
How do species redistributions impact ecosystem

services through biodiversity reshuffling? ECO
Coupled SDM and trait-based methods Moor et al. (2015)

What are the key messages we need to communicate
to the public about shifting distribution of marine
and terrestrial species? How do we communicate
them effectively? ECO

Creating opportunities for respectful
dialogue between scientists and the
public

Improving ecological and science
literacy

Jordan et al. (2009)
Groffman et al. (2010)
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Table 1. Continued

Key questions and topics
Approaches and interdisciplinary

cross-cutting References

How can people and communities contribute further
to monitoring the impacts of changes in the
distributions and relative abundances of species
caused by climate change? ECO/CONS

Community-based observation systems Higa et al. (2013) and Chandler et al.
(2016)

What is the effect of climate change on soil
biodiversity, and how does climate change affect
soil health and agriculture? ECO/CONS

SDMs and soil science Hannah et al. (2013) and le Roux et al.
(2013)

How can marine spatial planning be reorganised to
reconcile biodiversity conservation and food
security? ECO/CONS

Adaptive management
Restoration

Garcia & Rosenberg (2010), Rice &
Garcia (2011) and Sale et al. (2014)

What practical adaptations for agriculture, fisheries
and aquaculture can be promoted to minimise the
risks to food security and maximise the
opportunities that are expected to arise from
altered species distributions? ECO/CONS

Adaptive management
Restoration

Bradley et al. (2012) and Bell et al. (2013)

How will climate change impact the redistribution of
disease-associated species and influence infectious
disease dynamics? ECO

Host and vector SDMs Rohr et al. (2008) and Harrigan et al.
(2014)

How can international environmental agreements
that influence resource-management decisions
incorporate local community observations and
insights into their guidance and policy-making
objectives? CONS

Evidence-based legal processes
Multiple evidence-based frameworks

Tengö et al. (2017)

Jutfelt, 2013) but may be revealed through new genetic
tools (Bentley et al., 2017). Measuring genetic diversity as
organisms expand their range and documenting genetic
structure during and after colonisation can provide a wealth
of information on evolutionary dynamics of range shifts
(McInerny et al., 2009; Sexton, Strauss & Rice, 2011; Duputié
et al., 2012), but requires new, dedicated research programs
and/or careful analysis of historical museum collections.
Knowledge of the genetics underpinning thermal tolerance
can directly inform species conservation and ecosystem
restoration through assisted evolution applications (Van
Oppen et al., 2015).

The magnitude of range shifts can be population,
species, and ecosystem dependent, suggesting determinants
or mediators of species redistribution other than climate
(Rapacciuolo et al., 2014; Rowe et al., 2015). Species
redistribution studies have commonly sought to identify
ecological traits that explain species responses (see Fig. 2;
McGill et al., 2006; Sunday et al., 2015; Pacifici et al., 2015).
However, trait-based studies have had mixed success at
identifying predictors of range shifts, with thermal niches
and climate trends remaining in general the strongest
explanatory variables (Buckley & Kingsolver, 2012; Pinsky
et al., 2013; Sommer et al., 2014; Sunday et al., 2015). Key
traits may include those related to dispersal and establishment
(Angert et al., 2011; Sunday et al., 2015; Estrada et al.,

2016), local persistence, such as intrinsic ability to tolerate
changing climate (physiological specialisation; Bertrand
et al., 2016), phenotypic plasticity (Valladares et al., 2014),
micro-evolutionary processes (genetic adaptation; Duputié

et al., 2012), capacity to utilise microhabitat buffering effects
(Scheffers et al., 2013), fossorial habits (Pacifici et al., 2017),
and tolerance to habitat fragmentation (Hodgson et al.,

2012). Determining the contexts and conditions under which
different traits mediate species redistribution, and to what
degree those traits determine redistribution, is an important
avenue of future research.

(2) Biotic interactions

In general, biotic interactions remain under-measured in
range-shift studies, yet they likely play a key role in mediating
many climate-induced range shifts (Davis et al., 1998;
HilleRisLambers et al., 2013; Ockendon et al., 2014). Shifts
in species interactions will occur as a result of differential
responses to climate by individual species that can lead to
asynchronous migrations within communities and creation of
novel assemblages (Pörtner & Farrell, 2008; Hobbs, Higgs &
Harris, 2009; Gilman et al., 2010; Urban et al., 2012; Kortsch
et al., 2015; Barceló et al., 2016). Asynchronous shifts can also
cause decoupling of trophic interactions, for example when
symbiont–host interactions break down (Hoegh-Guldberg
et al., 2007) through mismatches in the phenology between
consumers and their resources (Winder & Schindler, 2004;
Durant et al., 2005; Post & Forchhammer, 2008; Thackeray
et al., 2016) or through differential thermal sensitivity of
consumers and their resources (Dell et al., 2014). Conversely,
climate change and species distribution shifts can create novel
species interactions through range expansions, as species that
have evolved in isolation from one another come into contact
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for the first time (Vergés et al., 2014; Sánchez-Guillén et al.,
2015).

Some of the most dramatic impacts of community
change are likely to arise through the assembly of
novel species combinations following asynchronous range
shifts associated with climate change (Urban et al., 2012;
Alexander, Diez & Levine, 2015). These predictions are
supported by palaeoecological studies that show how novel
species interactions resulting from past climatic changes
drove profound community-level change (Blois et al., 2013).
The emergence of novel ecological communities will pose
significant conservation and societal challenges, because most
management paradigms are insufficient to cope with major
reorganisation of ecosystems (Morse et al., 2014; Radeloff
et al., 2015). Studies of the response of linked social-ecological
systems to historical climatic changes are needed to inform
the management of ecosystems under ongoing and future
climate change (e.g. Hamilton, Brown & Rasmussen, 2003).

