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A B S T R A C T

Modelling tree habitat suitability (HS) is a common practice to assess tree species distribution across a broad
range of spatial scales. However, it is seldom used to test the extent that modelled HS-scores (probability of
species occurrence) can represent on-the-ground measures of species-structural characteristics. In this study, we
compare four parametric and non-parametric models generated with the R-package, sdm, to assess the potential
for these models to estimate tree species distribution of balsam fir [Abies balsamea (L.) Mill.] in naturally-
growing forests across an extensive landscape. Central to this development are inventory plot data of species
presence-absence and four abiotic factors linked to plant growth and distribution. The study’s abiotic factors
include: (1) photosynthetically active radiation; (2) growing degree-days; (3) relative extractable soil water
content; and (4) near-surface wind speed, all expressed spatially at 30-m resolution. To gauge whether modelled
HS can explain structural characteristics in balsam fir-dominated stands, field-based estimates of site index (SI)
and cumulative aboveground biomass (ABG) were compared against independently-derived HS-scores. The re-
sults showed that: (i) random forest was the most successful at representing species distribution of balsam fir
among the four methods considered; (ii) overall growing conditions for balsam fir was observed to be most
favourable on north-facing slopes, particularly in the northwest part of the target landscape, where near-surface
air temperatures are cooler, soils are moderately wetter, and wind speeds are lower; (iii) tree-based calculations
of SI were partially characterised by patterns in modelled HS-scores, due to scale differences (i.e., from in-
dividual tree to 30-m grid cells) and an inadequate number of sample trees; and (iv) patterns of cumulative AGB
were more accurately represented by species HS. Modelled HS-scores, as potential indicators of tree species
habitat preference, AGB, and species distribution, can offer key ecological information essential to inform forest
management and conservation planning at the landscape level.

1. Introduction

Forests, as important dynamic systems, provide essential ecological
services to humans (e.g., through the provision of food and sequestra-
tion of carbon; Nadrowski et al., 2010). Forest management impacts
ecosystem processes by affecting species diversity and forest-structural
characteristics (Tilman et al., 1997). Understanding tree-growth pro-
cesses are central to making informed forest-management decisions.
Some factors controlling tree growth and forest-landscape development
processes, include incident solar radiation (Austin, 2002), growing
degree-days (Zimmermann and Kienast, 1999), plant extractable soil
water content (Austin, 2007), near-surface wind speed (Bourque and
Bayat, 2015), soil fertility, among other factors.

With the development of new statistical techniques, Geographic

Information Systems (GIS), and associated spatial procedures, species
distribution models (SDM’s) have become common in ecological and
resource-management studies (Guisan and Zimmermann, 2000). Spe-
cies distribution models correlate species occurrence with site en-
vironmental variables in order to predict tree habitat suitability (HS).
These models are powerful tools in predicting species’ occurrence in
both space and time (Elith and Leathwick, 2009) and have a role, for
instance, in facilitating (i) the prediction of potential tree species and
animal habitat shifts projected with future climate change (Bourque
et al., 2000), (ii) classification of forestland types for forest-manage-
ment objectives (Baah-Acheamfour et al., 2013), and (iii) searching
efforts, when planning field surveys (Fois et al., 2015). Although the
method is crucial to the field of ecology and resource management, the
method has seldom been tested to determine the extent HS-scores
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(probability of species occurrence) can be used as indicators of on-the-
ground forest conditions (Fois et al., 2018). Being able to relate mod-
elled values of species distribution and HS to on-the-ground conditions
can convey important ecological information to forest management and
conservation planning.

Understanding the relationship between plant species and their
environment is fundamental to plant species distribution modelling
(Guisan and Zimmermann, 2000). Associated analytical methods use
data from biophysical surfaces (Bourque et al., 2000; Zimmermann
et al., 2007), which enhances our modelling capabilities by taking into
account many of the environmental conditions prevailing at a site (Elith
and Leathwick, 2009). There are various methods to parameterise
SDM’s. Convex hulls are often used to model sparse data (Burgman and
Fox, 2003), and expert opinion can at times be used to enhance actual
species records (Elith and Leathwick, 2009).

