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Abstract
Aim: This study presents a bioclimate modelling approach, using responses to ex-
treme climate events, rather than historical distributional associations, to project fu-
ture species vulnerability and refugia. We aim to illustrate the compounding effects 
of groundwater loss and climate on species vulnerability.
Location: California, USA.
Methods: As a case study, we used the 2012–2015 California drought and resulting 
extensive dieback of blue oak (Quercus douglasii). We used aerial dieback surveys, 
downscaled climate data and subsurface water change data to develop boosted re-
gression tree models identifying key thresholds associated with dieback throughout 
the blue oak distribution. We (1) combined observed dieback–climatic threshold rela-
tionships with climate futures to anticipate future areas of vulnerability and (2) used 
satellite-derived measurements of subsurface water loss in drought/dieback model-
ling to capture the mediating effect of groundwater on species response to climatic 
drought.
Results: A model including climate, climate anomalies and subsurface water change 
explained 46% of the variability in dieback. Precipitation in 2015 and subsurface 
water change accounted for 62.6% of the modelled probability of dieback. We found 
an interaction between precipitation and subsurface water in which dieback proba-
bility increased with low precipitation and subsurface water loss. The relationship 
between precipitation and dieback was nonlinear, with 99% of dieback occurring in 
areas that received <363 mm precipitation. Based on a MIROC_rcp85 future climate 
scenario, relative to historical conditions, 13% of the blue oak distribution is pre-
dicted to experience more frequent years below this precipitation threshold by mid-
century and 81% by end of century.
Main conclusions: As ongoing climate change and extreme events impact ecological 
processes, the identification of thresholds associated with observed dieback may be 
combined with climate futures to help identify vulnerable populations and refugia 
and prioritize climate change-related conservation efforts.
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1  | INTRODUC TION

For many forests globally, a changing climate likely will bring more 
frequent and intense dry periods and greater vapour pressure defi-
cits (Luce et al., 2016), and climate change already is contributing to 
increased drought, heat stress and related forest dieback in many 
parts of the world (Allen, Breshears, & McDowell, 2015; Allen et al., 
2010; Anderegg, Anderegg, Abatzoglou, Hausladen, & Berry, 2013; 
Van Mantgem et al., 2009; Williams et al., 2010). Climate models 
project that in the future, these kinds of drought events will become 
more intense and frequent in many ecosystems (IPCC 2014). Climate 
change-adaptive forest management will be a critical component 
of biodiversity and ecosystem service conservation over the next 
century, and accessible modelling tools are needed to support land 
management decisions (Heller and Zavaleta 2009).

The use of correlative bioclimatic models to tease apart biotic 
relationships and interactions, and thereby help to address land 
management decisions by providing guidance on where species’ 
distributions may shift over time, has flourished in recent decades 
(Guisan & Thuiller, 2005). Several different methods are utilized 
(Elith et al., 2006), but all use known occurrence records to produce 
statistical associations with abiotic variables of interest (Guisan & 
Thuiller, 2005). Challenges with assumptions and remaining uncer-
tainties in these models have been extensively reviewed (Araujo 
& Guisan, 2006; Guisan & Thuiller, 2005; Jiménez-Valverde, Lobo, 
& Hortal, 2008; Pearson & Dawson, 2003). More diverse model-
ling approaches have been developed in an effort to address these 
concerns and increase the accuracy of predictions. These include 
incorporating the effects of biotic interactions (Giannini, Chapman, 
Saraiva, Alves-dos Santos, & Biesmeijer, 2013; Staniczenko, 
Sivasubramaniam, Suttle, & Pearson, 2017), dispersal in process-
based simulations (Svenning et al., 2014), observed long-term re-
lationships between population demographics and climate (Wolf, 
Snyder, Sydeman, Doak, & Croll, 2010), and demographic and land-
scape processes in hybrid models (Franklin, 2013). In this study, we 
utilize boosted regression tree (BRT) modelling to identify climatic 
and hydrologic threshold dieback responses to an extreme drought 
event, combined with a simplified bioclimatic model based on these 
empirical dieback thresholds to estimate future species vulnerability 
under climate change. This approach is relatively accessible to man-
agers, avoids some of the limitations associated with models based 
on historical distribution data and provides more current, empirically 
defensible estimates of potentially vulnerable and refugial locations.

California’s 2012–2015 extreme drought, attributed in part to 
anthropogenic warming (Diffenbaugh, Swain, & Touma, 2015), pro-
vided a prescient look at the potential biological impacts of climatic 
drying, likely to occur over the next century (Flint & Flint, 2012). 

