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Abstract. Many effects of a changing climate for organisms, populations, and ecosystems are already

apparent. Less studied are the effects of increases in temperature on species interactions. While warming

may potentially alter interactions among species, species interactions may also mediate individual species

responses to ongoing climatic change. In this experiment we manipulated temperature in field-based,

open-top chambers for three years to examine the relationship between biotic interactions and climatic

warming on the population dynamics of seedlings of Quercus alba. We investigated the effect of warming

on rates of insect herbivory on Q. alba seedlings. Additionally, we assessed the relative effects of increasing

temperature, insect herbivory, and conspecific density on seedling survival. We found two unexpected

results. First, we observed a negative relationship between temperature and levels of insect herbivory

during each year of the experiment. Second, higher levels of herbivory were associated with higher rates of

survival to the second year of the study. Although we never detected a direct effect of conspecific density

on seedling survival, herbivory and conspecific seedling density did interact to influence Q. alba seedling

survival early in the experiment. Taken together, our results indicate species responses to climatic warming

may be contingent on intra- and interspecific interactions, sometimes in complicated and counter-intuitive

ways.
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INTRODUCTION

While many studies make it abundantly clear

that ongoing climatic warming has affected the

phenology (Parmesan and Yohe 2003, Menzel et

al. 2006, Parmesan 2006, Amano et al. 2010,

Morin et al. 2010), performance (Rossi et al. 2004,

Cleland et al. 2012), and distributions (Parmesan

and Yohe 2003, Walther 2010, Chen et al. 2011) of

species, less appreciated is the fact that climatic

change might also alter both intra- and inter-

specific interactions (Tylianakis et al. 2008).

Predictions related to the effects of ongoing

climatic change largely consider the direct effects

of climate on species without taking into account

how interactions between species might also
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affect their responses to climatic change (Davis et
al. 1998, Araújo and Rahbek 2006, Buckley et al.
2010). In part, the lack of studies on the interplay
between biotic interactions and climatic change
arises from the general approaches taken to
study the consequences of climatic change. For
instance, macroecological approaches that rely
on climate envelope models are generally too
broad in scale to assess the role of local
interactions (Araújo and Rahbek 2006). Con-
versely, manipulative studies in the field are
often too small and too expensive to incorporate
a focus on biotic interactions and instead focus
on how experimental warming alters ecosystem
processes or aggregate measures such as diver-
sity or biomass (e.g., Rustad et al. 2001, Classen
et al. 2010, Adair et al. 2011, Hoover et al. 2012).
More experiments aimed at determining the
effects of climatic warming on species interac-
tions are needed in order to facilitate predictions
about the responses of communities and ecosys-
tems to climatic change.

Here, we use field-based, open-top, actively
warmed chambers to investigate the interplay
between biotic interactions and climatic warming
on population dynamics of seedlings of a
common eastern temperate deciduous tree, Quer-
cus alba. We take advantage of a fortuitous mast
event (i.e., intermittent, synchronized acorn
production among many individuals within a
region) to examine the combined impacts of
conspecific seedling density, herbivory by insects,
and experimental warming on seedling survival
over three years. Factors limiting seedling estab-
lishment are a strong filter on tree recruitment
(Clark et al. 1998, Hubbell et al. 1999, Brown and
Wu 2005, Matthes and Larson 2006), and an
understanding of these factors may provide
valuable insights into predicting how future
forests will respond to climatic change.

