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The species pool concept has played a central role in the development of ecological theory for at least 60 yr. Surprisingly, 
there is little consensus as to how one should define the species pool, and consequently, no systematic approach exists. 
Because the definition of the species pool is essential to infer the processes that shape ecological communities, there is 
a strong incentive to develop an ecologically realistic definition of the species pool based on repeatable and transparent 
analytical approaches. Recently, several methodological tools have become available to summarize repeated patterns in the 
geographic distribution of species, phylogenetic clades and taxonomically broad lineages. Here, we present three analytical 
approaches that can be used to define what we term ‘the biogeographic species pool’: distance-based clustering analysis, 
network modularity analysis, and assemblage dispersion fields. The biogeographic species pool defines the pool of potential 
community members in a broad sense and represents a first step towards a standardized definition of the species pool for 
the purpose of comparative ecological, evolutionary and biogeographic studies.

Biogeographic species pools to infer 
historical determinants of community 
structure

There is an enduring interest in ecology for quantifying the 
contribution of evolutionary processes and biogeographic 
history to the structure of local species assemblages (Ricklefs 
1987, Harrison and Cornell 2008, Cavender-Bares et  al. 
2009, Wiens et  al. 2011). The contribution of such pro-
cesses is often evaluated by quantifying the contribution of 
a predefined species pool to patterns in the structure of local 
assemblages. The concept of the species pool (also known as 
the source pool) originates from early studies of ecological 
communities (Palmgren 1925, Elton 1946, Williams 1947, 
Patrick 1967) and represents the set of species that could 
potentially contribute individuals to a local assemblage. In 
order to relate evolutionary and historical processes to the 
structure of local communities, however, one needs to define 
the species pool in a way that explicitly accounts for such pro-
cesses, rather than using an arbitrary definition. Nevertheless, 
there is currently no established consensus on what consti-
tutes the most appropriate definition of the species pool.

Traditionally, ecologists have used the concept of the spe-
cies pool for two distinct purposes: as a way to test whether 
the structure of communities differ from a random expecta-
tion (Connor and Simberloff 1979); and as a way to estimate 
the influence of the size of the species pool on local spe-
cies richness (Ricklefs 1987). There is now a long history of 
research on the attributes of the ecological community (e.g. 
body size overlap, niche overlap, and phylogenetic disper-
sion) and how it differs from that of randomly generated 
communities sampled from a pool of potential colonists 
(Connor and Simberloff 1979, Strong et al. 1979, Diamond 
1982, Gotelli and Graves 1990, Fox and Brown 1993, Graves  
and Gotelli 1993, Weiher and Keddy 1995, Stone et al. 1996, 
Gotelli 2000, Gotelli and McCabe 2002). In these studies, 
the species pool represents the complete set of possibilities, 
or sampling universe, from which null model algorithms 
draw species to create ‘null communities’. Broadly speaking, 
these null communities are then used to test whether the 
observed structure of a given community differs significantly 
from what would be expected from chance (note that the 
construction and interpretation of null models can be far 
more elaborate, see Gotelli and Graves 1996 for a review 
of the topic). More recently, it has been proposed that an  
ecologically explicit definition of the species pool in null 
model analyses can be used to account for and quan-
tify the influence of evolutionary and historical processes 
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(Swenson et al. 2006, Algar et al. 2011, Lessard et al. 2012a,  
b). Another common application of the species pool concept 
is to relate the composition and richness of local communi-
ties to that of the regional species pool. For example, many 
have used a positive and linear relationship between local 
and regional species richness as evidence for the influence 
of large-scale evolutionary and historical processes on com-
munity structure (Ricklefs 1987, Cornell and Lawton 1992, 
Ricklefs and Schluter 1993, Srivastava 1999, Shurin et  al. 
2000, Ricklefs 2007).

If the goal of a study is to use the species pool to infer the 
role of evolutionary and historical processes on assemblages 
of species, then biogeographic regions might be viewed as 
operational species pools. In general, species assemblages can 
be expected to share much history with other assemblages 
within a biogeographic region, but relatively little with those 
in other biogeographic regions. Although the delineation of 
biogeographic regions based on assemblage similarities does 
not explicitly account for any particular underlying pro-
cesses, dispersal between assemblages within a biogeographic 
region are most likely possible within an historical, if not 
ecological, timeframe. Biogeographic regions thus define the 
regional species pool in a broad sense. This is the rationale 
for the biogeographic species pool concept.