This drought was related to the death of an estimated 100 million 
trees (USDA Forest Service 2016). Coates, Dennison, Roberts, and 
Roth (2015) found a reduction in relative green vegetation fraction 
in grey pine (Pinus sabiniana), California sycamore (Platanus race-
mose), coast live oak (Quercus agrifolia), blue oak (Quercus douglasii), 
California bay laurel (Umbellularia californica) and chaparral species. 
Water stress associated with this drought has been linked to chapar-
ral species mortality and changes in stand structure (Venturas et al., 
2016). Ray (2016) found increased vulnerability among giant sequoia 
(Sequoiadendron giganteum). Nearly 10.6 million ha of California for-
ests experienced loss in canopy water content in a variety of forest 
types including coastal redwood, pinyon-juniper, lodgepole pine, red 
fir and black oak (Asner et al., 2016). This extreme climate and veg-
etation response event presents an opportunity to test the model-
ling approach outlined above. We use the endemic California blue 
oak, for which dieback patterns have not been directly assessed 
previously, as a case study for this approach and as a proxy for the 
potential behaviour of other deep-rooted species in water-limited 
ecosystems.

Blue oak, an iconic, long-lived tree with significant cultural and 
ecological value, is one of many species with narrow ranges that are 
at increased risk for habitat loss and fragmentation resulting from 
a changing climate (Morueta-Holme, Fløjgaard, & Svenning, 2010). 
Long-lived, sessile species with relatively short dispersal distances 
and long generation times, such as trees, may face substantial barriers 
to migration or adaptation (Ackerly et al., 2010; Allen & Breshears, 
1998). Like many deep-rooted trees (Canadell et al., 1996), blue oaks 
may depend heavily on subsurface sources to meet water require-
ments (Miller, Chen, Rubin, Ma, & Baldocchi, 2010). Groundwater 
levels in California have declined dramatically in recent decades 
(Wang, Lin, Gillies, & Hakala, 2016), potentially increasing blue oak’s 
vulnerability to episodes of low rainfall. Previous bioclimatic models 
predict that blue oak will be lost in much of its current distribution 
(Kueppers, Snyder, Sloan, Zavaleta, & Fulfrost, 2005), and studies 
already have observed reduced survival in areas projected to expe-
rience climate change-related contraction (McLaughlin, Morozumi, 
MacKenzie, Cole, & Gennet, 2014). Drought stressors likely will com-
pound ongoing threats of restricted blue oak seedling establishment 
and sapling recruitment (Davis et al., 2016; McLaughlin & Zavaleta, 
2013; McLaughlin et al., 2014; Tyler, Kuhn, & Davis, 2006), and hab-
itat loss and fragmentation (Bolsinger, 1988).

Using aerial mortality surveys (USDA Forest Service 2015) and 
satellite-derived GRACE data on change in terrestrial water storage, 
we explored the impacts of climate and hydrologic parameters on 
distribution-wide blue oak dieback patterns. Although GRACE data 
have been used previously for general drought monitoring (Ning, 
Ishidaira, Udmale, & Ichikawa, 2015; Velicogna, Kimball, & Kim, 2015; 
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Wang et al., 2016), our work illustrates a novel approach of using this 
data as a predictor of individual species’ distributional dieback pat-
terns. To help inform climate-adaptive management over the next 
century, we present future “climate vulnerability maps” based on the 
climate/dieback thresholds identified in our data. Given that there 
have been multiple increased stressors in ecosystems over the past 
century, maps based on such current observed dieback data, rather 
than on historical distributional associations, may capture a more re-
alistic perspective on future vulnerability of long-lived species.

2  | MATERIAL S AND METHODS

2.1 | Study system

The blue oak distribution, covering nearly 1.2 million ha in California, 
encircles the Central Valley and includes the Coast Ranges and lower 
western foothills of the Sierra Nevada Range (Figure 1). Blue oak is a 
slow-growing, winter deciduous species with an average life span of 

150 years. Blue oak grows in a Mediterranean climate in which most 
precipitation typically falls between October and March (Major, 
1988).

2.2 | Distribution data and study area

The blue oak distribution was derived using vegetative distribu-
tion data from the California GAP Analysis database (Davis et al., 
1998). The database uses the California Natural Diversity Database 
or “Holland” system to describe vegetation at the community level. 
Database polygons, ranging from a few (16.5 ha) to thousands 
(40,672.9) of hectares (mean 1,409.8 ha), may contain up to three 
plant community types. We limited our definition of distribution to 
polygons in which blue oak was identified as the dominant or co-
dominant species within the primary or secondary cover type. Doing 
so reduced instances in our data where blue oak occurred, but was 
not a significant component of the canopy. We limited our study 
area to locations surveyed by the 2015 USDA Forest Service Aerial 

F I G U R E   1 Map of California showing 
the blue oak distribution in blue, the 
extent of the USFS aerial mortality 
surveys hatched, and the observed 
dieback from USFS aerial mortality 
surveys in red



     |  1189BROWN et al.