Previous studies have documented the effects
of herbivory and conspecific density, both indi-
vidually and together, on tree seedling survival
with mixed results. For example, seedling re-
cruitment may be negatively correlated with
conspecific density because of intraspecific com-
petition or because seedling density and the
density of their natural enemies (e.g., insect
herbivores) are positively correlated (Janzen
1970, Connell 1971). The effects of herbivory on
plant survival are mixed, with some studies

demonstrating negative effects, some positive
effects, while still others show no effects on
survival (Karban and Strauss 1993, Maron and
Crone 2006). While conspecific density and
herbivory can influence the survival of individual
seedlings and in turn influence population
growth rate, no studies, to our knowledge, have
investigated the relative impacts of density and
herbivory under experimental warming over
multiple years. Doing so is critical because
understanding the factors that limit establish-
ment can elucidate the factors that govern
population dynamics of forests in the future.
For instance, Clark et al. (1998) found that
establishment limitation at the seedling stage
was one of the strongest factors limiting recruit-
ment in southern Appalachian forests. However,
few studies have examined the interplay between
biotic interactions and seedling establishment of
eastern deciduous trees under climatic warming.

Since January 2010, we have used actively
warmed open-top chambers in an eastern tem-
perate forest to address the following inter-
related questions: (1) Does the magnitude of
insect herbivory on white oak seedlings increase
with warming? (2) Is the rate of population
growth of Q. alba seedlings following a mast
event affected by warming, herbivory, or con-
specific seedling density? (3) Does herbivory
interact with temperature and seedling density
to affect seedling survival?

MATERIALS AND METHODS

Study location/warming experiment
We did this study in an array of twelve actively

warmed, open-top chambers (OTCs) located in
an 80-year-old oak-hickory stand in Duke Forest
(near Hillsborough, NC). The site receives
approximately 1140 mm of precipitation year�1,
and the mean annual temperature is 15.58C. The
OTCs are octagonal in shape, 5 m in diameter, 1.2
m tall, and constructed around similarly-sized
adult Q. alba (mean diameter at breast height ;20
cm). Nine of the OTCs are heated between 1.5
and 5.58C above ambient in half-degree incre-
ments (i.e., a regression design; Cottingham et al.
2005), and three serve as ambient controls. We
continuously regulate temperature in the cham-
bers with hydronic radiators. In the nine warmed
OTCs, air temperature is increased when blown
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over the radiator and through two concentric
rings of 15-cm diameter plastic plena that are
located 1.7 and 0.8 m from the chamber walls.
Hot air enters the chamber via two rows of 2-cm
diameter holes located along the bottom-side of
the plena. We continuously measure air temper-
ature (8C) in all OTCs with automated data-
loggers (CR1000, Campbell Scientific Inc.). The
three ambient control chambers are identical in
every way, except that the air is not warmed
when it enters the OTC. These actively warmed
chambers were turned on in early 2010 and are
part of a larger, ongoing study investigating the
effects of warming on community and ecosystem
dynamics (see Pelini et al. 2011).

Abiotic conditions in the open-top chambers
At two locations in each chamber, we contin-

uously measured air temperature and soil tem-
perature in the organic and inorganic (mineral)
soil (model SQ110; Apogee Instruments Inc.,
Logan, UT, USA). We also measured the relative
humidity (HS-2000V capacitive polymer sensors;
Precon, Memphis, TN, USA) and volumetric soil
moisture (Model CS616 TDR probes, Campbell
Scientific Inc.). We calculated vapor pressure
deficit (VPD) as (1 � (RH/100)) 3 0.61121 3

EXP((17.269 3 T )/(T þ 237.3)) where RH is the
mean relative humidity and T is the mean
temperature averaged over the growing season
(April–September). During much of the growing
season of 2012, the relative humidity sensors in
two of our chambers, one of the ambient control
chambers and the chamber set to þ1.58C, mal-
functioned. Thus, we removed those chambers
from analyses requiring relative humidity and
vapor pressure deficit data. Observed tempera-
tures in the OTCs matched target temperatures
throughout the experiment (Table 1; SMA func-
tion of the SMATR package in R version 3.0.0
(Warton et al. 2013)). Unsurprisingly, some of the

abiotic factors other than air temperature
changed in association with the experimental
temperature treatment: relative humidity signif-
icantly decreased with temperature in all years of
the study; vapor pressure deficit was positively
correlated with temperature treatment for all
years of the study; mean soil temperature during
the growing season, both at the organic and
inorganic layers, was also positively correlated
with air temperature. For each year of the study,
soil moisture was never correlated with air
temperature (Table 2).