In the following, we briefly summarize methods that have 
been used to define species pools. We then describe recent 
methodological advances in delineating biogeographic 
regions and explain how and why they are useful in defin-
ing what we term the ‘biogeographic species pool’. Although 
a multitude of methods exist to delineate biogeographic 
regions, we here focus on grouping of species assemblages 
based on distance-based clustering and network modularity 
analysis. We also describe the use of assemblage dispersion 
fields, an assemblage-specific tool for defining species pools. 
Finally, we discuss future perspectives and applications of the 
biogeographic species pool.

A brief history of the species pool

Early work on community structure used species lists from 
habitats, geopolitical provinces or roughly defined biogeo-
graphic regions to determine the composition of the species 
pool (Elton 1946, Williams 1947). In later years, the species 
pool has played a central role in the heated debate over the 
importance of competition for island community assembly. 
Following a controversial publication by Diamond (1975), 
many studies asked whether patterns of community struc-
ture could arise by chance alone, by comparing the observed 
pattern to that of null communities generated by random 
sampling from a species pool (Connor and Simberloff 1978, 
1979, Strong et al. 1979, Grant and Abbott 1980). The spe-
cies pool was constructed using a wide variety of method-
ological approaches, for example, from using species lists of 
the adjacent mainland (Grant 1966, Faaborg 1979) or the 
archipelago itself (Simberloff and Connor 1978), to using all 
the species within a predefined area (Simberloff 1970). The 
problems associated with the definition of the species pool 
were recognized early (Simberloff 1970) and it was subse-
quently demonstrated that the definition of the species pool 
could affect results (Schoener 1988). In sum, species pools 

were too often subjectively or arbitrarily defined, and suf-
fered from the lack of standardized analytical approaches.

Recognizing the problems of earlier definitions and the 
importance of realistic species pools against which to test for 
non-randomness, Graves and Gotelli (1983) proposed a new 
approach for constructing species pools for the assemblages 
of birds on land-bridge islands off Panama and northern 
South America (also see the book cover of Gotelli and Graves 
1996). They argued that focal communities in a region (e.g. 
the avifaunas of each island) will not have identical species 
pools, but that differently positioned communities will draw 
species from different pools. To account for such distance 
effects, they defined a species pool for each assemblage by 
including the species breeding within an area defined by a cir-
cle with a fixed radius centered on the island location nearest 
to the mainland. In spite of methodological problems associ-
ated with it, this method is still in use today (Belmaker and 
Jetz 2012), because it is convenient, transparent, and makes 
fewer unrealistic assumptions regarding dispersal probabili-
ties than other classical approaches. However, the radii of 
concentric circles are more or less arbitrarily fixed because 
information on the dispersal capabilities of species is usually 
lacking. Hence, species pools defined using this approach do 
not necessarily reflect accurately the pool of species capable 
of colonizing the local community.

Studies of the relationship between the size of the spe-
cies pool and local species richness have taken a somewhat 
different approach. Most often, such studies define the spe-
cies pool by pooling the species obtained by local-scale sur-
veys (Terborgh and Faaborg 1980, Cornell 1985, Ricklefs 
1987, Belote et al. 2009, Chase et al. 2011, Kraft et al. 2011, 
Kristiansen et al. 2011), by using all species known to occur 
in the region (White and Hurlbert 2010) or a combination 
of both data sources (Clarke and Lidgard 2000, Ricklefs 
2000, Witman et al. 2004). The region, however, is usually 
more or less arbitrarily defined, e.g. as the island in which 
the focal assemblage is embedded (Terborgh and Faaborg 
1980, Ricklefs 1987), or the geographic scope of the study 
(Blackburn and Gaston 2001, Sanders et al. 2007).

Today, the increased availability of global distributional 
and phylogenetic databases provides us with the opportunity 
to establish a standardized protocol to define the species pool 
based on occurrence data. Several methodological tools are 
available to summarize repeated patterns in the geographic 
distribution of species, phylogenetic clades and taxonomi-
cally broad lineages.

Tools for defining the biogeographic species 
pool: biogeographic regions

The first attempts to delineate biogeographic regions date to 
the early 19th century (von Humboldt 1806, de Candolle 
1820, Sclater 1858, Wallace 1876). Since then, defining eco-
logically and evolutionarily distinctive regions of the world 
has been a central aim of biogeography (Simpson 1953, 
1977, Darlington 1957, Crowe and Crowe 1982, Cox 2001, 
Morrone 2002, 2009, Procheş 2005), and new analytical 
tools have improved our ability to group species assemblages 
into distinct biogeographic units (Smith 1983, Carstensen 
and Olesen 2009, Kreft and Jetz 2010, Holt et al. 2013).