Bioclimatic-envelop models, as the earliest form of SDM’s, define
the limit of environmental factors in multi-dimensional space (Box,
1981). Statistical models, including those constructed by nonlinear re-
gression, are regularly used in ecology because of species nonlinear
interactions to site conditions (Elith and Leathwick, 2009; Latimer
et al., 2006). Forest gap models often define total species response by
multiplying individual tree species response to specific site conditions
(Acevedo et al., 1995; Bourque et al., 2000). Some researchers have
demonstrated that SDM’s constructed on presence-only data can be

closely associated with population characteristics, such as population
density (Tôrres et al., 2012), abundance of individuals (de Moraes
Weber and Viveiros Grelle, 2012; VanDerWal et al., 2009), and extent
of coverage (Fois et al., 2018).

Although some studies have found relationships between SDM-re-
sults and species demography (de Moraes Weber and Viveiros Grelle,
2012; VanDerWal et al., 2009), many other studies of this kind have
been less successful (Filz et al., 2013; Nielsen et al., 2005; Pearce and
Ferrier, 2001; Tellería et al., 2012), especially for plant species (Weber
et al., 2017). Clearly, there is a need for further research in this area
(Weber et al., 2017). The spatial scales of SDM’s vary from continent to
grid-based scales of a few tens of metres for different analytical objec-
tives (Elith and Leathwick, 2009). Conservation planning and forest
management tend to use finer resolutions to generate important ana-
lytical detail (Bourque and Bayat, 2015). This effort has been greatly
enhanced in recent years with the introduction of LiDAR (Light De-
tection and Ranging) technologies and data in the generation of high-
resolution digital elevation models (DEM’s), fundamental to the de-
velopment of highly detailed surfaces of multi-factor environments.

The main objective of this study was to develop a series of SDM’s
with the R-package, sdm (Naimi and Araújo, 2016), and to examine the
extent modelled HS-scores can be used as an indicator of actual on-the-
ground structural characteristics in balsam fir [Abies balsamea (L.)
Mill]-dominated stands. Construction of SDM’s will be based on: (i)

Fig. 1. Ecoregions of the Province of New Brunswick, Canada (NB; a) and within-plot proportion of aboveground biomass and tree stems according to species (b);
note that stem density in NB is roughly 1,841 stems ha−1. The green dots in panel (a) represent permanent sample plots (PSP’s) with balsam fir (bF) contributing to
≥10% of total species basal area (BA) and are identified as plots with “bF being present”, whereas those with< 10% total species BA (red dots) are identified as “bF
being absent”.
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balsam fir presence-absence data gleaned from a network of forest in-
ventory plots (Porter et al., 2001); and (ii) digital surfaces of incident
photosynthetically active radiation (PAR; Bourque and Gullison, 1998),
growing degree-days (GDD; Bourque et al., 2000; Hassan, 2008), plant
extractable soil water content (SWC; Bourque et al., 2000), and near-
surface wind speed (WS; Bourque and Bayat, 2015). Given the absence
of scale-appropriate information of soil fertility for the study area, we
currently ignore its influence on HS.

2. Methods

2.1. Study area

The Province of New Brunswick (158,186 km2), which serves as our
study area, is located in eastern Canada adjacent to the Atlantic Ocean.
Eighty three percent of the province is estimated to be forested. The
province is divided into seven ecoregions, which are defined by climate
differences (generally, defined in terms of air temperature and pre-
cipitation), elevation, landforms, and marine influences (Zelazny et al.,
2007). New Brunswick (NB) has a humid continental climate influenced
by the cool Bay of Fundy to the south and the warmer Northumberland
Strait to the east of the province (Fig. 1a). The elevation of NB ranges
from 0 to 834 m above mean sea level (amsl), with mean temperature
predictably decreasing with elevation. Based on long-term weather
records from several airport weather stations in NB, the mean annual
temperature and total precipitation range from 2.0 to 6.3 °C and
997–1510 mm, respectively (Environment and Climate Change Canada,
2018). Tree species distribution mostly follows the ecoregions of NB
(Fig. 1a). The province is resident to both broad- and needle-leaf forest
species common to the Acadian Forest, including 55% spruce-fir, 14%
other softwood species, and 32% temperate hardwood species (Chen
et al., 2017).

Balsam fir is one of two dominant species in NB (Erdle and Ward,
2008), making up the largest proportion of public forests at 27%, fol-
lowed by black spruce (Picea mariana, 17%), red spruce (Picea rubens,
11%), and red maple (Acer rubrum, 10%; Fig. 1b). Likewise, above-
ground biomass of balsam fir accounts for 17% of the total tree
aboveground biomass, which contributes to the single largest biomass
component in NB forests, followed by red spruce (14%), black spruce
(13%), red maple (11%), trembling aspen (Populus tremuloides, 8%),
and sugar maple (Acer saccharum, 8%; Fig. 1b).