Detection Monitoring campaign (USDA Forest Service 2015), which 
was conducted in an effort to quantify mortality in tree species 
across California. Aerial surveys in which a surveyor record observa-
tions of tree dieback and species from a low flying airplane occurred 
between June and August 2015, a period after which blue oaks had 
reached full leaf out and before leaf senescence. Areas where the 
aerial surveyors identified blue oak dieback outside of the California 
GAP distribution were added into the study area. We classified areas 
as “dieback” when blue oak was identified by aerial surveyors as the 
host species with a damage type of either “mortality,” “discolora-
tion,” “defoliation” or “dieback”; categories that indicate the tree ex-
perienced very poor canopy health, indistinguishable from mortality 
(J. Moore, personal communication Feb 2016). Areas of the blue oak 
distribution not identified as one of the above dieback categories 
were classified as “non-dieback.” The “dieback” category does not 
definitively indicate mortality (which cannot be confirmed in oaks 
without ground-level surveying), but indicates severe stress, lack of 
leaf out and possible mortality. Our study area encompassed 79% 
of the total blue oak distribution (2,742,630 ha). We then converted 
dieback distribution data from polygons to points using a 270-m res-
olution grid in ArcGIS (ESRI, 2016), matching the resolution of the cl i-
matic data used in analyses. Dieback points were assigned if a portion 
of the dieback polygon covered >25% of the grid cell, non-dieback 
points were assigned throughout the remaining study area. Points 
falling within water bodies were removed from the dataset.

2.3 | Climate and water data

We used water year climate data (e.g., Oct 2014–Sept 2015) from 
the California Climate Commons database (California Landscape 
Conservation Cooperative, 2017) where PRISM data (PRISM Climate 
Group 2015) have been downscaled to a 270-m resolution grid which 
incorporated hydrology dates back to 1896 (Flint & Flint, 2012). We 
derived 11 climatic variables from this dataset (Table 1) likely to in-
fluence climate-driven dieback in blue oak. We examined climate 
variables over six timeframes to assess time lags or compounding 
impacts of multiple years of drought (Table 1). In addition, we calcu-
lated two historical comparison parameters for each variable: a con-
tinuous climate anomaly variable and a binary novel climate variable. 
Climate anomaly values were calculated as the difference between 
1951–1980 average (a baseline adopted by the Intergovernmental 
Panel on Climate Change IPCC 2014) and 2015. We defined a novel 
climate as a cell that in 2015 was hotter or drier than previously re-
corded before the drought onset (i.e., 1896–2011). For anomaly vari-
ables, positive values indicate stronger recent drought conditions 
(e.g., anomalously low precipitation and anomalously high tempera-
tures are both represented by positive values).

We also examined the change in subsurface water storage (cm 
water thickness), obtained from NASA’s GRACE satellite (Swenson, 
2012) at a 55-km resolution. The variable differs from the hydrologic 
component of the climate water deficit (CWD) downscaled climate 
data, which incorporates changes in shallow soil moisture but does 
not capture changes in deeper groundwater. The GRACE satellite 

measures monthly changes in Earth’s gravitational field, which are used 
to estimate the total amount of water stored in a region as ice, snow, 
surface water and groundwater. We used GRACE data collected in 
August 2015 when most of the blue oak distribution was entering its 
driest period. During this summer period in our study area, snow and 
ice were not present, and the influence of surface water was limited 
since stream flow during that time was minimal. Therefore, the GRACE 
data were representative of change in subsurface water. While these 
changes may not represent changes in plant available water if sources 
beyond the reach of plant roots were tapped through intensive agri-
cultural irrigation oriented pumping, the majority of our study area is 
rangeland; therefore, irrigation withdrawals for agriculture should have 
had minimal impact. Change in surface water values represents the dif-
ference between August 2015 and the available pre-drought baseline 
(mean of August 2004–2009).

2.4 | Modelling and statistical analysis

We used a threshold of 0.7 to identify highly correlated predictor 
variables and avoid issues of collinearity in the models, following 

TABLE  1 Eleven climate variables derived from BCM, used in 
initial determination of model variables. Each climate variable was 
calculated across six absolute (2015, 2013–2014, 2013–2015, 
2011–2015, 1981–2010 and 1951–1980) and two historical 
comparison (Anomaly and Novel) timeframes

Climate variable Description

Climate water deficit (CWD) (mm) Difference between potential 
and actual evapotranspiration

Annual precipitation(mm) Cumulative yearly precipita-
tion by water year

Spring precipitation (mm) Cumulative precipitation for 
March, April and May

Fall precipitation (mm) Cumulative precipitation for 
September, October and 
November

Winter precipitation (mm) Cumulative precipitation for 
December of the previous 
year and January and 
February of the current year