Contemporary observations of extreme events suggest that
shifts in species interactions are particularly important when
redistribution occurs in foundation (i.e. habitat-forming) or
keystone species. Shifts in foundation species can initiate
cascading effects on other species and act as biotic multipliers
of climate change (Zarnetske, Skelly & Urban, 2012). For
example, many of the greatest ecosystem impacts of climate
change in marine systems have been caused by the loss
of habitat-forming species such as corals, kelp forests and
seagrasses (Hoegh-Guldberg & Bruno, 2010; Thomson et al.,
2015; Vergés et al., 2016; Wernberg et al., 2016).

Explanatory ecology is now shifting its focus from single
species to the role of biotic interactions in mediating range
shifts. A key research priority is to identify the importance
of biotic interactions relative to species traits, geographic
context and physical rates of change (Sunday et al., 2015).
A limiting factor has been the lack of multi-species ‘climate
change experiments’ (Wernberg, Smale & Thomsen, 2012)
and long time-series data that follow multiple trophic levels
(Brown et al., 2016). Thus, there is a need to join multiple
data sets in order to understand how biotic interactions shape
range shifts. Understanding the role of biotic interactions in
species redistribution is important to inform conservation and
societal challenges. For instance, models of three interacting
invasive pests (potato tuber moths) in the Andes predicted
that their redistribution would alter biotic interactions, which
would in turn impact the level of crop damage (Crespo-Pérez
et al., 2015).

(3) Community redistribution and historical
ecology

Despite species redistribution science being born of ecology,
we are still a long way from understanding how species
redistribution will drive changes in ecological communities
(Marzloff et al., 2016). Historical ecology suggests that climate
change can result in dramatic alterations in community
structure. For example, the equatorial dip in diversity
evident in modern marine communities (Tittensor et al.,
2010) was most pronounced for reef corals during the

warmer intervals of the last interglacial period (125 ka),
indicating that both leading and trailing edges of species
ranges were responding to increases in ocean temperature
(Kiessling et al., 2012). Pleistocene reef records suggest that
species and communities are relatively robust to climate
change and that ecological structure generally has persisted
within reef coral communities over multiple climatic cycles
(Pandolfi, 1996; Pandolfi & Jackson, 2006). By contrast, many
North American tree species have shifted their individual
distributions and adapted genetically to Quaternary climatic
changes (Davis & Shaw, 2001). Human migrations,
settlement patterns, and species use have also been linked
to environmental change (Graham, Dayton & Erlandson,
2003). However, the rate of contemporary climate change,
genetic constraints on rapid adaptation and dramatic land
cover changes over the past century will challenge ‘natural’
species redistribution in the Anthropocene (Hoffmann &
Sgro, 2011; Moritz & Agudo, 2013) and complicate human
responses to these changes.

A key question for historical ecology is to determine
the extent to which community change is driven by multiple
species-specific responses to climate, versus shifts in key species
driving cascading community change. Historical ecology
can fill an important gap in our understanding, given that
it focuses on systems that were, in most cases, far less
influenced by humans than occur presently. Furthermore,
studies in deep time allow us a glimpse into the outcome
of processes similar to those that we are watching in their
infancy today.

(4) Climate trends, scale mismatch and extreme
events

Climate trends are a key predictor of range shifts due to the
importance of climatic tolerances (or thermal performance
curves) in controlling species ranges. Observational evidence
of the direction of range shifts in terrestrial and
aquatic environments are overwhelmingly consistent with
expectations required for species to track temperature
changes (Sorte et al., 2010; Chen et al., 2011; Comte et al.,
2013; Poloczanska et al., 2013). Longitudinal range shifts, as
well as shifts towards the tropics or lower elevations (which
run counter to intuitive expectations), can be attributed to
the complex mosaic of regional climate changes expected
under global change that involve not only temperature but
also other factors such as precipitation and land-use changes
(Lenoir et al., 2010; Crimmins et al., 2011; McCain & Colwell,
2011; Tingley et al., 2012; Pinsky et al., 2013; VanDerWal
et al., 2013).

Multi-directional distribution shifts stem partly from
the spatial arrangement of mountain ranges on land
and continental shelves in the ocean, which are
important physiographic features constraining (as barriers) or
enhancing (as corridors) species redistribution (VanDerWal
et al., 2013; Burrows et al., 2014). For example, the ranges of
some forest plants are shifting equatorward and upward as
the climate warms in France, likely due to the fact that the
main mountain ranges in France are located in the south
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(Alps, Massif Central and Pyrenees; Kuhn et al., 2016). Such
geographic features may thus represent potential climatic
traps or ‘cul-de-sacs’ for living organisms facing climate
change. The northern Mediterranean Sea, for example, will
likely act as a cul-de-sac for endemic fishes under future
climate change (Lasram et al., 2010).