2.2. Species distribution modelling

The R-package, sdm, uses individual and community-based ap-
proaches, not only to generate ensembles and evaluate different models
within the same framework (Borregaard and Hart, 2016), but also to
develop new species-distribution modelling approaches by users (Naimi
and Araújo, 2016). Typically, the numerical, non-dimensional output of
SDM’s (i.e., HS) ranges from 0.0 to 1.0, where 0.0 represents poor site
quality and potential absence of the species and 1.0, optimal site quality
and the potential presence of the species (Hirzel et al., 2006). The work
proceeds incrementally along three main lines of action, namely:

1. Data management and pre-processing. Input data to sdm includes
geographical occurrence (i.e., presence-absence) of balsam fir
(Fig. 1b), a digital elevation model (DEM) of NB based on the NASA
Shuttle Radar Topography Mission (SRTM3) at one-arc second re-
solution (https://earthexplorer.usgs.gov/), and four environmental
variables rasterised at 30-m resolution (Fig. A1);

2. Model development.We chose three fundamental models engaging

both statistical and machine-learning procedures, i.e., generalized
linear and additive models, centred on statistical analyses (GLM and
GAM; McCullagh and Nelder, 1989; Hastie and Tibshirani, 1987),
and classification and regression trees, centred on machine learning
(CART; Breiman, 2001). As a natural extension to CART, we also use
random forest (RF; Breiman, 2001) for its exceptional performance
in modelling species distribution (Gama et al., 2017); and

3. Model performance assessment and analysis. HS-scores from the
SDM that best approximates the actual province-wide distribution of
balsam fir are subsequently used in a comparison against tree- and
plot-level measures of site quality, i.e., site index (SI) and species
aboveground biomass (ABG).

2.2.1. Data management and pre-processing
2.2.1.1. Presence-absence data. The presence-absence of balsam fir were
based on tree data recorded for 1800+ forest permanent sample plots
(PSPs). The provincial network of PSP’s was established by the
Canadian Forest Service and NB Department of Energy and Resource
Development in 1987 (Porter et al., 2001). Those PSP’s with balsam fir
(bF) contributing to ≥10% of total species basal area (BA) were
designated as “bF being present”, whereas those with<10% BA were
identified as “bF being absent”. Altogether, plots with and without
balsam fir totalled 982 and 883 plots, respectively (Fig. 1a).

2.2.1.2. Biologically-relevant abiotic surfaces. Species distribution and
growth patterns vary according to incident PAR. To calculate the effects
of topography on available PAR (Fig. A1a), DEM-derived terrain
features of slope, aspect, horizon angle, sky-view factor, and terrain
configuration were considered (Bourque and Gullison, 1998). A mean
mid-afternoon atmospheric transmissivity of 0.7 (non-dimensional) was
used to correct for the diffused PAR that rarely reaches the earth’s
surface (Bourque and Gullison, 1998). Photosynthetically active
radiation (~45% of incident solar radiation), for cloud-free
conditions, was estimated with the Landscape Distribution of Soil
moisture, Energy, and Temperature model (LanDSET; Bourque and
Gullison, 1998; Bourque et al., 2000) as an integration of hourly
estimates of PAR over the entire growing season (Hassan et al., 2006).

Temperature is one of the primary determinants of plant metabolic
processes (Gillooly et al., 2001). Growing degree-days (GDD) represent
the level of warmth plants require for growth over the growing season.
The GDD map at 28.5-m resolution (Fig. A1b) was developed from a
compilation of Landsat-7 ETM + and Moderate Resolution Imagining
Spectroradiometer (MODIS) sensor images (Hassan et al., 2007a) and
an application of the standard equation of growing degree-day, i.e.,

= >
=

T T T TGDD ( ), when ( ) 0,
i

n

mean base mean base
1 (1)

where Tmean is the average daytime temperature, Tbase is a base
temperature of 5.6 °C below which balsam fir ceases to grow, and i goes
from 1 to n, where 1 and n represent the beginning and last day of the
growing season (Hassan et al., 2007a). The final GDD map was subse-
quently standardised for a normal (30-year) period using long-term
temperature data from selected weather stations within and adjacent to
NB (Hassan et al., 2007b).

