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of research papers. But this development also poses some 
important challenges. The large amount of project-specific 
software being generated for analytical studies means that 
analytical standards are harder to establish, potentially 
limiting the reproducibility of much of recently published 
science. Also, analytical and coding errors may escape detec-
tion, with potentially highly problematic results, such as 
when Geoffrey Chang and colleagues had to retract three 
Science papers after discovering an error in a homemade 
data-analysis program (Miller 2006). Substantial progress in 
our understanding of ecology rests on trustworthy, repro-
ducible and transparent data analysis.

Reproducibility is the very hallmark of the scientific 
method. However, there is an increasing concern that many 
studies today might not be reproducible. The focus on nov-
elty in ‘high-impact’ journals means that there is little incen-
tive for researchers to directly replicate published studies, and 
this lack of replication of studies has come under increasing 
scrutiny (Iqbal et al. 2016, The Economist 2016). What is 
more worrying, efforts to systematically replicate published 
studies have often failed (Open Science Collaboration 2015). 
This is so concerning that it has lead to the founding of a 
new journal dedicated explicitly to the replication of pub-
lished results (the Preclinical Reproducibility and Robustness 
channel of F1000 opened 4 February 2016). A recent com-
ment in Nature magazine (Allison et al. 2016) reported on 
the widespread problem of reproducibility in the natural 
sciences, and gave a sobering account of the obstacles to 
overcoming it, which includes the pressure on researchers 
to publish, the lack of established pathways for dealing with 
non-reproducible articles, and consistent issues with the sta-
tistical treatment of data (Krumholz 2016, The Economist 
2016). Ecology faces particular challenges in reproducibility 
because data collection is often context dependent (Ellison 
2010), and because there are few established standards for 
storing metadata and facilitating study replication.

The keys to a greater level of reproducibility in ecology are 
to establish analytical protocols that are robust and transpar-
ent, to faithfully document the analytical process including 
any failed attempts, and to ensure that the storage and acqui-
sition of data is documented and includes the appropriate 
metadata. Fortunately, recent technological developments 
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The workflow of ecological scientists is currently under-
going a quiet revolution. Recent years have witnessed a 
strong push towards a more open sharing of research data 
(Hampton et al. 2015), and the vast amount of field data 
being generated by individual ecologists is becoming avail-
able to the wider research community at an unprecedented 
rate. The wide availability of data has also pushed scientists 
to focus more intensively on the process of data analysis. 
Where computer programming ability was restricted to a 
very small subsets of researchers just a few years ago, the 
new generation of ecologists are trained programmers, 
developing novel software for analyses and exploring new 
ways to share and visualize data. This development is mov-
ing the field away from click-and-calculate (Graphical User 
Interface, GUI) statistical packages. A new paradigm has 
emerged, where individual scientists download, curate and 
share large amounts of data and analyse it using reproduc-
ible software packages and scripts written in languages such 
as R, Python and Julia.

This increased focus on analytical methods has led to a 
number of key developments in scientific sharing and pub-
lishing, one of which is the Software notes format here at 
Ecography that was first instigated in 2008 (Pettersson and 
Rahbek 2008). The purpose of Software notes was to create 
a platform for disseminating high-quality analytical tools 
for ecology, to increase scientific transparency by opening 
the possibility for researchers to subject their techniques 
to traditional rigorous peer-review, and finally to support 
a transition where authors would receive scientific credit 
for their intellectual contributions in developing the most 
widely used methods in ecology. In the following 8 years, 
this idea has set root, and today dedicated journals such 
as Methods in Ecology and Evolution and Environmental 
Modelling and Software have followed suit in publishing 
software and computational methods as independent intel-
lectual contributions.

These developments in ecology have exciting implications 
– the availability of large amounts of data and the explo-
sion in the analytical capabilities of ecologists, together with 
the potential for rapid dissemination of ideas in today’s 
internet-based scientific community, means that ecology is 
moving forward rapidly, with a steep growth in the number 
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promise to increase the reproducibility of ecological analyses, 
by establishing documentable and standardised workflows, 
where the process of data acquisition, analysis and graphical 
output is integrated and documented throughout, and col-
laborative work is integrated into the software itself. Such 
developments have thus far received some attention, mainly 
among younger scientists, and largely outside of the primary 
literature. The special issue ‘Tools for Reproducibility in 
Ecology’ seeks to promote the quest for a reproducible eco-
logical science and highlight recent developments, while pre-
senting a collection of software notes that aim to explicitly 
further scientific reproducibility in ecological data analysis.