Spring temperature (°C) Average of March, April, May 
max temperatures

Summer temperature (°C) Average of June, July, August 
max temperatures

Fall temperature (°C) Average of September, 
October, November max 
temperatures

Growing season temperature (°C) Average of March–November 
max temperatures

Spring-summer temperature (°C) Average of March–August max 
temperatures

Summer-fall temperature (°C) Average of June–November 
max temperatures
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the recommendations of Dormann et al. (2013). We removed 
highly correlated variables in three steps. First, using logistic re-
gression, we determined the time frame and historical compari-
son parameter for each climate variable that had the strongest 
relationship with dieback. We compared each variable in a single 
parameter model to a null model, and the time frame or histori-
cal parameter for each climate variable with the lowest Bayesian 
information criterion (BIC) was retained. Second, we removed any 
remaining highly correlated variables, retaining composite over 
seasonal measures (e.g., annual precipitation over winter precipi-
tation). Using this methodology, our climatic model variables were 
2015 water year precipitation (hereafter “2015 precipitation”), 
2013–2014 average max summer-fall temperature, summer-fall 
temperature novel climate, CWD anomaly (water year) and spring 
temperature anomaly. Finally, we determined that there was no 
strong correlation between our remaining climatic variables and 
the change in subsurface water variable. Variables in the final 
model were all correlated by <0.64.

To address possible spatial autocorrelation in our model 
(Dormann et al., 2007), we generated eight spatially balanced data-
sets and tested the robustness of our model to reduction in spatial 
structure. To generate these spatially balanced datasets, we used 
generalized random tessellation stratification (Stevens & Olsen, 
2004) within the r package spsurvey (Kincaid & Olsen, 2015). We en-
sured that the eight datasets maintained the same ratio of dieback to 
non-dieback points as the original dataset but were thinned to 490 
randomly selected dieback and 9,310 non-dieback points.

We used BRTs to model dieback because they handle complex 
ecological relationships well (Elith et al., 2006), allowing for nonlinear 
relationships and fitting interactions automatically (Elith, Leathwick, 
& Hastie, 2008; Leathwick, Elith, Francis, Hastie, & Taylor, 2006). 
Using methods from Elith et al. (2008), we found optimal values of 
learning rate (a shrinkage parameter), tree complexity (interaction 
depth) and bag fraction (proportion of randomly selected data at 
each model iteration), which were 0.01, 5 and 0.5, respectively. 
We first modelled the relationship between dieback (presence/ab-
sence) and our five independent predictor variables across the entire 
study area using the binomial family. We then re-fit the same model 
using our eight spatially balanced datasets. Variables not robust to 
removal of spatial structure in the data (e.g., direction of relation-
ship with dieback varying across spatially balanced datasets) were 
removed from the model.

We used the area under the curve (AUC), deviance explained 
and root mean square error (RMSE) to evaluate model fit and pre-
dictive performance. BRTs calculate AUC by withholding test data 
(controlled by the bag fraction) with each new tree in the model to 
determine the model’s predictive ability (Elith et al., 2008). An AUC 
of 0.5 indicates the model cannot predict better than random, while 
an AUC of 1 indicates perfect prediction, a possible indication of 
overfitting (Fielding & Bell, 1997). Overfitting is reduced in the BRT 
modelling process using the bagging fraction to randomly sample 
half the data for tree fitting at each step and using a low learning 
rate to shrink the contribution of each tree (Elith et al., 2008).

All analyses, except where indicated, were performed in r 3.3.2 
(R Core Team 2016) using the raster 2.5-8 (Hijmans, 2016), maptools 
0.8-40 (Bivand & Lewin-Koh, 2016), rgdal 1.2-3 (Bivand, Keitt, & 
Rowlingson, 2016), gbm 2.2.1 (Ridgeway, 2015) and dismo 1.1-4 
(Hijmans, Phillips, Leathwick, & Elith, 2016) packages.

2.5 | Future vulnerability mapping

For future vulnerability mapping, we examined the modelled thresh-
old value for the increased probability of dieback occurrence of 
2015 precipitation. We downloaded monthly MIROC_rcp85 and 
MPI_rcp45 climate scenario precipitation projections from the 
2014 Basin Characterization Model dataset at 270-m resolution 
(California Landscape Conservation Cooperative, 2017; Flint & 
Flint, 2012). MIROC_rcp85 represents a very dry climatic change 
scenario, and MPI_rcp45 represents a milder, very wet scenario. 
For both scenarios, we computed total precipitation for each water 
year and calculated the number of times each pixel went below 
the 2015 precipitation threshold (363 mm) over the 30-year base-
line (1951–1980), as well as the total number of times precipitation 
was predicted to be below the threshold over two 30-year futures 
(2021–2050 and 2070–2099). We analysed both scenarios to illus-
trate the range of potential climatic futures. However, in the main 
results of the paper, we focus on the rcp85 projections because 
we are attempting to conservatively identify regional refugia, and 
because our future model does not account for other factors that 
likely will increase plant drought stress such as projected increasing 
groundwater loss (Taylor et al., 2013) and higher temperatures (Flint 
& Flint, 2012).

3  | RESULTS

In 2015, aerial surveys identified 5.52% (151,381 ha) of the blue oak 
study area as experiencing dieback. Over 99% of the distribution had 
a lower 2015 precipitation (Figure 2) and 92% had higher 2013–2014 
summer-fall temperatures than the 30-year normal. However, only 
a small percentage of the distribution experienced novel climate in 
2015 compared to 1896–2011. (0.5% experienced novel precipita-
tion and 1.8% novel temperatures). Total August 2015 water storage 
levels were an average of 24 cm below the 2004–2009 pre-drought 
baseline.