Tree species have different soil water requirements (Oliver and
Larson, 1996). The annual mean SWC (Fig. A1c) was calculated with
LanDSET. A DEM-level cell-by-cell water budget calculation of SWC
was performed by taking into account annual total precipitation, lateral
flow from upslope to downslope positions, infiltration, deep percola-
tion, evapotranspiration, surface runoff, and changes in soil water
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storage (all in mm day−1). Other model inputs include cell-size speci-
fication (30-m) and all-wave radiative fluxes (in MJ m−2; Bourque
et al., 2000) for a Priestley-Taylor-based calculation of evapo-
transpiration. Relative extractable soil water content (SWC) is re-
presented by a non-dimensional value that ranges between 0.0 and 1.0,
with SWC approaching 1.0 for wetter sites at field capacity and 0.0, for
drier sites at the permanent wilting point.

Wind speed (Fig. A1d) affects plant growth due to both mechanical
(e.g., flagging) and physiological effects (Retuerto and Woodward,
1992). Wind-tunnel studies of tree growth have shown relative growth-
rate increases with increasing wind speed, but these growth rates soon
decline as wind speeds continue to increase beyond an optimal level
(~1.5–2 m s−1 for balsam fir), especially in young trees (Wadsworth,
1959). A three-dimensional wind field for a mountainous region in
central NB is determined by means of a small-scale numerical solution
of the Reynolds-averaged Navier-Stokes equations (at 30-m spatial re-
solution), incorporating the effects of both atmospheric turbulence and
thermal processes (Lopes, 2003). The calculation uses input from the
DEM and initialising near-surface atmospheric conditions (i.e., air
temperature, wind speed and direction) from an upwind weather sta-
tion located at 47° 09′ 27′′ North latitude and 67° 50′ 5′′ West longitude
(Saint Leonard Airport, NB). Wind speed at 500 m amsl is specified as
corresponding to a mean value of 1.3 × near-surface wind speed
(Franklin et al., 2003). Temperature stratification of the atmosphere is
assumed neutral. Small-scale estimates of wind are subsequently up-
scaled to the entire province with nonlinear regression and several
DEM-based, SAGA GIS-derived indices of terrain (Conrad et al., 2015),
including those for wind effect and terrain ruggedness, point maximal
curvature, and relative elevation as independent variables in the re-
gression.

2.2.2. Model development
Each modelling procedure, because of their underlying assumptions

and internal sensitivities, can generate slightly different empirical re-
lationships, with potentially different goodness-of-fit. Although en-
semble models (combining two or more algorithms in solving a pro-
blem) usually provide better results (Araújo and New, 2007), we do not
invoke such an ensemble here as we are more interested in determining
the utility of the different procedures in approximating HS as a function
of the different growth-related factors.

2.2.2.1. Statistical methods. Statistical models have best-practice
applications if the aim of the model is to capture the interaction
between species distribution factors (Vasconcelos et al., 2017). Habitat
suitability of tree species is typically described mathematically by
means of general linear, logistic, or logarithmic functions in developing
emprical relationships between response and explanatory variables,
with 1.0 and 0.0 corresponding to species presence-absence (Carrete
et al., 2007; Maunder and Punt, 2004). General linear models (GLM’s)
are parametric and can involve one of several distributions (e.g.,
binomial, Poisson, multinomial, etc.), whereas general additive
models (GAM’s) are non-parametric, commonly viewed as extensions
of GLM’s (Guisan et al., 2002). In general, the degree of fit with both
procedures depend on the inherent complexity of the target dataset
used in establishing the relationship. GAM’s are generally more flexible
than GLM’s in addressing nonlinear interactions in the data (Guisan
et al., 2002; Yu et al., 2013). Here, model development with GLM’s is
done through the R stats package called by sdm, whereas GAM’s involve
calls to mgcv and gam (Naimi and Araújo, 2016).

2.2.2.2. Machine-learning methods. Classification and regression tree
(CART, based on the R-package tree) is a non-parametric approach

based on binary-recursive partitioning with response to a specified
formula (Leo et al., 1984) and can be used to build predictive models
directly from observations (Evans et al., 2011; Guisan and
Zimmermann, 2000). Random forest (RF, based on the R-package
randomForest) is also non-parametric, which uses key elements of
CART along with various bagging algorithms (Breiman, 2001). This
approach uses a large number of trees (1000 trees, for instance) to find
an optimal solution. This approach can be implemented both in
classification and in function development (Breiman, 2001).