Study species
Quercus alba (white oak), common in eastern

deciduous temperate forests, is the most abun-
dant tree species found at our field site. Its range
spans from southwest Maine to northern Florida
and west to eastern Texas. Quercus alba repro-
duces annually with heavier masts occurring
every 3–10 years depending on weather condi-
tions and prior reproductive history (Sork et al.
1993, Abrams 2003). Duke Forest was the site of
an above-average Q. alba mast event during the
fall of 2009 resulting in seedling densities from 41
to 135 seedlings m�2 within the OTCs.

Seedling surveys
In June 2010, the year following the mast event,

Table 1. Results determining if the estimated slope is significantly different than one for linear regressions

examining the relationship between achieved temperature treatments and target temperature treatment. The

upper CI and lower CI are upper and lower 95% confidence intervals for the slope estimates.

Year

Linear regression Slope test

Slope estimate R2 P Upper CI Lower CI p

2010 0.98 0.94 2.61e�07 1.17 0.82 0.77
2011 0.90 0.99 4.87e�11 0.97 0.83 0.01
2012 0.90 0.94 2.08e�07 1.07 0.76 0.20

Table 2. Pearson’s correlation coefficients between air

temperature treatment and other abiotic variables. *p

, 0.05, **p , 0.01, ***p , 0.001. Each independent

variable is estimated as the chamber level mean

during the growing season.

Variable 2010 2011 2012

Relative humidity �0.82** �0.78** �0.76**
Soil moisture �0.16 �0.24 �0.16
Vapor pressure deficit 0.67* 0.66* 0.63*
Organic soil temperature 0.90*** 0.90*** 0.77**
Inorganic soil temperature 0.73** 0.79** 0.46
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we placed a metal tag with a unique identifier
around the base of the stem of each Q. alba
seedling within a randomly placed 1-m2 plot
located within each OTC. We surveyed each plot
twice per year between 2010 and 2012 to
determine seedling survival, seedling density
(number of seedlings m�2), and to estimate the
amount of herbivory each seedling had sustained
across each growing season. During the first
survey each year, conducted during the early
part of the growing season, we simply noted
whether the seedling had survived through the
winter. During the second survey, conducted at
the end of the growing season, we estimated the
accumulated level of foliar herbivory for each
seedling. We visually estimated levels of herbiv-
ory as the percent leaf area removed by insect
herbivores, including skeletonizers, leaf miners,
and leaf chewers. The most common herbivores
were skeletonizers, such as leaf-tying lepidop-
tera, and leaf chewers, such as the Asiatic Oak
Weevil (Cyrtepistomus castaneus). We observed no
new Q. alba seedlings in our study sites during
the period in which these data were collected.

Statistical analyses
Does the magnitude of herbivory increase with

warming? For each year of the study, we
quantified the relationship between warming
treatment and herbivory using univariate linear
regression models. Herbivory is averaged across
all seedlings in the permanently marked 1-m2

plot. For all analyses using temperature treat-
ment, we calculated the actual delta temperature
as the difference between the mean air temper-
ature in each chamber and the mean ambient air
temperature measured over the growing season
(April–September). To examine whether other
abiotic variables might influence seedling sur-
vival, population growth rate of Q. alba, or
herbivory, we additionally used univariate linear
regression models with soil moisture, relative
humidity, and vapor pressure deficit as indepen-
dent variables in the models. All analyses met the
assumptions of linear regression models.