A challenge in using climate variables to explain species
redistribution is that species may respond to different climate
variables than those available from historical measurements,
due to a spatial mismatch between the size of the
studied organisms and the scale at which climate data
are collected and modelled (Potter, Woods & Pincebourde,
2013). For instance, relationships between climate velocity
and marine species redistribution are weak or non-existent
using global sea-surface temperature data sets to calculate
climate velocity (Brown et al., 2016), but can be strong using
locally measured temperatures that coincide with organism
sampling (Pinsky et al., 2013). Therefore, we consider it a
research priority to find ways to reconstruct high spatial- and
temporal-resolution temperature histories that are relevant
to the organisms under study (Franklin et al., 2013; Kearney,
Isaac & Porter, 2014; Levy et al., 2016). This objective
requires better communication and more collaboration
among climatologists, remote sensing specialists and global
change biologists to produce climatic grids at spatial and
temporal resolutions that match organism size and thus are
more meaningful for forecasting species redistribution under
anthropogenic climate change.

The study of extreme events has been instrumental to
species redistribution research, because punctuating events
provide distinct natural experiments for the study of
biological responses to climate change. The frequency and
amplitude of extreme events is increasing with climate change
(IPCC, 2013), placing increasing emphasis on studying
extreme events in the context of longer-term change. Impacts
of climate change on biological communities are often
mediated by extreme events (Fraser et al., 2014; Thomson
et al., 2015; Wernberg et al., 2016). For example, ocean
temperatures along the western Australian coast increased
for over 40 years, with kelp forests exhibiting little noticeable
ecological change, but a marine heat wave drove a 100 km
kelp forest range contraction in only 2 years (Wernberg et al.,
2016). The infrequent nature of extreme events means that
long time series are required to document the cumulative
impacts on ecosystems. For example, in Australia, severe
wildfires in quick succession brought about an ecosystem
regime shift in mountain ash forests (Bowman et al., 2014).
A research priority is therefore to extend studies that
document changes arising from a short-term extreme event
into longer time series that may allow us to understand the
cumulative effects of changes in frequency of extreme events.

(5) Anticipating future redistributions

The urgency of responding to anthropogenic climate change
has stimulated a shift towards anticipatory ecology that
aims to predict future ecological change. The shift to
anticipatory ecology is indicated by our literature analysis,

which found an increased frequency of terms related to
prediction [Fig. 2; terms ‘sdm’ (species distribution model)
and ‘maxent’ (a popular tool for such modelling); Phillips &
Dudík (2008)]. Approaches to predicting the consequences
of climate change for biodiversity are varied and include
correlative species distribution models (SDMs; Guisan &
Zimmermann, 2000) as well as mechanistic and hybrid SDMs
that account for physiological constraints, demographic
processes or environmental forecasts (Kearney & Porter,
2009; Hartog et al., 2011; Webber et al., 2011; Dullinger et al.,

2012; Cheung et al., 2015; Table 1). The emergence of the
study of species redistributions during the era of rapidly
increasing computing power and growing availability of
climate data has also contributed to the dominance of spatial
modelling techniques. The emphasis on forecasting has
been paralleled by a development of predictive techniques,
including machine-learning algorithms such as maxent
(Phillips & Dudík, 2008).

Anticipatory models have recently been progressing on
two fronts. First, mechanistic and process-based models,
often including physiology, biotic interactions, and/or
extreme events, are increasingly being used and developed
for biogeographic prediction (Kearney & Porter, 2009;
Cabral et al., 2016). Bioenergetics models, for example, can
overcome traditional species distribution model limitations
when making predictions under novel climates, modelling
extreme events and understanding the importance of timing
of weather events (e.g. Briscoe et al., 2016). Mechanistic
models tend to be data intensive and have so far been little
used in conservation planning despite significant potential
(Evans, Diamond & Kelly, 2015; Mitchell et al., 2016).
However, prospects for process-based models integrating
conservation and society are positive, as models become
more flexible, accurate, and accessible (Kearney & Porter,
2009).

The second trend with predictive models has been
an increasing focus on physical drivers at appropriate
spatial and temporal scales (Potter et al., 2013). In this
regard, a key perspective in species redistribution is the
velocity of climate change – which measures the geographic
movement of temperature isotherms (Loarie et al., 2009;
Burrows et al., 2011) to project changes in species ranges
and community composition (Hamann et al., 2015). Climate
velocity trajectories (Burrows et al., 2014) based on sea surface
temperatures, for example, were recently combined with
information on thermal tolerances and habitat preferences
of more than 12000 marine species to project that range
expansions will outnumber range contractions up to the
year 2100. Broadened ranges, in turn, are projected to
yield a net local increase in global species richness, with
widespread invasions resulting in both homogenised and
novel communities (Molinos et al., 2015). However, velocity
measures have limitations and can underestimate climate
change exposure for some communities (Dobrowski &
Parks, 2016). For marine systems, changes in the speed
and direction of currents can potentially influence dispersal
and therefore population connectivity, and may also need
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to be considered for a more complete understanding of
the relationship between climate drivers and rates and
magnitudes of range shifts (Sorte, 2013; Cetina-Heredia
et al., 2015). High-resolution particle-transport Lagrangian
models may be useful in this context (van Gennip et al., 2017).
Ultimately, examining multiple climate change metrics and
linking them to the threats and opportunities they represent
for species could overcome the limitations of individual
metrics and provide more-robust impact estimates (Garcia
et al., 2014).

IV. CONSERVATION ACTIONS

Faced with climate change as a novel and substantial threat, a
new species-management paradigm has emerged (Stein et al.,
2013): to be effective, conservation strategies must account
for both present and future needs and must be robust to
future climate change. Such strategies will require integration
of species redistribution science with consideration of the
social and economic consequences (Table 1). Managers
have several options for conserving species and ecosystems
faced with range shifts: adapt conservation management
in current landscapes and seascapes; facilitate natural
species movement; manage resources to support species
redistribution; and/or move species as a conservation
intervention, i.e. managed relocation. Important reviews
on conservation under climate change, such as Heller &
Zavaleta (2009) and Mawdsley, O’Malley & Ojima (2009),
provide context for adaptation strategies under warming.
In this section we specifically aim to synthesise recent
advances in species redistribution science and conservation
actions that attempt to accommodate species redistributions,
requiring the involvement of multiple stakeholders for
effective implementation.