3.1 | Model results

The final model included five variables (2015 precipitation, 2013–14 
summer-fall temperature, CWD anomaly, spring precipitation anom-
aly, and change in subsurface water) and explained 46% of the varia-
bility in dieback across the distribution (AUC = 0.958, RMSE = 0.143, 
Figure 3). Relationships between dieback and model variables were 
robust to removal of spatial structure within the data (Appendix 
S1: Figure S2). Nearly 63% of modelled dieback probability was ex-
plained by 2015 precipitation (33%) and change in subsurface water 
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(29.6%). Partial dependence plots of these variables indicated that 
nonlinear, threshold-based relationships existed (Figure 4), and al-
though non-dieback points did occur below the thresholds, few die-
back points existed above them. For 2015 precipitation, we saw a 
severe increase in dieback probability when the total precipitation 
fell below 363 mm (Figure 4). This threshold was calculated as the 
99th percentile of 2015 precipitation, which also coincided with 
the precipitation value that corresponded to the greatest drop in 
the marginal probability of dieback (Figure 4). No dieback occurred 
above 395 mm. The likelihood of dieback also increased dramatically 
as subsurface water loss exceeded 30 cm (Figure 4). Precipitation in 
2015 interacted with subsurface water loss (Figure 5) to cause an in-
crease in dieback probability when precipitation was below 395 mm 
and loss in subsurface water was >30 cm.

The remaining three model variables, spring temperature anom-
aly, 2013–14 summer-fall temperature and CWD anomaly, explained 
15.7%, 12.7% and 9%, respectively, of modelled dieback probabil-
ity. We saw a slight increase in the likelihood of dieback as average 
2013–14 summer-fall temperature increased above 25°C (Figure 4) 
and an increase in dieback probability with more anomalous spring 
temperatures (Figure 4) until 2.3°C at which point anomalous values 

became rare (Figure S1). Dieback probability also began to increase 
when CWD anomaly reached ~100 mm (Figure 4) and continued 
until anomalous CWD became rare near ~300 mm (Figure S1).

The variable summer-fall temperature novel climate was dropped 
from the final model because it was not robust to the thinned, spa-
tially balanced datasets. After removal of this parameter, partial de-
pendence plot trends between the final spatially balanced dataset 
and the full dataset were similar (Figure S2).

3.2 | Future vulnerability

During historical baseline conditions (year 1951 to 1980), 23% 
(7,970 km2) of the blue oak distribution never experienced an-
nual precipitation below the threshold (363 mm). Although this 
percentage is predicted to increase to ~31% (10,660 km2) by mid-
century (2021–2050) under the MIROC_rcp85 scenario, it is pre-
dicted to shrink to 11% (3,640 km2) of the range by end century 
(year 2070–2090) (Figure 6). Of particular interest are areas that 
have historically remained above the precipitation threshold but 
are projected to go below in the future. While these areas com-
prise only ~1% of the range by mid-century, they are predicted 

F I G U R E   2 Precipitation in 2015 (mm) and mean precipitation from 1951–1980 (mm) (water years) for all climate cells (270 m) across the 
surveyed area of the blue oak distribution, with observed dieback in red and no observed dieback in blue. Ellipses represent 95 % confidence 
intervals (solid: observed dieback, dashed: no observed dieback). Solid black line represents a one-to-one line. Over 99% of the points were 
below the one-to-one line, indicating 2015 was drier than normal in most areas [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E   3 Comparison of observed dieback (left) and modelled dieback probability (right) across the blue oak distribution. Dieback was 
modelled using a binomial boosted regression tree model. The legend indicates high (red) to low (grey) probabilities of dieback. On average, 
our model predicted 30 ± 6% probability of dieback within observed dieback areas [Colour figure can be viewed at wileyonlinelibrary.com]
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to increase by an order of magnitude to 13% by end of century. 
Additionally, by mid-century 13%, and by end of century 81%, of 
the total blue oak distribution is predicted to have more frequent 
below threshold drought years relative to baseline conditions 

(Figure 6). For corresponding data for an alternative wet MPI_
rcp45 future scenario, see Figure S3, and for absolute projected 
future values for both scenarios, see Figure S4.

4  | DISCUSSION

4.1 | Groundwater loss and vulnerability to climatic 
drought

Patterns of blue oak dieback in our analysis were largely a result of 
an interaction between annual water year precipitation and subsur-
face water change, with the highest likelihood of dieback occurring 
in areas with low precipitation and high subsurface water loss. While 
precipitation was the strongest predictor of dieback, subsurface 
water loss explained nearly as much variation in dieback probability. 
Because of the cryptic nature of subsurface water change, ecolo-
gists have been challenged to evaluate the impacts of groundwa-
ter loss on ecosystems. Datasets like GRACE data represents a new 
potential tool to evaluate deep-rooted species response to change 
in subsurface water at the distribution scale. For deep-rooted, 
water-limited plants in areas projected to become drier in the future, 
groundwater loss represents a potentially exacerbating driver of vul-
nerability to climate change.