Is the rate of population growth of Q. alba seedlings
following a mast event affected by warming, herbiv-
ory, or conspecific seedling density? We used
univariate linear regression models to determine
whether the rate of population growth of Q. alba
is associated with warming, conspecific seedling

density, and herbivory during each year of the
study. We did not use multiple regression owing
to the low power associated with our small
sample size. We calculated the rate of population
growth (k) for 2010 to 2011 and 2011 to 2012 as k
¼ ln(Nt/Nt�1), where, N is the number of
seedlings alive at year t in a plot during the
spring survey, and Nt�1 is the number of
seedlings alive during the spring survey of the
previous year in that same plot. For population
growth calculated from 2010 to 2011, we used the
mean temperature, mean plot level herbivory
averaged across the seedlings in the 1-m2 plots,
and the plot level density of Q. alba seedlings
(seedlings m�2) measured during 2010. For
population growth calculated from 2011 to
2012, we used these same variables measured
during 2011. We additionally used univariate
regression models to quantify the relationship
between k and soil moisture, relative humidity,
and vapor pressure deficit.

Does herbivory interact with temperature or
seedling density to affect seedling survival? Owing
to our having only 12 chambers, we were limited
in possible analyses to test for interactions
between variables. A lack of power prevented
us from examining all possible interactions
among herbivory, temperature, and seedling
density with typical regression analyses. How-
ever, we modified the analysis in Horton et al.
(2009) to investigate possible interactions among
some of these variables. In particular, we first
calculated a logistic regression beta coefficient
(b), where b indicates the probability that an
individual seedling survived from year t to year t
þ 1 given the level of herbivory on that seedling
in year t, for each chamber during each year. A
positive b indicates that as levels of herbivory
increase, so does the probability of surviving
from one year to the next, while a negative b
indicates that as levels of herbivory increase the
probability of surviving decreases. To examine
potential interactive effects of herbivory, temper-
ature, and conspecific seedling density on sur-
vival, we next used multiple regression models.
In the models, the dependent variable was the b
calculated for each chamber, and the indepen-
dent variables were mean herbivory (%) and
conspecific seedling density. For all of the
analyses described, the assumptions of normality
were met according to the results of a Shapiro-
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Wilk Normality Test on model residuals. We
used R version 3.0.0 for all statistical analyses (R
Development Core Team 2013).

RESULTS

Does the magnitude of herbivory increase with
warming? During 2010, mean herbivory (the
estimated amount of leaf tissue removed) per
seedling in each chamber ranged from 19% to
38%, and there was no relationship between the
warming treatment and the magnitude of her-

bivory ( p¼ 0.18; Fig. 1). In 2011, mean herbivory

per seedling in each chamber ranged from about

11% to 56% and, in 2012 mean herbivory in each

chamber ranged from just over 0% to about 30%.

During 2011 and 2012 mean herbivory decreased

significantly with increasing temperature (2011:

R2¼ 0.54, p¼ 0.006; 2012: R2¼ 0.24, p¼ 0.10; Fig.

1). Herbivory decreased by an average of 6% and

3% with each degree of experimental warming

for 2011 and 2012, respectively.

Herbivory was not related to relative humidity

( p . 0.15 in all cases) or vapor pressure deficit ( p

Fig. 1. Relationship between herbivory (%) and

actual air temperature (degrees C above ambient air

temperature) in each chamber for all three years of the

study. R2 and p values were calculated with univariate

linear regression analyses. A black best-fit line is

drawn for significant relationships.

Fig. 2. Relationship between herbivory (%) and soil

moisture. Herbivory is the plot-level average from

each chamber. Soil moisture is an annual mean within

each open-top chamber. A black best-fit line is drawn

for significant relationships.
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. 0.30 in all cases) in any year of the study.

Herbivory was not significantly associated with

soil moisture in 2010 ( p ¼ 0.16; Fig. 2); however,

there was a positive relationship between her-

bivory and soil moisture in 2011 ( p¼ 0.10; Fig. 2)

and 2012 ( p ¼ 0.04; Fig. 2), even though

temperature and soil moisture were not correlat-

ed.