3-EV

Distance-based clustering

An extensive body of literature exists with regard to cluster-
ing data points based on observed distances among points 
(Sokal and Michener 1958, MacQueen 1967) and cluster-
ing techniques have been used extensively for the purpose 
of delineating biogeographic regions (Smith 1983, How and 
Kitchener 1997, Kreft and Jetz 2010, Linder et  al. 2012, 
ProcheŞ and Ramdhani 2012). The application of cluster-
ing algorithms to biogeographic analysis requires the user to 
choose an algorithm, a distance metric, and the number of 
clusters to produce (Fig. 1A).

Two general approaches are seen in the biogeographical 
literature with regard to choosing a clustering algorithm: 
optimization and consensus. To determine the optimal 
methodology, the results of different algorithms are generally 
compared via an evaluation statistic, with the best perform-
ing algorithm used in subsequent analyses. For example, the 
cophenetic correlation statistic (Sokal and Rohlf 1962) is 
often used to reflect the strength of the correlation between 
the original distance metrics and distances shown in a hier-
archical clustering tree and can be used to identify the best 
performing algorithm. The choice of an evaluation statis-
tic in itself will have key influence on the final clustering  
and should be chosen carefully, with due consideration  
of the overall goal of the study. The alternative approach,  

consensus, attempts to identify clustering results that are 
consistent across clustering algorithms. For instance, Penner 
et  al. (2011) used seven different clustering algorithms to 
build a consensus clustering hierarchy for west African 
amphibian assemblages. However, since many clustering 
methods will not be optimal for a particular data set or  
study goal, combining methods will inevitably produce a 
sub-optimal and potentially uninformative result.

With regards to appropriate distance metrics, a wide  
variety of beta-diversity and species turnover metrics have 
been used to quantify the distance between two or more  
species assemblages. For biogeographic regionalization, 
many previous studies have used beta-diversity measures 
that are heavily influenced by species richness gradients, 
such as the Sørensen/Bray–Curtis, Jaccard, and Kulczynski 
metrics (Lennon et al. 2001). These measures may be unsuit-
able for biogeographic regional analyses as comparisons of 
nested assemblages (i.e. smaller assemblages contain only a 
proper subset of species present in larger assemblages) can 
still return high distance values. Metrics that attempt to 
purely quantify species turnover, such as bsim, may be more  
appropriate (Kreft and Jetz 2010).

The decision regarding the final number of clusters is 
a central issue in cluster analysis. Hierarchical clustering 
methods produce a complete clustering dendrogram describ-
ing the relationships among all objects being analyzed and 
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Figure 1. Schematic overview of three approaches to define the biogeographic species pool. (A) Distance-based clustering analysis. The first 
step of a clustering analysis is calculating the distance between sites (in this case grid cells) according to the similarity of their species assem-
blages. Similar sites are then classified into groups using a clustering algorithm. The appropriate number of groups is decided upon accord-
ing to the results of the clustering analysis. The final result is the division of sites into biogeographic regions based on similarities of species 
assemblages across sites. (B) Network modularity analysis of species assemblages. First, species and sites are arranged as a two-mode (or 
bipartite) network, with sites (rectangles) and species (circles) sharing a link if the species is present at the site. Sites and species that are 
strongly interconnected are then grouped using a modularity analysis. The final result is conceptually the same as for clustering analysis; the 
division of sites into biogeographic regions based on site similarity. (C) Assemblage dispersion fields (ADFs). The ADF approach is site-
specific. Sites can thus be included in the regionalization, or species pool, if they share at least one species with the focal assemblage. The 
ADF of a site is created by overlapping the geographic ranges of all the species occurring in the focal site, creating a site-specific species 
richness map. The colour intensity of a cell indicates the height of the ADF, that is, darker cells share more species with the focal cell. The 
focal cell is marked by a white dot.
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Delineating biogeographic regions using network analy-
ses requires the choice of a modularity index to assess the 
modularity of the network and an algorithm to maximize 
this index. Several indices and optimization algorithms 
have been proposed over the last decade (Clauset et  al. 
2004, Newman and Girvan 2004, Duch and Arenas 2005, 
Guimerà and Amaral 2005b, Newman 2006a, Pons and 
Latapy 2006, Barber 2007, Guimerà et al. 2007, Rosvall and 
Bergstrom 2007, Blondel et al. 2008, Ball et al. 2011). The 
precise definition of a module differs between methods, and 
no generally accepted definition currently exists. However, 
the quality of a partition is usually measured by comparing 
the number of links within and between modules and then 
measuring whether nodes within modules have more links 
to each other than expected by chance (Newman and Girvan 
2004). The most accurate methods, (Guimerà and Amaral 
2005b, Newman 2006b) are computationally slow, whereas 
faster methods (Clauset et al. 2004) are less accurate (Danon 
et  al. 2005, Costa et  al. 2007). In general, a user is faced 
with a trade-off between accuracy and speed in networking 
algorithms. However, a recent method, the Louvain method 
(Blondel et  al. 2008), is very fast and has been reported  
to show good accuracy compared to some much slower 
methods (Blondel et al. 2008).