2.2.3. Model assessment
To assess the performance of distribution models developed for

balsam fir, we performed 50 independent model runs based on the se-
lection of 75% of the original input data to build the model and the
remaining 25%, to test the model at the end of each bootstrapping
iteration.

Model performance was assessed according to the area under the
receiver operating characteristic (ROC) curve (or AUC) and true skill
statistics (TSS). The AUC is a signal threshold-independent approach
(Manel et al., 2001), unbiased by prevalence and interpreted as the
ratio of the average sensitivity (true positive rate) to a fixed range of 1-
specificity (false positive rate), requiring the whole probability surface
be calculated, providing an objective measurement of discrimination in
SDM’s. Models, whose AUC > 0.8, are viewed as significantly robust
(Pellissier et al., 2013; Swets, 1988). Although kappa statistics are
widely used to assess model performance in this type of work, kappa
analysis always responds to variation in a unimodal fashion, showing
an inherent dependence on prevalence, leading to biases in estimates of
accuracy (Allouche et al., 2006). While TSS keeps balance between
these two different types of errors (i.e., false positives and false nega-
tives) with high correlation of sensitivity and specificity (Breiner et al.,
2015), it depends on the threshold of prevalence. Choosing prevalence
as a threshold can preserve true occurrence, while the results might be
slightly lower for individual plots (across kappa statistics). Therefore,
the number of false positives balances the number of false negatives
(Allouche et al., 2006; Freeman and Moisen, 2008). We set the TSS-
threshold as prevalence (ratio of plots with balsam fir present to the
total number of plots; 0.527, in this case) during training (Rubidge
et al., 2011). To assist with the interpretation of SDM-results later on,
HS-scores were binned into five site-quality categories in order to ad-
dress the range of site quality present and to ensure that the number of
observations within individual bins were approximately equal. The five
site-quality categories defined, include poor (with HS-scores < 0.5),
low (0.5 – 0.6), moderate (0.6 – 0.7), good (0.7 – 0.8), and excellent
(> 0.8).

2.3. Relating modelled HS to actual forest conditions

Site index (SI) and cumulative aboveground biomass of balsam fir
were used as indicators of site quality in exploring the relationships
between modelled HS and on-the-ground measurements of forest site
quality. Increment cores were used to determine tree age from a
minimum of two trees neighbouring some of the PSP’s, according to
species and age-class requirements. Diameter at breast height (DBH; in
cm) was measured for all commercial tree species, whereas tree heights
(H; in m) were collected from trees with a DBH > 9 cm (Dunlap,
1987). In this study, we used DBH of all living trees to estimate
aboveground biomass (based on species-specific biomass equations
given in Lambert et al., 2005), and a subset of these trees with a field-
record of age at breast height and H to estimate SI (Ker and Bowling,
1991).
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2.3.1. Site index
Variation in SI leads to differences in polymorphic tree H growth

(Carmean, 1972). SI-equations are widely used throughout the world,
especially in North America (Aertsen et al., 2010; Doolittle, 1958; Ker
and Bowling, 1991; Watt et al., 2015). Calculating SI follows a simple
approach by taking into account tree H and age at breast height
(Carmean and Lenthall, 1989). The SI-equation, i.e.,

= +H SI exp b exp b A1.3 ( 1.3)[1 ( 50)] [1 ( )]b SI b SI
2 2

b b3 4 3 4

(2)

is based on a generalized Chapman-Richards’ equation (Clutter
et al., 1983; Richards, 1959) that calculates tree height or SI at the
index age of 50 years (Ker and Bowling, 1991); H in eqn. [2] is the total
tree height (m), A is the recorded tree age at breast height in years, and
are species-specific regression coefficients (Ker and Bowling, 1991).
Site index in eqn. [2] is commonly solved numerically using, e.g., the
Newton-Raphson or bisection-secant rule, given actual tree H and age at
breast height.