The tools included in the current special issue are:
mangal – a standard for sharing network data, including 
a web service for accessing it and an R package front-end 
(Poisot et al. 2016a).

ENM – a tool for species distribution models with explicit 
workflow and structures for sharing and documentation of 
analytical methods (De Giovanni et al. 2016).

geoknife – a tool for acquiring geographical data from large 
data bases (Read et al. 2016).

macroeco – a Python environment for macroecological analy-
sis, with a scripting GUI (Kitzes and Wilber 2016).

sdm – an extensible tool for species distribution modelling 
that provides a standardized and unified structure for han-
dling species distribution data and for modelling distribu-
tions with correlative and mechanistic approaches (Naimi 
and Araújo 2016).

bioeco – a tool for programmatically detecting and cor-
recting errors in widely used species–occurrence databases 
(Robertson et al. 2016).

rHelminth – a tool for downloading data on host–parasite 
interactions from online sources (Dallas 2016).

Included is also a guest editorial by Poisot et al. (2016b) 
that highlights workflows and methods for working with 
datasets synthesized across several sources.

These tools exemplify different aspects of a data analysis 
workflow with the potential to improve reproducibility of 
ecological research (Table 1). Such a workflow involves pre-
senting and documenting standards for data and metadata 
storage and communication, documenting the process of 
data acquisition, relegating analytical steps to online facilities 
with well-documented protocols, documenting analytical 
work on GUI platforms, establishing clear analytical work-
flow protocols, and emphasizing unit-testing and quality 

control of analytical software. In the following, we describe 
how each of these approaches can play a role in ensuring 
scientific reproducibility.

Metadata and data standards

Not long ago, ecologists wanting to describe the natural 
world collected the data themselves. Some data would even-
tually be published, but much would remain in notebooks 
or, more recently, left in computer hard drives to eventu-
ally disappear at the retirement of the researcher, leading to 
an inevitable decay in data availability (Vines et al. 2014). 
Today’s online platform allows data to be used for answering 
questions beyond the purpose they were collected for, and 
thus they become a shared resource for the global research 
community. Consequently, there is a push towards seeing 
data as a scientific product in itself, and there is ongoing 
work to develop a system that supplies the generation of data 
with suitable attribution (Mooney and Newton 2012, Data 
Citation Synthesis Group 2014).

The development towards a larger degree of data re-use 
and sharing has the potential to speed the pace of scien-
tific discovery, but is not without problems, as reported by 
Poisot et al. (2016b) in the present special issue. The authors 
describe an approach to working with large-scale synthetic 
data sets, and discuss many of the pitfalls. One powerful 
tool to deal with such pitfalls is to agree on reproducible and 
standardised sampling methods across systems and locali-
ties (Nogués-Bravo et  al. 2011); but even in the absence 
of standardized sampling a significant improvement can 
be gained by agreeing on standards for saving and sharing 
data.

Such a standard is described for network analyses in the 
software note describing mangal (Poisot et al. 2016a). The 
standard is explicitly formulated to make data acquisition, 
and as importantly, data deposition, as simple and straight-
forward as possible, while at the same time encouraging 
the deposition of as much useful metadata as possible. The 
mangal format is aimed at efficient parsing by machines, 
and comes with an associated web service and R package for 
easy download and deposition. A similar but smaller effort 
is made by the helminthR package (Dallas 2016), which 
presents a direct programmatic interface to the Natural 
History Museum of London’s database of host–parasite 
interactions of helminth worms.

It is worth noting that the creation and adoption of data 
standards can be a long and arduous process (Edwards et al. 
2011). Given that publications remain the primary currency 
of a scientific career, the painstaking curation of data, 

Table 1. The software notes in the thematic issues and the elements of ecological reproducibility that they contribute to.