(1) Adapting management in current conservation
landscapes and seascapes

Mitigating the impacts of climate change on species
and ecosystems in situ is challenging, because it requires
management decisions that are robust to future change
and the development of adaptive solutions for specific
populations (e.g. providing shelter or supplemental food;
Correia et al., 2015). Systematic conservation planning efforts
are increasingly incorporating the principles of climate
change adaption into the protected-area design process
(Carvalho et al., 2011; Groves et al., 2012), ensuring that
existing protected areas are resilient to climate change
by maintaining and increasing the area of high-quality
habitats, prioritising areas that have high environmental
heterogeneity, and controlling other anthropogenic threats
(Hodgson et al., 2009). Habitat engineering may also be
required to provide effective recovery and maintenance
of populations, for example, through the installation of
microclimate and microhabitat refuges or enhancement and
restoration of breeding sites (Shoo et al., 2011). Identification

of microrefugia, small areas robust to warming impacts over
long time periods, will also be key for long-term planning
(Lenoir, Hattab & Pierre, 2017). In many countries, the legal
and governance framework underpinning protected-area
management may not yet allow for these types of active
management interventions (McDonald et al., 2016a), so legal
reform may be needed.

(2) Facilitating natural species movement

As the most suitable habitat conditions for species are
shifting geographically under climate change and species
redistribute themselves, forward planning is increasingly
essential, both temporally and spatially (Mawdsley et al.,
2009). Although most palaeoecological studies (e.g. Williams
& Jackson, 2007) indicate that range shifts alone do not drive
widespread extinction events [but see Nogués-Bravo et al.
(2010) who did find evidence for extinctions], range-restricted
species potentially face high climate-driven extinction risks
(Finnegan et al., 2015; Urban, 2015).

Reserve networks must consider current biodiversity,
probable patterns of future biodiversity, corridors suitable
for projected range shifts, and cost (Lawler et al., 2015;
Scriven et al., 2015), anticipating the need for protected-area
establishment in newly suitable areas (Carvalho et al., 2011).
Climate-velocity methods (Burrows et al., 2014) or the analysis
of fine-scaled climatic grids (Ashcroft et al., 2012) can be used
to identify climate refugia – places where microclimates are
decoupled from macroclimatic fluctuations and are thus
more stable and less likely to change quickly – as potentially
good candidates for future protected areas. Information
on future habitat suitability for threatened species (e.g.
obtained using SDMs) can be coupled with information on
climate refugia to target areas likely to maximise conservation
benefits (see Hannah et al., 2014; Slavich et al., 2014). To assess
landscape or seascape connectivity with greater realism,
patterns of habitat fragmentation (McGuire et al., 2016) and
flow must be considered, i.e. wind and oceanic currents
(Péron et al., 2010; Sorte, 2013; van Gennip et al., 2017).

In some cases, facilitating species redistribution can
be achieved through the expansion or realignment
of existing protected area boundaries. Where public
conservation funding is limited, it may be necessary
in some circumstances to release protection of some
areas in order to secure others of higher priority
(Alagador, Cerdeira & Araújo, 2014). In addition to
maintaining connectivity through reserve network design,
market-based instruments and public–private partnerships
can be harnessed to accommodate species redistribution.
Conservation easements, for example, while popular and
potentially effective in environmental protection of private
land, rarely consider climate change impacts or species
redistribution (Rissman et al., 2015). New mechanisms
for private land stewardship and management, including
Indigenous Protected Area (IPA) agreements, will also be
needed.

Conservation interventions designed to meet contempo-
rary environmental challenges can conflict with climate
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change planning objectives. For example, fences in Africa
around wildlife reserves have been good for minimising
human–wildlife conflict but poor for maintaining landscape
connectivity (Durant et al., 2015). Similarly, shifts in agri-
culturally suitable areas in the Albertine region of Africa,
as a result of changing climate, may cause a displacement
of agriculture into protected areas, significantly complicating
climate-driven species redistribution impacts on conservation
plans for the region (Watson & Segan, 2013).

(3) Resource-management systems for species
redistribution

Some existing resource-management systems can be
extended for adaptive management of species on the move.
For example, a real-time management system is used in
eastern Australia to predict the distribution of a tuna species
over the cycle of a fishing season (Hobday & Hartmann,
2006; Hobday et al., 2011). The changing distribution of the
fish requires dynamic responses to zones that restrict fishing
activity. While this example of species redistribution is on a
seasonal timescale, the management system can also respond
to long-term species redistribution, based on regular updates
of the management zones. Such real-time management
responses to changing species distributions are relatively
advanced in marine systems and are being formalised in the
field of dynamic ocean management (Hobday et al., 2014;
Lewison et al., 2015; Maxwell et al., 2015).

Conservation strategies for mobile and range-shifting
species can also utilise innovative market-based instruments
and develop new partnerships involving private landholders.
A promising example is The Nature Conservancy’s
California pop-up wetland initiative, which involves seasonal
land ‘rentals’, in which farmers agree to flood their fields
to facilitate water bird migration (McColl et al., 2016).
Predictive habitat modelling of bird migration is used to
earmark different land parcels, and landholders submit bids
to participate in each year’s habitat creation program. As
in this example, local and regional conservation planning
for multiple uses requires good-quality data, plus resources
for monitoring and implementation. Researchers also need
to understand what information land-owners, planners and
policy makers actually need to aid decision-making, which
requires considerable engagement and knowledge exchange
(Cvitanovic et al., 2015).