2.3.2. Aboveground biomass
Biomass is one of the important factors in gauging tree competition

(Bonser and Reader, 1995; Reader et al., 1994) and site productivity.
Allometric equations are commonly used to estimate biomass to avoid
using destructive harvesting methods (Brown, 1997). However, equa-
tions can vary from area to area, mainly in their coefficients (Chave
et al., 2014). Aboveground biomass can be calculated by tree biomass
equations based on DBH alone or in combination with H (Lambert et al.,
2005). In this study, aboveground biomass was calculated by summing
individual calculations of aboveground biomass for foliage, branches,
stemwood, and bark, using DBH as the only independent variable
(predictor). DBH-based equations of aboveground biomass follow those
developed by Lambert et al. (2005), i.e.,

=y Dwood wood1 wood2

=y Dbark bark1 bark2

=y Dfoliage foliage1 foliage2 (3)

=y Dbranches branches1 branches2

= + + +y y y y y ,AGB wood bark foliage branches

where yiis the dry biomass of the aboveground (AGB) components
(j = foliage, branches, stemwood, or bark) of living trees (kg), D is the
DBH (cm), and s'jk are coefficients (k = 1) or exponents (k = 2;
Lambert et al., 2005) in the equation set; for their species-specific va-
lues, refer to Table A1.

3. Results

3.1. Comparison of processing methods

Model-performance evaluation was based on the AUC and true skill
statistics (TSS; Fig. A2, Table 1). In general, all measures of perfor-
mance revealed that RF provided the best overall performance among
the four methods considered, yielding the highest overall AUC
(0.862 ± 0.014; Swets, 1988), TSS (0.539 ± 0.037), and lowest de-
viance (Table 1). Random forest as an extension to CART, processes an
optimal solution while avoiding main drawbacks associated with CART
(e.g., overfitting; Evans et al., 2011), by generating a set of weak-
learners based on bootstrapping. All methods considered produced non-
random patterns (AUC > 0.5), with RF offering a slightly stronger
predictive response. All subsequent analyses were based exclusively on
HS-scores generated with RF.

3.2. Modelling results

According to the overall importance of variables, GDD is capable of
explaining a significant portion of the spatial variation in balsam fir
presence-absence, with COR (i.e., ‘1.0-correlation’; Naimi and Araújo,
2016) and AUC equalling 0.422 ± 0.053 and 0.340 ± 0.033, re-
spectively, in the test data alone (Table 2). Median difference in GDD
between plots with and without balsam fir (Fig. 2) is statistically sig-
nificant (median GDD of 1510.1 vs. 1566.3 degree-days, with
p < 0.01; see Fig. 2b), although small (~56 degree-days). Wind speed
is the second most important variable (i.e., COR = 0.332 ± 0.041 and
AUC = 0.280 ± 0.030; Table 2), affecting both growing character-
istics and structural stability of associated trees. The small median
difference between plots representing presence-absence of balsam fir is
also statistically significant (p < 0.01, Fig. 2d). Photosynthetically
active radiation, as the third most important variable, affects less than a
third of the spatial variation in balsam fir presence-absence data, with
statistically-significant difference between plots of presence and ab-
sence (p < 0.05, Fig. 2a; Table 2). Relative extractable soil water
content has the least impact on balsam fir HS, presenting no statisti-
cally-significant difference in the medians (Table 2, p = 0.06, Fig. 2c).

The best habitat for balsam fir (highest HS-scores) was determined
to be in the highlands and northern uplands of NB and along with a
narrow band adjacent to the Bay of Fundy (Fig.’s 1b and 3a). Based on
long-term weather records from the Saint Leonard Airport weather
station, adjacent to the highlands of the province, this area normally
experiences annual temperatures and precipitation of approximately
3.5 °C and 1,104 mm, respectively. On closer inspection of the growing
area (Location A, Fig. 3b), balsam fir trees are shown to benefit (high
HS-scores) along the north-facing slopes of prominent valleys, close to
zones of moderate SWC, adjacent to rivers and streams, and in areas
where PAR and WS tend to be low (Fig. 3b). In the Grand Lake ecor-
egion (Fig. 1a; Location B, Fig.’s 3a and 3b), although the warmest part
of the province, balsam fir will grow next to Grand Lake and sur-
rounding areas (Fig. 3b). Likewise, balsam fir trees are projected to
occupy areas adjacent to other large lakes in the southwest of the
province (Location C, Fig. 3b). In contrast, HS for balsam fir is shown to
drop dramatically (Fig. 3a) in the eastern lowlands of NB (Fig. 1a),
where climate is warmer and soils are frequently wetter; mean annual
air temperature and total precipitation in the region = 6.1 °C and
1,124 mm, respectively (Environment and Climate Change Canada,
2018).