Standards
Data 

acquisition Documentation
GUI 

scripting
Exchangeable 

objects
Niche 
models

Calls online 
functionality

Explicit 
workflow

Workflow 
system

rmangal x x x x R
ENM x x x x x Taverna/R
geoknife x x x x R
macroeco x x Python
sdm x x x x x R/shiny
helminthR x x x x R
biogeo x x x R
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including preparation of detailed metadata and establish-
ment of standards, can be viewed as an unrewarded burden, 
especially for early career scientists. This perception might be 
gradually changing as journals begin to require data depo-
sition with publication (Bloom 2014, Sandhu 2014) and 
allow data to become a stand-alone publication in journals 
such as Nature’s journal Scientific Data. Tools such an mangal 
(Poisot et al. 2016a) facilitate the usage of archives and the 
contribution of data in a standard, reducing the burden of 
proper data curation. The simultaneous increase in incen-
tives from journal editors and the creation of software tools 
that facilitate standards go a long way towards increasing 
reproducibility.

Online computation and data acquisition

In addition to allowing for data re-use and synthetic data 
sets, well-developed standards play a crucial role in allowing 
for replicability of published studies: Any researcher should 
be able to reproduce all presented results in a network study 
using mangal by downloading the data directly through the 
package and following the analytical steps described in the 
methods section of the paper. The same approach to data 
accessibility applies to other types of data. Not all of the 
data used by ecologists can be characterized as observational 
ecological data: researchers in ecology use data on climate, 
geology, topography and other abiotic factors shaping the 
environment. Ecological research is increasingly reliant on 
data products from remote sensing, thus drawing on what 
can be rightfully called big data (Hampton et al. 2013), in 
which the acquisition, curation, and preprocessing of data 
products are an integral part of ecological analyses. While 
these data products are an important component of macro-
ecological workflows, they often are only available at spatial 
scales much larger than a researcher might want (e.g. the 
Oregon PRISM project data) and require post-download 
preprocessing. However this post-download preprocessing 
can inhibit reproducibility on two fronts: First it may be ‘ad-
hoc’ and not well documented, and second it may require a 
computational power that is not available for most users.

The geoknife R package (Read et al. 2016) offers a way to 
ensure reproducibility in these data acquisition and prepro-
cessing steps, by delegating the analytical steps to online data 
providers, which generally implement well-documented and 
transparent procedures. geoknife offers a protocol to derive 
summary data (such as the monthly standard deviation of 
a high-resolution data set on temperatures) within an area 
exactly defined by the study area. The protocol makes the 
process of data acquisition easy for the ecologist, reduces the 
computational demands on local computer systems, reduces 
error rate in the data preprocessing step, and allows for easy 
reproducibility by allowing researchers to report a few simple 
lines of code that generate the input data in models.

Workflow tools and GUIs

A more encompassing approach to ensuring reproducible 
workflows is made possible by dedicated workflow systems 
like Kepler (Altintas et al 2004) or the open-source project 
Taverna (Wolstencroft et  al. 2013). Such systems present 

graphical platforms for calling web services, accessing online 
data, and running established analytical steps on the data. 
The approach makes for very clear and highly reproducible 
science, and encourages the use of established protocols for 
analysis whenever they are available and feasible. Taverna 
was originally developed for molecular biology, but its use 
is not restricted to this field. In this issue, De Giovanni 
et al. (2016) provide Taverna components, scriptable in R, 
for environmental niche modelling (ENM), also known 
as bioclimatic envelope modelling or species distribution 
modelling (SDM)( Peterson et al. 2011). Whether the stan-
dardized protocols that are made feasible by such workflow 
tools will ever dominate the analytical toolbox of individual 
researchers is an open question. However, there is no doubt 
that dedicated workflow tools offer a very powerful platform 
for collaboration among larger groups or big field-based 
projects, a type of research organization that is in itself on 
the rise in ecology.

A slightly less encompassing approach based on scripting 
may be more attractive to individual researchers. In terms 
of supporting reproducibility, the increasing prevalence of 
scripting languages such as R and Python provides substan-
tial improvements over point-and-click software packages, in 
that they allow analyses to be replicated exactly by re-running 
a script, which represents a more stringent representation of 
analytical choices than is possible within the methods sec-
tion of a short-format research paper. However, scripts are 
not always shared along with the paper, they are often poorly 
annotated, they require special knowledge to read and are 
often difficult to read even for those who have that special 
knowledge. Also, scripting languages limit reproducible 
analyses to users with programming skills. However, pro-
gramming skills are not common among large groups of 
ecologists, especially the important sector of ecologists based 
outside universities.