Data from numerous wells across California, as well as GRACE 
data, indicate that subsurface water storage in the state has declined 
dramatically since the beginning of the twenty-first century (Wang 
et al., 2016), up to 31 ± 3 km3 between 2006–2012 (Famiglietti et al. 
2014; Scanlon, Longuevergne, & Long, 2012). Estimates from 2014 
alone indicate that the drought resulted in an additional 6.3 km3 of 
groundwater depletion (Howitt, Medellín-Azuara, MacEwan, Lund, 

F I G U R E   4 Model partial dependence plots, showing the contribution of each variable (with all other variables at their means) to the total 
model fitted function on the y-axis, variable scale range on the x-axis. Percentages are estimated percentage of the total model variance 
explained by that variable. Two variables, 2015 precipitation (water year) and change in subsurface water, explain nearly 63% of dieback 
probability in our model

F I G U R E   5 Modelled interaction between change in subsurface 
water from baseline (cm) on the x-axis, 2015 precipitation (mm) 
(water year) on the y-axis and probability of dieback on the z-axis. 
All values are fitted values from the boosted regression tree 
model relating the presence and absence of dieback in blue oak 
to climate and change in subsurface water variables. Low 2015 
precipitation and high loss of subsurface water interact to increase 
the probability of dieback
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& Sumner, 2014), largely due to higher agricultural withdrawals ne-
cessitated by low precipitation. The demonstrated importance of 
groundwater hydrology to blue oak survival at the broad scale sug-
gests that local variation in subsurface water availability (influenced 
by local landscape features such as perched riparian aquifers or soil 
depth) may also impact dieback within populations.

Blue oak and closely related oaks can depend heavily on subsur-
face water sources, particularly during drought and the driest part 
of the growing season: nearly 80% of blue oak water requirements 
were met by deep water sources during summer months (Miller 
et al., 2010). In a historical survivorship study, the highest mortal-
ity of adult valley oak (Quercus lobata, a close relative of blue oak 
with a similar geographic distribution) was associated with the low-
est groundwater levels (Brown & Davis, 1991). Blue oak has been 
shown to obtain water from different depths during different times 
of the year, using higher amounts of shallow soil water in the begin-
ning of the growing season and transitioning to deep water sources 
as shallow soil water becomes less available during the summer dry 
period (Miller et al., 2010). A similar progression to deeper water 
sources throughout the growing season has been observed in other 
species in seasonally dry ecosystems (Ellsworth & Sternberg, 2014; 

Weekley, Gagnon, Menges, Quintata-Ascencio, & Saha, 2007). Low 
precipitation and higher growing season temperatures may deplete 
shallow water sources earlier in the season, causing species to tap 
into deeper water sources earlier and for a longer overall period of 
time.

Our results suggest that the effects of subsurface water loss 
on blue oak dieback were nonlinear, showing a threshold at ap-
proximately −30 cm after which the probability of dieback rose 
steeply. Similar threshold-based relationships between groundwa-
ter availability and dieback have been found in eucalyptus species 
in Australia (Kath et al., 2014). Because of this threshold-based 
response, we may see little to no warning of increasingly depleted 
groundwater effects on ecosystems before dieback occurs.

4.2 | Modelled climate parameters

Precipitation in 2015 played an overwhelmingly important role in 
blue oak dieback, consistent with previous studies identifying pre-
cipitation as a dominant climatic driver of blue oak growth and sur-
vival (Kertis et al., 1993; Kueppers et al., 2005). Low precipitation 
and subsurface water loss both can reduce plant water availability, 

F IGURE  6 Map of current blue oak distribution showing (a) number of years when precipitation is below the 363 mm threshold during 
historical baseline conditions (1951–1980) and (b) at end of century (2070–2099), (c) change in number of years below threshold relative to 
baseline conditions for mid-century (2021–2050) predictions and (d) end-of-century predictions. Futures are based on a dry MIROC_rcp85 
scenario. In (c) and (d), green colouring indicates refugial areas where annual precipitation remains consistently above the 363 mm threshold
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increasing the likelihood of hydraulic failure, a frequent driver of tree 
mortality (Adams et al., 2009). We found that dieback probability in-
creased dramatically when annual precipitation fell below 363 mm 
and that almost no dieback occurred above this precipitation value. 
Thus, 363 mm appears to be a threshold under which blue oaks be-
come increasingly vulnerable to climate-related dieback and over 
which they are much less vulnerable. However, local climatic adapta-
tion may occur (Rice, Gordon, Hardison, & Welker, 1991; Sork et al., 
2010), and thus, population or region-specific thresholds may exist 
(i.e., populations in historically highly xeric areas of the distribution 
may have a lower precipitation/dieback threshold than populations 
in historically more mesic areas). For the purposes of this study, to 
conservatively identify refugia, 363 mm is used as a distribution-
wide safety threshold, above which drought-related dieback ap-
pears unlikely. However, this value is likely not a fixed, independent 
boundary and the possibility of variable local thresholds below this 
value deserves further investigation.