Is the rate of population growth of Q. alba seedlings

following a mast event affected by warming, herbiv-

ory, or conspecific seedling density? Population

growth rate of Q. alba seedlings (k) was positively

correlated with mean herbivory (R2 ¼ 0.39, p ¼
0.03; Fig. 3), but not seedling density ( p ¼ 0.44;

Fig. 3) or warming ( p¼ 0.38; Fig. 3) from 2010 to

2011, suggesting a potential positive association

between herbivory and seedling survival. From

2011 to 2012, the rate of population growth was

not correlated with mean herbivory, temperature

treatment, or Q. alba seedling density ( p . 0.37 in

all cases; Fig. 3). Soil moisture, relative humidity,

and vapor pressure deficit were not correlated

with the rate of population growth of Q. alba

seedlings in any year ( p . 0.25 in all cases).

Does herbivory interact with temperature and

seedling density to affect seedling survival? Conspe-

cific density ( p¼ 0.06), but not temperature ( p¼
0.32), predicted logistic regression beta coeffi-

cients (b) from 2010 to 2011, suggesting that the

probability of seedling survival was in part due

Fig. 3. Rate of population growth regressed against herbivory, temperature treatment, and conspecific seedling

density for each year of the study.
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to an interaction between herbivory and conspe-
cific seedling density such that seedlings with
herbivory which also occur in dense populations
had a higher chance of mortality (Figs. 4 and 5;
Table 3). We did not detect a relationship
between the logistic regression beta coefficients
and temperature ( p ¼ 0.21) or conspecific
seedling density ( p ¼ 0.25; Figs. 4 and 5; Table
3) from 2011 to 2012.

DISCUSSION

Ongoing climatic change can affect the perfor-
mance and fitness of individuals, the dynamics of
populations, the structure of communities and
the distribution of species (Parmesan and Yohe
2003, Rossi et al. 2004, Menzel et al. 2006,
Parmesan 2006, Amano et al. 2010, Morin et al.
2010, Walther 2010, Chen et al. 2011, Cleland et
al. 2012). The effects of climatic change may be

mediated by interactions among species, or
climatic change may alter the outcomes of
interactions among species, though this has been
less extensively documented in the literature
(e.g., Dury et al. 1998, Stiling et al. 2002,
Hamilton et al. 2004, Rossi et al. 2004, Villalpan-
do et al. 2009).

Two somewhat surprising results emerged
from this three-year experimental study. First,
rates of herbivory on Q. alba seedlings decreased
as experimental temperatures increased up to
5.58C above ambient. Second, higher levels of
herbivory were associated with lower rates of
seedling mortality going into the second year of
the study; that is, across all temperature treat-
ments, seedlings that were attacked more by
herbivores had a higher probability of surviving
to the next year. Although there was never a
direct effect of density on seedling survival in
any year of the experiment, herbivory and
conspecific seedling density did interact to
influence Q. alba seedling survival early in the

Fig. 4. Logistic regression beta versus temperature

treatment (degrees C above ambient conditions)

reported for years 2 and 3 of the study. Positive beta

coefficients indicate a positive effect of herbivory on

survival and negative beta coefficients indicate a

negative effect of herbivory on survival due to

herbivory. The size of each point represents the plot

level mean herbivory.

Fig. 5. Logistic regression beta versus density of

seedlings (m�2) in each chamber. Positive beta coeffi-

cients indicate a positive effect of herbivory on survival

and negative beta coefficients indicate a negative effect

of herbivory on survival due to herbivory. The size of

each point represents the plot level mean herbivory.
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experiment. However, this effect was only
observed during the first year of the experiment
when seedling densities were highest. Taken
together, our results indicate species responses
to climatic warming may be contingent on intra-
and interspecific interactions, sometimes in com-
plicated and counter-intuitive ways.