As part of this engagement, structured decision-making
processes can inject both values and scientific data into the
development of management strategies for ecosystem-based
marine management, as proposed for development of
high seas protected areas (Maxwell, Ban & Morgan,
2014). Options for managers and policy makers can be
evaluated with quantitative modelling tools, such as models
of intermediate complexity (Plagányi et al., 2014), while
management strategy evaluation (Bunnefeld, Hoshino &
Milner-Gulland, 2011) can be used to test climate-smart
management strategies that include socio-ecological criteria.
In addition to novel dynamic management approaches,
existing tools in development and conservation law, such

as biodiversity offsets, will need to be modified to promote
adaptive conservation planning for species redistribution
(McDonald, McCormack & Foerster, 2016b) and to allow
management responses on appropriate timescales (Hobday
et al., 2014).

(4) Managed relocation

Given numerous decision frameworks for managed
relocation, the science required to inform any decision to
relocate a species is defined by knowledge gaps in local
species ecology and management (e.g. Richardson et al.,
2009; McDonald-Madden et al., 2011; Rout et al., 2013 and
see Article 9 in Glowka et al., 1994). Trial introductions of
the critically endangered western swamp turtle (Pseudemydura
umbrina) to the south-western corner of Australia (300 km
south of its native range), in 2016, serve as a useful example.
For the turtle, persistence in the wild is constrained by
severe habitat loss and fragmentation and by a rapid
reduction in winter rainfall. Correlative SDMs based on
coarse-grained climatic data have created a challenge for
translocation planning, as the turtle historically occupies
just two wetlands 5 km apart (Mitchell et al., 2013). The
solution has been to build mechanistic SDMs that are
based on detailed knowledge of the turtle’s physiological
limits, behaviour, and the ecohydrology of their ephemeral
wetland habitats (Mitchell et al., 2013, 2016). Forcing these
process-based SDMs with future drier and warmer climates
has illustrated where suitable habitat might exist into the
future, and when complemented with spatially explicit
multiple criteria analysis (Dade, Pauli & Mitchell, 2014) has
identified candidate wetlands for future attempts to establish
outside-of-range populations.

The primary challenge for practicing managed relocation
is identifying ways to overcome any social barriers to
relocation. Relocating species for conservation can challenge
deeply held values and beliefs about human intervention
in nature, and what constitutes appropriate and desirable
environmental stewardship. Particular challenges may arise
for Indigenous peoples, for whom connection to landscapes
and historically, culturally and spiritually significant species is
of great importance. Formal mechanisms for engaging with
local communities and stakeholders, including consideration
of the cultural effects and drivers of proactive conservation
management under climate change, will be critical. Issues
include cultural nuances, such as the terminology used in
management proposals and policy. For example the term
‘assisted colonisation’, adopted in the guidelines of the
International Union for Conservation of Nature (IUCN) for
species introductions outside of the known range to prevent
extinction, has historical and colonial connotations with the
word ‘colonisation’ that may create barriers to participation.
In this case, an alternative, culturally considerate phrase to
encourage broader inclusion might be ‘managed relocation’
(see Schwartz et al., 2012).

The IUCN guidelines for conservation translocations
(IUCN/SSC, 2013) provide a complete framework to
assess the need for managed relocation, including the risks
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associated with translocations for the species of interest and
for the ecosystem that receives the new species. Potential
damage to the ecosystem from managed relocation is the
worst-case scenario, and this issue forces decision-makers
to ask themselves what they value most. Is the survival of
a particular species that is threatened by human actions
sometimes worth the risk of profound change to the
recipient ecosystem? If we aim for a species to thrive,
when does it become invasive? These are questions that
will need to be answered as managed relocation for
conservation becomes more frequent. Legislative reform
is also required to change the regional and domestic
laws and policies that guide practical implementation of
managed relocations. Many jurisdictions around the world
have no explicit legal mechanisms for relocating species
across jurisdictional borders, a regulatory gap that is likely
to become more problematic under rapid climate change
(Schwartz et al., 2012). Law and policy should incorporate
collaborative mechanisms for cross-tenure, local, regional
and international species relocations, and should facilitate
species relocation to support broader ecological processes,
not just to preserve charismatic threatened species.

V. SOCIAL AND ECONOMIC IMPACTS OF
SPECIES REDISTRIBUTION

Changing distributions of economically and socially
important species under climate change are affecting a
wide range of peoples and communities. Understanding
the ecology of species on the move and the development of
conservation tools for species redistribution responses will,
together, contribute to an integrated approach to managing
social impacts (Table 1). Consequences will likely include
exacerbated food security issues; challenges for Indigenous
and local livelihoods, governance and cultures; and human
health problems. Facing these challenges will require an
interdisciplinary, participatory approach (O’Brien, Marzano
& White, 2013) that will include not only scientists
and professionals from different fields but also managers,
governments and communities.

(1) Food security

Since the spike in food prices in 2008, much thought has
gone into how to feed nine billion people by 2050 (World
Bank, 2008; Evans, 2009; Royal Society of London, 2009).
A key to producing 70–100% more food by 2050 will be
filling the yield gap for agriculture (Godfray et al., 2010),
i.e. the difference between potential and actual yields. For
fisheries and aquaculture, the challenge is to provide an
additional 75 Mt of fish by 2050 to supply 20% of the dietary
protein needed by the human population (Rice & Garcia,
2011). Given that yields from capture fisheries have already
plateaued, most of the additional fish will need to come from
aquaculture (FAO, 2014).