In this special issue, Kitzes and Wilber (2016) provide 
one innovative way of making reproducible documenta-
tion of analysis available to non-programmers. Along with 
macroeco, a package of macroecological tools programmed 
for the widespread and powerful Python language, they 
provide a windows-based GUI platform allowing analyses 
to be easily specified, and subsequently run by the underly-
ing software. The GUI saves a small script file that exactly 
specifies the analyses performed and is succinct enough to 
include directly within the methods section of a paper. By 
linking the reporting of the data analysis so closely between 
the article text and the analytical process itself, the approach 
represents a powerful way of ensuring reproducibility.

Taking the graphical and accessible approach even further, 
Naimi and Araújo (2016) provide the sdm package for species 
distribution models that offers a fully fledged GUI interface, 
where models and analytical choices can be specified in a 
well-known and user-friendly format. The GUI, which is 
based on R’s shiny package, converts the specified analyti-
cal settings directly into a standardized R script that can be 
shared along with the paper. In addition, the GUI offers the 
opportunity to save analytical settings as a binary data object, 
which can shared among collaborators and modified, ensur-
ing that analyses can be reproduced directly from within the 
GUI. The package also enhances analytical reproducibility 
in two other ways that were discussed earlier: It allows data 
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to ensure reproducibility. The sooner these considerations are 
integrated into our workflows and collaborations, the stron-
ger the foundation of the ecology we build for the future.
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preprocessing to be handled within the package itself, ensur-
ing that it is standardized and reproducible; and it allows 
the application of practically the entire range of different 
techniques for SDM within the same framework, ensuring 
that differences between analytical results derive explicitly 
from the differences between methods, rather than ad-hoc 
assumptions made by different software.

Reliability of tools and data

A final, and crucial, aspect of reproducibility is to minimize 
the number of errors in published data. If studies cannot be 
replicated, it might be a sign that the analysis was flawed 
or that the reported results were untrustworthy, a situation 
that is highly detrimental to the quality and integrity of sci-
ence. The few analyses that have been performed to quantify 
the prevalence of such errors (Simundic and Nikolac 2009, 
Gilbert et  al. 2012, Open Science Collaboration 2015) 
indicate that they are more common in submitted and 
published papers than often anticipated. How serious these 
errors are for the advancement of science is still unknown, 
but they are potentially a very serious issue.

Relying on well-established analytical tools is one way 
to minimize the amount of errors, although computer 
programs, such as R packages, are rarely peer-reviewed and by 
no means exempt from errors. Journals publishing software-
note formats can help reducing these errors by ensuring that 
published analytical software have a comprehensive test suite 
that ensures internal consistency and error catching within 
the software – e.g., the macroeco (Kitzes and Wilber 2016) 
package in this issue is covered by 135 internal unit tests and 
all are available in the package’s github repository.

Errors of recording are another major complication, well-
known among researchers extracting ecological data from 
field notebooks. The problem is greatly exacerbated by the 
reliance on large online databases based on such data, which 
pervade many modern ecological analyses. The thorny issue 
of errors finding their way into analyses has prompted the 
creation of automatic tools to detect and correct errors and 
inconsistencies, such as the widely used Taxonomic Name 
Resolution Service (Boyle et  al. 2013), which resolves the 
identities of plant species based on taxonomic synonymy, and 
also corrects for spelling errors. Robertson et al. (2016) pres-
ent the biogeo package, which offers facilities for correcting 
common errors and quality issues with occurrence records 
found in large data bases. Not only does the software high-
light potential errors, it also provides probable suggestions 
for the correct entries and allows the user to correct them 
in an easy and reproducible manner. Likewise, sdm includes 
R functions to correct for spelling errors while coding and 
parameterizing species distribution models (Naimi and 
Araújo 2016).

The software notes in this special issue all contribute to 
a more reproducible ecology in which analyses rest on solid, 
error-checked software, without stymieing the free growth of 
creative analytical ideas; and where documentation and meta-
data support a solid foundation under today’s fast-moving 
integrative ecological research field. The notes were chosen to 
highlight a breadth of topics and approaches that are required 
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