Table 1
Mean model performance statistics in test data, including the area under the
curve (AUC, based on ROC-curves in Fig. A2), true skill statistic (TSS), de-
viance, and a statement of model performance (after Moradi et al., 2019).

Method AUC TSS Deviance Model
Performance

GLM 0.601 ± 0.023 0.148 ± 0.042 1.357 ± 0.017 Poor
GAM 0.625 ± 0.023 0.175 ± 0.044 1.342 ± 0.029 Poor
CART 0.604 ± 0.016 0.177 ± 0.040 1.364 ± 0.027 Poor
RF 0.862 ± 0.014 0.539 ± 0.037 0.957 ± 0.028 Good
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3.3. Relating HS-scores to SI

Analysis of variance (ANOVA) revealed a statistically significant
increase in SI with increasing HS-scores (site quality, p < 0.001, Fig. 4
and Table 3). Although plots with poor HS-scores contain some of the
lowest SI’s (median SI = 9.49 m), related error bars indicate con-
siderable variation in SI (mean SI = 10.81 ± 4.69 m, n = 5; Fig. 4).

Consequently, the mean difference between plots of poor and excellent
HS-scores, although statistically significant, is not particularly strong,
when compared with a Tukey test (p = 0.022, Table 3). Plots with low
HS-scores, unexpectedly incorporate the third largest SI, with minor
variation among values (median SI = 12.98 m, mean SI = 12.67 ±
1.05 m, n = 19), leading to no statistically-significant difference with
plots of low-to-good site quality (Fig. 4; Table 3). Plots with moderate

Table 2
Variable importance based on COR (i.e., ‘1-correlation’) and AUC. Also, provided are general trends in habitat suitability (HS) as a function of the various en-
vironmental variables (column 5). Values of relative importance were generated during model training. Relative importance increases as COR and AUC increase
(after Naimi and Araújo, 2016).

Variable Order of Relative
Importance

COR AUC Summary

GDD 1 0.422 ± 0.053 0.340 ± 0.033 HS for balsam fir is satisfactory in low GDD areas
WS 2 0.332 ± 0.041 0.280 ± 0.030 HS for balsam fir is satisfactory in low WS areas
PAR 3 0.306 ± 0.042 0.258 ± 0.025 HS for balsam fir is satisfactory in low PAR areas
SWC 4 0.299 ± 0.032 0.253 ± 0.028 HS for balsam fir is satisfactory close to rivers and large streams and in moderately wet areas,

particularly in northwestern NB (Amos-Binks et al., 2010)

Fig. 2. Boxplots of environmental variables associated with balsam fir in NB. Environmental variables include (a) photosynthetically active radiation (PAR; MJ m−2),
(b) growing degree-days (GDD; degrees), (c) relative plant extractable soil water content (SWC; non-dimensional and values> 1.0, coincide with SWC > field
capacity), and (d) wind speed (WS; m s−1). The thick horizontal lines in the boxes represent the median of plotted values. The bottom and top edges of the boxes
denote the 25th and 75th percentiles, respectively. The ends of the whiskers correspond to the 10th and 90th percentile. Statistical tests are based on Mann-Whitney
Rank Sum tests, given absence of normality in the data.

Y. Chang and C.P.-A. Bourque Ecological Indicators 111 (2020) 105981

6



Fig. 3. Modelled habitat suitability (HS) for balsam fir for the entire province (a) and for selected areas in the province (b) labelled by letters A through C. Black
patches in both sets of maps coincide with the presence of surface water. Close-ups of HS-scores for the selected areas (b) are presented together with corresponding
maps of extractable soil water content (SWC) and near-surface wind speed (WS). Colours associated with the legend next to the map of the province (panel a)
correspond to variation in HS-scores and probability of balsam fir being present. Reddish-brown to green, to blue colours in maps of SWC (b) coincide with
progression in soil wetness from dry soils (SWC ~ 30% of field capacity) to wet soils at field capacity. Soils with SWC beyond field capacity are emphasised in black.
Medium-blue colours in maps of WS identify low wind speeds, while cyan to yellowish colours especially in the high terrain of location A coincide with elevated wind
speeds.