The challenges of enhancing agricultural and fisheries
productivity to meet global food demand (Godfray et al.,
2010; FAO, 2014) are exacerbated by species redistribution.
Increased agricultural productivity will depend in part on
keeping weeds, diseases and pests in check where they
increase in abundance and disperse to new areas. As fish
species migrate in search of optimal thermal conditions, the
locations of productive fisheries will change (Cheung et al.,
2010), resulting in gains for some communities and losses
for others (Bell et al., 2013). Changes in the distributions
and relative abundances of harmful marine algae, pathogens
and pests, will also create new hurdles for fisheries and
aquaculture (Bell et al., 2016).

A key short-term priority for food-security research is the
development of new global models of fishery production
that account for climate change. Several models are now
being used to inform large-scale policy on global change in
marine fishery production (e.g. Cheung et al., 2010; Barange
et al., 2014). However, a single approach (Cheung et al., 2010)
has been dominant in representing species redistributions.
While this model has been repeatedly updated (Cheung
& Reygondeau, 2016; Cheung et al., 2016), considerable
structural uncertainty remains in our ability to predict
change in fishery production, as production depends critically
on uncertain future fishery-management arrangements
(Brander, 2015). The extent to which structural uncertainty
afflicts global production estimates needs to be evaluated
with alternative modelling approaches. These issues are
beginning to be addressed by model ensemble initiatives
such as through the Inter-sectoral Model Intercomparison
Project (https://www.isimip.org/) and through the inclusion
of more detailed bio-economic processes (Galbraith, Carozza
& Bianchi, 2017).

(2) Indigenous livelihoods, governance and cultures

The distributions and relative abundances of species within
their historic ranges have been central to the knowledge
of Indigenous peoples, including not only sedentary
communities, but also mobile communities such as nomads,
pastoralists, shifting agriculturalists and hunter-gatherers
(Kawagley, 2006; Sheridan & Longboat, 2006; Arctic
Council, 2013; Mustonen & Lehtinen, 2013). Maintaining
relatively intact ecosystems is crucial to the preservation
of livelihoods, cosmologies, cultures and languages of these
groups, and many have developed governance systems for
their biological resources based on holistic observations and
checks-and-balances to prevent overharvesting (Huntington,
2011; Mustonen, 2015; Mustonen & Mustonen, 2016).
Alterations in species ranges and relative abundances due to
climate change will have profound consequences for these
governance systems.

Leaders of these societies also recognise that changes in
relative abundances of species are caused by other drivers,
such as extraction of natural resources and development of
infrastructure (Arctic Council, 2013), and have called for
a paradigm shift in governance to address the profound
changes underway (Kawagley, 2006; Huntington, 2011).
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This paradigm shift requires partnership approaches with
non-Indigenous institutions to respond to the scale and
significance of impacts on livelihoods (Huntington, 2011).
Culturally safe and respectful language spoken by scientists,
and teaching of science for Indigenous, traditional and
mobile peoples are an essential part of this approach.
Otherwise, opportunities to effectively integrate the often
deep and diverse knowledge of these people into strategies to
cope with change will be lost (Lee et al., 2016).

(3) Human health

The risk of increases in infectious diseases due to species
redistributions, potentially exacerbated by food insecurity
crises, is also a significant concern (Altizer et al., 2013) and
a key research challenge. History is full of examples of
climate-driven species movements and human distribution
shifts, resulting in infectious disease outbreaks (McMichael,
2012). For example, bubonic plague outbreaks caused by
the bacterium Yersinia pestis during the Black Death – the
great pandemic originating in Asia and spreading throughout
Europe between 1347 and 1353 – have been shown to occur
roughly 15 years after a warmer and wetter period (Schmid
et al., 2015). Even the contemporary dynamics of bubonic
plague, which still occurs in Central Asia, have been clearly
linked to climate change (Stenseth et al., 2006).

In the Arctic, many interconnected factors such as climate,
wildlife populations, and health have triggered infectious
disease outbreaks. Although the health of Indigenous peoples
of the circumpolar region has improved over the last 50 years,
certain zoonotic and parasitic infections remain higher
in Arctic Indigenous populations compared to respective
national population rates (Parkinson & Evengård, 2009).
Evidence for associations between climate and infectious
disease in the Arctic is clear, but the relationship between
climate change and vector-borne disease rates is poorly
explored, owing to the small number of studies on the subject
(Hedlund, Blomstedt & Schumann, 2014). However, the case
of increasing incidence of tick-borne encephalitis in Sweden
since the 1980s is instructive: mild winters have increased
tick population densities in the country, leading to increased
disease incidence (Lindgren & Gustafson, 2001). A key
component of prevention and control of climate-mediated
infectious diseases is surveillance.

(4) Need for monitoring

More modelling is needed to understand the cascading effects
of climatic changes on the species that we rely on for food
and livelihoods and those whose spread can adversely affect
human health. Such modelling will help identify practical
adaptations and the policies needed to support them.