The software used by Carstensen and Olesen (2009) to 
identify biogeographic patterns, Netcarto (Guimerà and 
Amaral 2005a, b), is based on a simulated annealing algo-
rithm (Kirkpatrick et al. 1983). With this algorithm, nodes 
are initially placed randomly in a number of modules. Nodes 
are then stochastically moved between modules, modules are 
merged and split up at random, and modularity is assessed 
anew for each system update. If the new modularity value 
is lower than before, the update can still be accepted with 
a probability that decreases with the ‘system temperature’. 
The system temperature slowly decreases as the algorithm is 
running. This allows for a more exhaustive search for the 
optimal modularity (Guimerà and Amaral 2005b). The algo-
rithm will stop running when the maximum modularity is 
unchanged for several updates, i.e. the constellation with 
the maximum value of the modularity function has been 
found. The method requires the user to choose an iteration 
factor and a cooling factor, representing another trade-off 
between speed and accuracy. The number of modules (i.e. 
biogeographic regions) is an outcome of the algorithm and 
is unsupervised (Guimerà and Amaral 2005b). Simulated 
annealing is regarded as the most accurate algorithm for 
optimizing modularity; however it is also the most com-
putationally demanding and therefore best suited for small 
datasets (Danon et al. 2005). The Louvain method (Blondel 
et al. 2008) optimizes modularity in two steps. First it detects 
small, local modules in the network. These local modules are 
then used as nodes in a new network. These two steps are 
repeated iteratively until a maximum modularity is attained 
(Blondel et  al. 2008). This method is fast and could be  
well suited for large datasets where methods using simulated 
annealing would be deemed too computationally demanding.

Ultimately, the appropriate choice of algorithm will 
depend on what is feasible for the size of the dataset. An 
evaluation of the performance of three different modular-
ity indices in detecting biogeographic regions was performed 
recently (Thébault 2013); however, further work is needed 

do not require an a priori decision regarding the number 
of clusters. Usually, however, biogeographic regionaliza-
tion analysis attempts to reduce the dimensionality of the 
original data to produce large scale clusters (of sites, grid 
cells, etc.). Non-hierarchical clustering approaches require 
an a priori choice of cluster number. Evaluation methods, 
such as the v folds technique, are used to explore a range of 
potential cluster sizes to find the optimum number (Rueda 
et al. 2010, Vasconcelos et al. 2011). Such techniques are 
also appropriate for hierarchical methods. The less com-
putationally intensive ‘finding the knee’ method (Salvador 
and Chan 2004), which attempts to locate the point of 
maximum curvature on plots of an evaluation statistic (e.g. 
percentage endemism) against a range of cluster numbers, 
was suggested by Kreft and Jetz (2010). Alternatively, the 
maximisation of cluster evaluation statistics, such as mean 
silhouette values is a commonly used approach (Rousseeuw 
1987). More subjective decisions on cluster number, e.g. 
based on previous regionalization schemes (Heikinheimo 
et  al. 2007) or manual inspection of cluster dendrograms 
(Procheş and Ramdhani 2012), should be used with cau-
tion or avoided altogether if more objective solutions exist. 
The choice of cluster number is closely related to the choice 
of clustering algorithm and different algorithms may give 
hugely different evaluation results for the same number of 
clusters. Therefore the simultaneous evaluation of many 
algorithms across an appropriate range of cluster numbers 
may represent the ideal approach towards making both of 
these decisions.