Herbivory can influence plant population
dynamics (Crawley 1983, Mulder 1999), and
ongoing climatic change is likely to mediate the
effects of herbivory on plant populations (Bale et
al. 2002). During each year of our study we
observed lower amounts of herbivory, or at least
a trend toward lower amounts of herbivory, on
Q. alba seedlings at higher temperatures (Fig. 1).
These results diverge with theory (Hillebrand et
al. 2009) and previous empirical studies (Coley
and Aide 1991, Adams and Zhang 2009,
Schemske et al. 2009, Currano et al. 2010, de
Sassi and Tylianakis 2012) which have suggested
that herbivory and temperature should be
positively correlated.

So why should herbivory decrease under
experimental warming? A recent study by
O’Connor et al. (2011) used consumer prey
models to predict the effects of temperature on
insect herbivore abundance and found that the
abundance of insect herbivores was negatively
correlated with temperature. If such a scenario

were applicable to our system, then increased
temperatures would be associated with a de-
creasing abundance of herbivores such that the
decrease in herbivory observed in our study may
arise simply because of a reduction in the
abundance of insect herbivores. We did not
attempt to sample herbivore populations
throughout the experiment because we did not
want to alter their potential effects on the
seedlings. However, previous work in this
system demonstrates that the responses of other
insect taxa to warming are often idiosyncratic,
with the abundance and activity of some insect
taxa responding positively to warming while
others respond negatively to warming (Diamond
et al. 2012, Stuble et al. 2013). Another possibility
is that generalist herbivores switch from feeding
on Q. alba to other species as temperatures
increase. This would lead to apparent decreases
in herbivory on Q. alba though overall levels of
herbivory in the entire plant community might
increase or not change at all with temperature. A
common insect herbivore found at our study site,
Cyrtepistomus castaneus, has been found to be
associated with many species of host plants
(Frederick and Gering 2006). Furthermore, our
open-top chamber design may act differentially
on the adult and juvenile stages of the lepidop-
teran skeletonizers observed in our study system.
It is possible that adult lepidopteran skeletoniz-
ers in our system choose oviposition locations
based on environmental cues such as tempera-
ture resulting in the observed decreases in
herbivory in warmer chambers.

While the negative relationship between her-
bivory and temperature observed in our study
may indicate direct effects of warming on insect
herbivores, increased temperature may also
indirectly affect herbivores through changes in
the phenology or quality of their host plant or by
affecting the natural enemies of herbivores.
Previous studies suggest differences in the
mechanisms underlying the phenology of plants
and insects may lead to asynchronies in insect
herbivores and their host plants (Visser and Both
2005). In our study system, this could alter the
timing of herbivory, which could have important
effects on the carbon balance maintained in Q.
alba seedlings. In another active warming exper-
iment at the same site in Duke Forest, plants in
warmed treatments exhibited earlier budburst

Table 3. Results of multiple regression models used to

determine possible interactive effects between her-

bivory, conspecific seedling density, and tempera-

ture treatment (Whole Model: 2010–2011: R2¼ 0.42,

p ¼ 0.09; 2011–2012: R2 ¼ 0.22, p ¼ 0.33). The

dependent variable in the multiple regression

models was the b value extracted from logistic

regression models of herbivory against survival into

the next growing season; a positive b value indicates

that as levels of herbivory increase, so does the

probability of surviving from one year to the next,

while a negative b value indicates that as levels of

herbivory increase the probability of surviving

decreases.

Independent variable F Partial r2 p

2010–2011
Conspecific seedling density 4.74 0.35 0.06
Temperature treatment 1.59 0.15 0.24

2011–2012
Conspecific seedling density 1.45 0.14 0.26
Temperature treatment 1.86 0.17 0.21
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than those at ambient temperatures (Salk 2011).
This suggests Q. alba seedlings exposed to
warming may have less herbivory because of
advanced budburst and thus advanced leaf age.
In a study on another oak species, Mopper and
Simberloff (1995) found that the oaks that
produced leaves earlier in the spring had lower
rates of herbivory than those that produced
leaves later in the growing season. In addition
to host plant phenology, the decline in herbivory
with increasing temperature may also be ex-
plained by variation in host plant quality under
warming. In a study by Dury et al. (1998) on
another species of oak, leaf nitrogen concentra-
tion decreased and condensed tannins content
increased as a result of experimental warming.