Collection of the information needed to validate these
models can be enhanced by community-based monitoring
and citizen science, engaging the agriculture, fishing
and aquaculture industries and Indigenous and local
communities (Mayer, 2010; Johnson et al., 2015; Robinson
et al., 2015). These groups are well placed to monitor

changes in the relative abundance and distribution of
species that they rely on or regularly interact with. For
many Indigenous and local communities, monitoring is
central to the preservation of their sea- and land-use
patterns and sustainable development (Sheridan & Longboat,
2006; Mustonen, 2015). Moreover, rapidly developing tools
and networks in citizen science may enhance large-scale
monitoring (Chandler et al., 2016). For example, citizen
science has already contributed approximately half of what
we know about migratory birds and climate change (Cooper,
Shirk & Zuckerberg, 2014). Broad stakeholder engagement
has the added benefit of increasing awareness of the effects
of climate change on human well-being, while empowering
communities to effect changes in environmental behaviour
and policies.

Involving local stakeholders in monitoring also enhances
management responses at the local spatial scale, and increases
the speed of decision-making to tackle environmental
challenges at operational levels of resource management
(Danielsen et al., 2010). The promptness of decision-making
in community-based monitoring and the focus of
the decisions at the operational level of species and
resource management make community-based monitoring
approaches particularly suitable when species are rapidly
shifting ranges. Community-based monitoring is also likely to
provide information about crucial new interactions between
species (Alexander et al., 2011; Huntington, 2011). One
potential challenge to community-based monitoring is that,
in situations in which constraints or demands on resources
may condition quotas or financial payments to communities,
the local stakeholders might have an incentive to report false
positive trends in those natural resources so they can continue
to harvest the resources or continue to be paid, even though
the resources may actually be declining (Danielsen et al.,

2014). Systems ensuring triangulation and periodic review
of the community-based monitoring results will therefore
be required, whether the monitoring is implemented by
communities, governments or the private sector.

Increased monitoring may also increase understanding
of the spatial and temporal impacts on human societies
posed by changes in the distribution and abundance of
species. The effects of climate change on species needs to
be mainstreamed into routine food-production assessments
so that society is prepared and can adapt to predicted
changes. Technological improvements have increased the
potential for citizen scientists to engage in the necessary
monitoring (Brammer et al., 2016) and for industries to
capture essential data as part of routine field operations
(Ewing & Frusher, 2015). On a broader scale, co-ordination
of monitoring to obtain data that can be compared across
diverse regions is needed. Identification of hotspots, where
range changes and impacts are expected to be seen earlier
(Hobday & Pecl, 2014; Pecl et al., 2014), can aid in the early
development of broad-based practical adaptive strategies.
Moreover, technological advances are making it possible to
not just monitor the location of organisms, but understand
the physiological and behavioural processes underlying their

Biological Reviews 93 (2018) 284–305 © 2017 Cambridge Philosophical Society



Research directions in species redistribution 297

movement patterns (Block et al., 2001; Clark et al., 2008,
2010). An integrated understanding of the drivers of species
movement will greatly strengthen our capacity to plan for
species redistributions in the future.

VI. INTERDISCIPLINARY APPROACHES TO
ADDRESS SPECIES REDISTRIBUTION
CHALLENGES

Species redistribution is a complex phenomenon dependent
upon multiple and interacting multiscale climatic variation,
as well as social and ecological/evolutionary processes
(Fig. 3). The formation of novel species assemblages as
a consequence of this redistribution brings significant new
challenges for governments, resource users and communities,
particularly when dependence on natural resources is high
or where present or future species ranges cross jurisdictional
boundaries (Pecl et al., 2011). Identifying the mechanisms and
processes driving species redistributions is critically important
for improving our capacity to predict future biological
change, managing proactively for changes in resource-based
human livelihoods and addressing conservation objectives
(Pinsky & Fogarty, 2012).

In recent years, the scientific study of climate-driven
species redistribution has matured significantly (Fig. 1).
Although research continues to focus on modelling
and prediction of distribution shifts, researchers have
increasingly incorporated management and socio-economic
considerations explicitly (Fig. 2). As this review has
highlighted, biological studies and management and social
science research on species redistribution have provided a
wealth of insights into global change, and have supported
several innovative management responses (i.e. managed
relocation, real-time management systems). Nevertheless,
many challenges and key questions require answers (Table 1).
Further integrated development will require working across
disciplines to find innovative solutions (Bjurström & Polk,
2011).

Long-term interdisciplinary research programs that
integrate the natural and social sciences are needed to study,
understand and model the impact of climate-driven species
redistribution on ecosystem functioning. More specifically,
interdisciplinary research is needed on changes to multiple
ecosystem services (e.g. food) and disservices (e.g. diseases)
delivered to society, as climate changes, particularly as
interdisciplinary approaches are not well represented in
climate research (Bjurström & Polk, 2011). Simultaneous
socio-ecological time series often reveal that people respond
to ecosystem change in surprising ways. For example, a
climate regime shift around 1960–1990 drove declines
of a cod fishery, but opened up opportunities for a
new shrimp fishery off Greenland (Hamilton et al., 2003).
However, only communities with sufficient capital to invest
in new fishing gear, and entrepreneurial individuals who
were willing to invest in a new fishery were able to
adapt to the ecosystem change. Thus, societal responses

to species redistributions can be highly dependent on a
few individuals, and human responses and natural changes
must be considered in combination (Pinsky & Fogarty,
2012).