Summer-fall high temperatures also increased the likelihood of 
blue oak dieback. Increased summer and fall temperatures increase 
ecosystem evapotranspiration, exacerbating the water deficits 
caused by low precipitation. Maximum temperatures directly impact 
physiological functions such as respiration and photosynthetic ca-
pacity and increase mortality risk for trees (McDowell et al., 2008) 
and may play a particularly important role in tree mortality under 
low water conditions (Adams et al., 2009). As such, the likelihood 
of dieback in our model rose slightly as 2013–2014 summer-fall 
temperature increased above 25°C. In our model, the relationship 
between 2013–2014 summer-fall temperatures and dieback proba-
bility dropped off after ~31.5°C because the frequency of tempera-
tures above 31.5°C decreased to <4.5% of observed dieback points 
(Figure S1).

It was not only absolute climate values during drought years 
that predicted dieback but also climate anomalies—the drought 
years’ climate value relative to the historical climate for a particu-
lar population. Spring temperature and CWD anomalies showed 
small effects on dieback probability. The hump-shaped relation-
ship between these climate anomalies and probability of dieback 
(Figure 4) represents a sharp decline in the frequency of occurrence 
at the high values, rather than a quadratic relationship (Figure S1). 
Earlier spring warming results in a longer growing season and can 
lead to prolonged or earlier drought stress (Hongyan et al., 2013; 
Piao, Fang, Zhou, Ciais, & Zhu, 2006; Wu, Liu, Wang, & Deng, 2013). 
CWD integrates temperature, precipitation, and surface and shal-
low soil hydrologic processes (Flint, Flint, Thorne, & Boynton, 2013; 
Willmott, Rowe, & Mintz, 1985), making it a useful measure of plant 
water deficit integrated across these variables.

That the degree of change in these climate parameters may be 
predictive of dieback suggests the possibility of local climate adap-
tation of blue oak. Limited experimental work on local adaptation in 
blue oak indicates that water use efficiency (WUE) may differ across 
populations, with higher WUE in more xeric parts of the distribu-
tion (Rice et al., 1991). Regional populations have distinct genetics 
and that local adaptation within these regions has occurred (Rice, 

Richards, & Matzner, 1997); however, genetic variation within pop-
ulations may be large enough to obscure definitive ecotypes or eco-
clines (McBride, Norberg, Bertenshaw, Kloss, & Mossadegh, 1997; 
Riggs, Millar, & Delany, 1991). In valley oak, separate genetic clus-
ters were identified and linked to limited gene flow (Grivet, Sork, 
Westfall, & Davis, 2008). Sork et al. (2010) found that genetic struc-
ture in valley oak had a strong association with climatic gradients, 
suggesting the likelihood of local adaptation to climate. Given their 
close phylogenetic relationship and similar geographic distribution, 
genetic structure similar to that of valley oak may exist in blue oak.

4.3 | Model limitations

Aerial survey data are expected to have some collector error; how-
ever, to verify general data accuracy, we explored the relationship 
between NDVI and areas categorized with and without dieback. We 
found that NDVI was lower in observed dieback than in non-dieback 
areas (Appendix S1). Non-climatic factors, absent from our analy-
sis, that may have contributed to dieback include biotic interactions 
(Buse, Dury, Woodburn, Perrins, & Good, 1999; Pearse, Funk, Kraft, 
& Koenig, 2015), potential local genetic variation (Sork et al., 2010), 
soil characteristics that impact plant water availability, and the var-
ied topography and geology of the region (Norris & Webb, 1990).

4.4 | Future vulnerability

Blue oak likely will become more vulnerable to drought-related 
stressors over the next century. We demonstrate the use of ob-
served thresholds to identify populations likely to be susceptible 
to dieback currently and over the next century. For accessibility, 
we used a simplified model with a single-year threshold; however, 
locally, other factors may be important including local adaptation, 
microtopographic conditions, soil characteristics, hydrology and ex-
posure to extended, multiyear drought. Our vulnerability maps are 
not intended to predict survival (many areas with precipitation under 
our threshold did not experience dieback) but rather to identify 
where vulnerable areas are and may exist over the next century. 
Vulnerable areas would be good candidates for climate change ad-
aptation planning, particularly if climate continues to become drier 
as projected (Flint & Flint, 2012). For example, these areas would 
benefit from more rigorous groundwater monitoring and conserva-
tion to minimize confounding stressors. Populations in these areas 
also should be considered for genetic material collection to ensure 
preservation of the dry-adapted parts of the species genome for fu-
ture restoration. Potential climate change refugia (McLaughlin et al., 
2017; Morelli et al. 2017) in these areas may be particularly impor-
tant to identify and protect.