Network modularity analysis

Network analysis is widely used in ecology to analyze the 
organization of interactions among species (May 1973, 
Paine 1980, Jordano 1987, Cohen et  al. 1990, Strogatz 
2001, Dunne et al. 2002, Bascompte et al. 2003, Jordano 
et al. 2003, Olesen et al. 2007). The structural components 
of a network are nodes (representing species) connected by 
links (representing interactions). Carstensen and Olesen 
(2009) proposed the use of a network approach to detect 
patterns in species distribution data. In the context of island 
biogeography, islands and species in an archipelago func-
tion as network nodes; a link exists between an island and 
a species if the species is present on the island. Thus, each 
species is linked to one or more islands and each island is 
linked to one or more species. The resulting topography 
(i.e. pattern of connectivity) of this network can then be 
interpreted in a biogeographic context (Fig. 1B). The net-
work analysis approach allows the grouping of species and 
sites into distinct compartments, or modules (Girvan and 
Newman 2002, Newman and Girvan 2004). In analogy to 
a cluster in a distance-based clustering approach, a module 
is a compartment of densely connected nodes that are only 
weakly connected to nodes in other compartments of the 
network. The overall modularity of the system (described by 
a modularity index) quantifies how distinctly the system is 
divided into such compartments. Using species distribution 
data, modules represent biogeographic regions in which sites 
share a distinct biota (i.e. as in the distance-based clustering 
approach).
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way and with strong statistical support. Distance-based clus-
tering and the network modularity approach are conceptually 
similar and the actual implementation of the two approaches 
to define the biogeographic species pool is identical; the  
clusters and modules, produced by the two methods respec-
tively by analysis of the distribution data, can be imple-
mented as operational, broad-scale, species pools (Fig. 1). 
See Fig. 2 for an example of how biogeographic regions can 
be used to define the biogeographic species pool.

Tools for defining the biogeographic species 
pool: assemblage dispersion fields

Assemblage dispersion fields (ADFs) illustrate the spatial 
structure of species turnover among communities by over-
lapping the geographic ranges of all species that occur at the 
site, creating a site-specific species richness map (Fig. 1C) 
(Graves and Rahbek 2005). The value at any point within the 
ADF equals the number of species shared with the focal site. 
Thus, the shape of the ADF reveals the geographic decline of 
species similarity around the site (Graves and Rahbek 2005, 
Borregaard and Rahbek 2010).

The geometric shape of ADFs is often highly asymmetri-
cal, and Graves and Rahbek (2005) suggested that the spatial 
configuration of a dispersion field should reflect the geogra-
phy of the species pool. This idea seems to be supported by 
an observed concordance between the shape and extent of 
global dispersion fields for birds and recognized vegetation 
biomes (Graves and Rahbek 2005). However, the relation-
ship between dispersion fields and vegetation biomes is still 
largely conjectural, and awaits further study.

ADFs define a unique source region for each site. In its 
broadest sense, any site within the ADF (i.e. any site that is 
inhabited by at least one species that occurs at the focal site) 
is part of the potential source region for a focal site. Under 
this very wide definition, the species pool is composed of 
all species with geographic distributions that overlap the 
ADF. This species pool definition has an intuitive ecological 
interpretation: if a site shares any species with the focal site, 
dispersal between the sites should also potentially be pos-
sible for other species. In most cases, however, this approach 
will lead to a very wide definition of the species pool. For 
many systems, e.g. for a global analysis of bird communities 
at large grain size, the broad definition could mean most bird 
species of the world would be considered part of the species 
pool. One solution to this problem is to define a threshold 
level, so that only sites that share at least, e.g. 50% of the spe-
cies at the focal site are included in the dispersion field. This 
removes the impact of widespread cosmopolitan species that 
are not confined within biogeographic regions and thus tend 
to obscure regional differences. However, the effect of using 
different threshold levels, which are essentially arbitrary, has 
yet to be well described.

Lessard et al. (2012b) instead proposed to use ADFs to 
create probabilistic species pools (i.e. in the context of null 
model analyses). The height of the dispersion field (z-axis) 
can be interpreted as a probability distribution, which rep-
resents the probability for a site to contribute species to the 
focal site. Thus, the probability of including a species in a 
random community is proportional to the dispersion field 

to compare the applicability of fast versus accurate algo-
rithms. Compared to a traditional UPGMA cluster analy-
sis, Netcarto, the most accurate algorithm explored thus far, 
has shown great capabilities for detecting divisions in fau-
nal assemblages (Carstensen and Olesen 2009). However, 
more comparative studies are needed before one approach 
can claim superiority for detecting divisions in biotic  
assemblages.