Finally, the negative relationship between
herbivory and temperature may arise because
of the varying responses of different trophic
levels to the warming treatments (Tylianakis et
al. 2008). For example, in grassland systems
Barton and Schmitz (2009) demonstrated that
top-down predator effects interact with warming
to decrease grasshopper abundance. Additional-
ly, a study on the relative effects of mosquito
larvae in a pitcher plant community shows a
similar positive relationship between tempera-
ture and top-down processes (Hoekman 2010).
While this was not quantified in our study, it is
possible that warming led to an increase in the
top-down predator effects on insect herbivores
resulting in lower rates of herbivory in the
warmest chambers. Future work in this system
could distinguish among this suite of potential
mechanisms. Nevertheless, direct interactions
between plants and the herbivores are not
necessarily straightforward.

Quercus alba recruitment is marked by a high
rate of mortality in the transition from the
seedling to the sapling stage (Crow 1988, Now-
acki et al. 1990, Abrams 2003). While previous
work suggests insect herbivory is associated with
decreases in oak seedling growth and survival
(McPherson 1993, Marquis and Whelan 1994),
going into 2011, our study plots with more
herbivory had lower rates of seedling mortality.
This fact suggests a potential positive association
between herbivory on Q. alba and Q. alba seedling
dynamics. Together with the negative relation-
ship between herbivory and temperature also
observed in our study, these results suggest a

potential weakening of an important stage of Q.
alba seedling recruitment. Higher levels of her-
bivory on seedlings recruiting under a canopy
may be beneficial in that it may reduce respira-
tion rates lowering the amount of carbon
released by the seedling. Future greenhouse
studies or studies completed in gaps may shed
more light on this. On the other hand, this
positive association between herbivory and sur-
vival may actually be a symptom of water stress.
We are potentially observing less herbivory on
plants that are water-stressed and, at the same
time, plants that are water-stressed die more
frequently. Previous studies have shown that
water dynamics are an important factor limiting
tree seedling survival (McQuilken 1940, Williams
and Hobbs 1989, De Steven 1991, Bragg et al.
1993, Inouye et al. 1994). However, in our study
it is unclear if Q. alba seedlings are actually water-
stressed along the experimental temperature
gradient. Although we never detected an effect
of soil moisture, relative humidity or vapor
pressure deficit on seedling survival, there was
a positive relationship between soil moisture and
herbivory.

Although we did not observe a direct effect of
conspecific seedling density on survival, there
was an interaction between herbivory and
conspecific seedling density such that herbivory
at higher seedling densities was correlated with a
lower probability of survival to the second year.
Janzen-Connell effects (i.e., patterns of negative
density dependence related to natural enemies;
Janzen 1970, Connell 1971) are one likely
explanation in this and other systems (e.g., Hille
Ris Lambers et al. 2002, Comita et al. 2010,
Martin and Canham 2010, Metz et al. 2010).
Negative-density effects may contribute to the
maintenance of species diversity by leading to
higher mortality rates in conspecific seedlings.

As tree species respond to climatic change, it
will be especially important to understand the
various factors contributing to seedling survival
during recruitment. While other anthropogenic
pressures, such as logging and fire suppression,
are already contributing to problems with Q. alba
regeneration (Abrams 2003), our results suggest
that it will also be important to consider
interspecific and intraspecific species interactions
at the seedling stage when predicting survival
dynamics in the context of climatic warming.
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Furthermore, as indicated in our study, the
response of a species to climate change may be
more complicated than can be predicted from
just one factor. In our study we found that the
responses of white oak seedlings to our warming
manipulation were complex and depended on
the impact of warming on herbivory, soil water
dynamics, and density dependent effects. Future
studies examining the dynamics of species under
ongoing climate change should also consider
contingencies such as these prior to making
broad sweeping generalizations.
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