Our vulnerability maps provide complementary information to 
bioclimate models predicting range shifts based on species’ historical 
distributional associations with climate. Because our maps are based 
on current empirical dieback data, they may be particularly useful 
in mapping vulnerability for long-lived, non-mobile species, such as 
trees, that experience compounded impacts of climate and other 
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ongoing water-related environmental stressors (such as invasive 
competitors for water, changes in hydrology or ground-level ozone 
exposure that can inhibit stomatal closure and increase transpiration). 
Under these circumstances, historical climate associations may un-
derpredict potential vulnerability as they do not account for poten-
tially narrower climatic tolerances in populations experiencing such 
compounded stressors. For example, in our study, blue oak in areas 
with less groundwater loss were able to tolerate drier climatic condi-
tions, whereas trees in areas with high groundwater loss experienced 
dieback at higher precipitation levels.

Our threshold-based vulnerability maps also have the advantage 
of simplicity and accessibility. We explicitly chose to use a single 
strongly predictive threshold metric (precipitation) rather than a full 
climate modelling exercise with the full suite of predictive climate 
variables, to simplify map output. While our future predictions give 
guidelines on where areas below the threshold exist now or may 
exist in the future, the metric is sufficiently simple that managers 
could tailor the recommendations based on the current and future 
climate conditions in their locations.

We present vulnerability maps based on a dry rcp85 future sce-
nario (Figure 6, see Appendix S1: Figure S3 for an alternative wet 
future scenario) because (1) we cannot account for future ground-
water loss, which likely will intensify with climate change (Taylor 
et al., 2013) and increase drought vulnerability; (2) because they 
are based on a precipitation threshold, our maps do not account for 
predicted rising regional temperatures (Flint & Flint, 2012), which 
will increase overall evapotranspiration and drought vulnerability 
(Diffenbaugh et al., 2015); and (3) the maps from the rcp85 sce-
nario provide a conservative estimate of regional refugia (areas 
projected not to cross the precipitation threshold over the next 
century). To illustrate the range of possible futures, we also anal-
ysed the rcp45 wet future scenario (Appendix S1: Figure S3), which 
shows qualitatively similar geographic patterns of refugia by end of 
century (located in the northern part of the species distribution), 
but substantially more refugial area than the rcp85 scenario.

Under the rcp85 scenario, major changes in the extent of the 
blue oak distribution that experiences rainfall years under the 
distribution-wide 363 mm precipitation threshold appear by the end 
of the century. Between 2070–2099, many areas that had historically 
remained above the threshold are predicted to cross it. Precipitation 
years below the threshold also showed increased frequency in 81% 
of the distribution by end of century. The frequency of dry years 
is particularly important given that multiple years of prolonged 
drought stress can increase the likelihood of mortality (Allen et al., 
2015). Pockets of regional refugia (areas predicted always to stay 
above threshold) are predicted in the north coastal, north-central 
and northern Sierra areas of the distribution.

5  | CONCLUSIONS

Ongoing climate change and extreme climatic events give us an 
opportunity to improve understanding of where species may be 

vulnerable and where they are likely to persist based on empirical 
threshold response data. Our model indicated that reductions in 
groundwater may interact with low precipitation to increase die-
back risk for blue oak. These factors showed nonlinear threshold 
relationships with dieback, and as such were used with futures sce-
narios to suggest areas of likely vulnerability or refugia. While the 
GRACE data provide a useful new tool to track species responses 
to groundwater change, higher resolution groundwater data also 
are needed to understand groundwater impacts and conservation 
potential at a local level. Improved groundwater monitoring and 
conservation will be critical to climate-adaptive conservation in 
these ecosystems.

Climatic conditions such as those seen during California’s re-
cent extreme drought are likely to increase in many parts of the 
world (IPCC 2014); global groundwater withdrawals are, likewise, 
projected to increase with climate change (IPCC 2014, Taylor et al., 
2013). In many parts of the earth, similar to observed effects on 
blue oak during the CA drought, drying climatic conditions and 
subsurface water loss may combine to intensify dieback in deep-
rooted trees in water-limited ecosystems. Under circumstances in 
which strong threshold-based species climate/dieback relation-
ships can be identified, vulnerability mapping based on observed 
thresholds can help prioritize regional refugia protection, as well 
as climate change-related conservation efforts within vulnera-
ble areas such as monitoring, protection of microrefugia, genetic 
material preservation and consideration of alternative species for 
restoration.
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This study represents an effort to utilize large-scale data to bet-
ter understand distribution-wide effects of climate and subsur-
face water change on deep-rooted species. Our research fits into 
a larger attempt to identify ongoing impacts and anticipate future 
impacts of climate change on species distributions (www.blairm-
claughlin.org, https://naiamoruetaholme.wordpress.com). This 
work is included in BJB’s MS thesis.
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