The network approach holds potential advantages for 
biogeographic data although these have not been well tested. 
First, it can provide information on underlying structural 
patterns of the assemblage delineation. Whereas the distance-
based clustering methods group sites according to calculated 
distances between pairs of sites, the network approach seeks 
to account for the entire link structure of the network by 
minimizing links between modules. Because it retains both 
species and sites during the analysis, the network approach 
will also assign a region to species, and the regionalization 
will be based on tight link formations of sites and species, 
independent of whether some sites have many links (i.e. spe-
cies) and some few. Whether two sites are grouped together 
is not just a matter of how many species they share. It is also 
a matter of how these species themselves are distributed and 
to which regions they are assigned. Therefore, two sites that 
are most similar to each other might be assigned to differ-
ent regions. However, the network approach can report sites 
that are connected in this manner and identify them for fur-
ther consideration (Carstensen et al. 2012, 2013). Second, 
some network algorithms allow for the use of weighted links 
(i.e. link strengths) when calculating modularity (Newman 
2004, Blondel et  al. 2008, Dormann and Strauss 2013). 
Thus, instead of simple presence/absence data, information 
on species abundance or other quantitative measurements 
to describe the affinity of a species to a certain site can be 
used in the site-species matrix when optimizing modular-
ity to delineate biogeographic regions. This could potentially 
increase the realism of the species pools defined from bio-
geographic regions. Finally, as the number of modules, or 
biogeographic regions, is an outcome of the algorithm, the 
network approach involves fewer choices by the user com-
pared to distance-based clustering and potentially offers a 
more objective result.

Defining species pools using biogeographic regions

Studies that define species pools simply based on the geo-
graphical coverage of the data analysed, fail to address 
whether there is any biological basis for such a definition. 
Delineating biogeographic regions provides an opportunity 
to identify natural groupings within species assemblage data 
via a transparent, objective framework. Such regions can 
then be used to define the biogeographic species pool for a 
particular assemblage by including only those species pres-
ent at sites within the region where the assemblage is found  
(Fig. 1). Metrics used to evaluate clustering performance  
and the optimum number of regions can be used to evalu-
ate individual regions and regions with dubious statistical 
support can be removed from further analysis. Studies based 
on biogeographic species pools are focused only on species 
assemblage data that are grouped in a biologically meaningful 
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eral advantages as a tool to define the biogeographic species 
pools, as the method is transparent and the outcome does 
not depend on a choice among algorithms.

Applications of the biogeographic species 
pool concept and future perspectives

We highlight three analytical methods for defining the 
biogeographic species pool. We believe that a standardized 
protocol for defining the species pool in ecological studies 
will increase consistency and comparability among studies, 
and remove the ambiguity caused by arbitrary species pool 

values of sites occupied by that species. This weighting can be 
implemented by first picking a site, with a probability equal 
to the number of species shared with the focal site (i.e. the 
ADF value), and then picking one species from that site at 
random. Thus, species occurring at sites that share many spe-
cies with the focal site are more likely to be part of the species 
pool for the focal assemblage. An advantage of this method 
is that it explicitly accounts for the range size distribution of 
the study organism. This means that, e.g. species pools for 
taxa with many small-ranged species will consist mainly of 
species occurring near to the focal site, whereas species pools 
containing mainly widespread taxa will contain species from 
a wider geographic area. In sum, dispersion fields have sev-
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Figure 2. Biogeographic regionalization analysis of fish survey data for 50 randomly selected sites across the Western Atlantic, provided by 
Reef Environmental Education Foundation (REEF 2011). Plots on the right side show two dimension nMDS ordination of the data set. 
(A) Full data set. A simple case of using a single species pool and analyzing all data together. Such analysis treats all sampled sites as a single 
biogeographic region, whereas, the associated ordination plot suggests that at least two sites within the data set are in fact relatively distinct 
from the rest. (B) Biogeographic regions as defined by REEF. Species pool definitions are here based upon external information, in this case 
the major regions in the survey area as defined by the organization responsible for collecting the data. This delineation is based primarily 
on geopolitical boundaries. However, the statistical support for many of the identified regions is questionable and thus these regions do not 
constitute meaningful species pools based on this community data set. (C) Biogeographic regions identified via UPGMA based analysis and 
PAM based cluster number evaluation. The results of this analysis suggests that the most legitimate manner to divide the data is in to two 
separate regions, with two sites that are furthest north along the US east coast being separated from the rest of the data. Since both of the 
regions show high values for the cluster evaluation statistic (mean silhouette values  0.70 and 0.79) it seems to be appropriate to split the 
data in this manner.
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