Many challenges must be overcome to execute a successful
long-term interdisciplinary research program. Even within
fields such as ecology, disciplinary barriers threaten to limit
advances in species redistribution research. For example,
communication and collaboration between marine and
terrestrial researchers (Webb, 2012) has the potential to
spark key developments. Unfortunately, research proposals
with the highest degree of interdisciplinarity currently
have the lowest probability of being funded (Bromham,
Dinnage & Hua, 2016). Although long-term monitoring
programs provide the essential foundation for tracking
and understanding the causes and consequences of species
redistributions, they also encounter funding difficulties due
to the long time span of funding required and a bias in grant
agencies away from studies perceived as simply observational
research and towards hypothesis-driven research (Lovett
et al., 2007). Institutional change in funding agencies and
an emphasis on prioritising interdisciplinary and long-term
projects could lead to important, high-impact climate change
research (Green et al., 2017). In the meantime, global change
scientists also need to explore multiple options to support
long-term and interdisciplinary studies, such as harnessing
citizen science and engaging in large-scale collaborative
efforts.

In fact, citizen science may help to fill the knowledge gap
in long-term and spatially extensive studies (Breed, Stichter
& Crone, 2013). Citizen science approaches typically involve
recruiting observers to be part of a formal program, a
method for recording meaningful data, and a means of
making those data accessible and discoverable for later use.
In addition, successful programs often include data-vetting
and data-management practices to ensure the integrity and
long-term availability of data, providing data products to
contributors and other interested parties, and interpreting
the results of these efforts to tell a story of environmental
functioning or change to larger audiences. Further work is
needed, however, to find suitable ways to connect citizen
science and community-based monitoring programs with
international biodiversity data repositories (Chandler et al.,

2016).
Growing recognition of the important role of Indigenous,

traditional and mobile peoples in protected area
management is one positive change in recent years. The
creation of a fourth type of governance (in addition
to government, shared and private governance) in the
IUCN’s Protected Area Guidelines specifically addresses
IPAs and Indigenous peoples’ and Community-Conserved
territories and Areas (ICCAs). In this case, the nature–culture
binary is being dismantled to incorporate a range
of worldviews that promote sustainable development,
governance vitality and management devolution (delegation
of power) (Borrini-Feyerabend et al., 2013; Lee, 2016).
Acknowledging the legitimacy of traditional knowledge
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Fig. 3. Ophiocordyceps sinensis, a caterpillar-feeding fungus of the Tibetan plateau, presents a useful case study for the importance of
an integrated and interdisciplinary approach to species redistribution. The species is widely consumed throughout China, largely
for medicinal purposes. Distribution shifts of the species in recent decades have been observed, but models under future climates
have yielded divergent outcomes (both range expansion and reduction) based on different sets of data and approaches (Shrestha
& Bawa (2014); Yan et al., 2017). Open questions remain about the physiology of the species and, particularly critical in this case,
how interactions with the host caterpillar species might change under warming. O. sinensis is a critical part of the Tibetan economy
(Winkler, 2008) but is also vulnerable to extinction given intensive collecting pressure and possible climate change impacts (Yan
et al., 2017). Greater understanding of the ecology of the species will assist in addressing economic and conservation challenges. But,
equally importantly, the Indigenous populations that depend upon O. sinensis for income can also provide invaluable insights into
complex ecological systems and how climate change might be changing these systems (Klein et al., 2014).

systems can be instrumental in understanding species
redistribution and provides a mechanism by which local
communities can monitor and manage impacts (Eicken et al.,

2014; Tengö et al., 2017).
Examples of on-ground management responses to shifting

species are few, to date, and those that have been reported
are based on seasonal or short-term responses to changes
in species distribution (Hobday et al., 2011, 2014; McColl
et al., 2016). These few examples do illustrate how long-term
change might be accommodated, but such approaches may
not support management responses for the transformational
level of change that may be needed in some regions. In these
cases, development of long-term adaptive pathways (sensu
Wise et al., 2014) for species on the move is required. These
pathways can include decision points at which switching
of strategies is required, for example defining at what
point a habitat-creation strategy should be changed to a
translocation strategy.

VII. CONCLUSIONS

(1) Until recently, species redistribution was seen as
something that would happen in the future rather than an
immediate issue. However, it is happening now, with serious
ecological and societal implications and impacts already
being observed.

(2) The cross-cutting nature of species redistribution
calls for the integration of multiple scientific disciplines,
from climate science to ecology, palaeoecology, physiology,
macroecology, and more. We further suggest that research
on contemporary species redistribution needs to span
process-based studies, observational networks by both
scientists and community members, historical data synthesis
and modelling over a variety of scales.

(3) Species redistribution defies conservation paradigms
that focus on restoring systems to a baseline and challenges
environmental management strategies, which are often static
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and based on human-dictated boundaries drawn in the
past. Climate-driven species redistribution therefore presents
both fundamental philosophical questions and urgent issues
relevant to conservation and society.

(4) For species redistribution research to support
development of relevant adaptive strategies and policy
decisions adequately, studies need to take an interdisciplinary
approach and must recognise and value stakeholders.
Involving stakeholders in monitoring and collection of data
offers an opportunity to help guide effective adaptation
actions across sectors.
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H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann,
A. A., et al. (2015). Assessing species vulnerability to climate change. Nature Climate

Change 5, 215–224.
Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola,

F. M. & Rondinini, C. (2017). Species’ traits influenced their response to recent
climate change. Nature Climate Change 7, 205–208.

Pandolfi, J. M. (1996). Limited membership in Pleistocene reef coral assemblages
from the Huon Peninsula, Papua New Guinea: constancy during global change.
Paleobiology 22, 152–176.

Pandolfi, J. M. & Jackson, J. B. C. (2006). Ecological persistence interrupted in
Caribbean coral reefs. Ecology Letters 9, 818–826.
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