Fig. 4. Boxplots of SI (m) for variable ranges of sdm-generated HS-scores; i.e., poor (< 0.5), low (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), and excellent (> 0.8).
The thick horizontal lines in the boxes represent the median of plotted values. The bottom and top edges of the boxes denote the 25th and 75th percentiles,
respectively. The ends of the whiskers correspond to the 10th and 90th percentile. The open diamond symbols in the boxes represent the mean of plotted values; cap-
tipped lines coincide with the lower and upper 95% confidence limits based on ANOVA.
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HS-scores contain the second lowest SI (median SI = 11.83 m, mean
SI = 12.04 ± 0.95 m, n = 26). These plots exhibit no significant
difference with plots of excellent site quality (Fig. 4; Table 3). Plots of
good site quality include the second highest SI (median SI = 13.17 m,
mean SI = 12.9 ± 0.97 m, n = 27).

3.4. Relating HS to aboveground biomass of balsam fir

Aboveground biomass (AGB) of balsam fir strongly differ among the
different site-quality categories (p < 0.05; Table 3). Aboveground
biomass in plots designated as having excellent site quality (i.e., high
HS-score) is significantly greater than all other site-quality categories
(p = 0); median AGB = 62.01 tonnes ha−1, mean AGB = 64.04 ±
7.24 tonnes ha−1 (n = 104; Fig. 5 and Table 3). Plots with good site
quality contain the second greatest amount of AGB, with a
median = 33.32 and a mean = 40.22 ± 3.47 tonnes ha−1 (n = 288;
Fig. 5), with significant difference with plots of low through poor site
quality (p-value = 0.0 and 0.003, respectively). Although AGB in plots
of moderate-to-poor site quality slightly decreases with HS-score, i.e.,
mean = 35.97 ± 2.88, 31.30 ± 3.40, and 26.60 ± 5.95 tonnes ha−1

(n = 346, 87, and 43, respectively; Fig. 5), only moderate-to-poor site
quality shows statistical difference (p = 0.030; Table 3).

4. Discussion

Abundance of balsam fir is strongly influenced by management and
disturbance history due to its high economic value in NB (Erdle and
Ward, 2008). For current forest conditions, balsam fir is a competitive
species that grows almost anywhere in the province (Fig. 3a), as in
other Atlantic Provinces of Canada (Ritchie, 1996). The relationship
between GDD and HS acknowledged here (Fig.’s A1b and 3a) is con-

Table 3
Probabilities (i.e., p) for multiple pairwise Tukey comparisons of SI and
aboveground biomass (AGB) for individual site-quality categories from poor to
excellent. Note that a column for “Excellent” site quality does not appear in the
table, as this would coincide with a comparison of the site-quality category with
itself.

Variable Range of HS-scores Poor Low Moderate Good

SI Poor – – – –
Low 0.584 – – –

Moderate 0.854 0.922 – –
Good 0.414 0.998 0.674 –

Excellent 0.022* 0.08 0.002** 0.053

AGB Poor – – – –
Low 0.272 – – –

Moderate 0.030* 0.060 – –
Good 0.003** 0.*** 0.062 –

Excellent 0*** 0*** 0*** 0***

Note: ***, **, and * indicate statistical significance at p-values< 0.001,< 0.01,
and<0.05, respectively.

Fig. 5. Boxplots of aboveground biomass (tonnes ha−1) for variable ranges of sdm-generated HS-scores; i.e., poor (< 0.5), low (0.5–0.6), moderate (0.6–0.7), good
(0.7–0.8), and excellent (> 0.8). The thick lines in the boxes represent the median of plotted values. The bottom and top edges of the boxes coincide with the 25th
and 75th percentiles, respectively. The ends of the whiskers correspond to the 10th and 90th percentile; closed circles above the whiskers represent data points
beyond the 90th percentile. The open diamond symbols in the boxes represent the mean of plotted values; cap-tipped lines coincide with the lower and upper 95%
confidence limits based on a Kruskal-Wallis one-way ANOVA.
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sistent with other studies (Broders et al., 2006; Hennigar et al., 2008),
suggesting that balsam fir trees tend to grow best in areas where cool
summer temperatures persist (Fig. A1b; Table 2; Burns and Honkala,
1990).

Balsam fir on shallow, wet soils are exceptionally vulnerable to
windthrow, particularly when winds are strong (Erdle and Ward, 2008).
The possibility of frequent episodes of windthrow over the moderate-to-
long term could potentially exclude the species from occurring in the
windiest parts of the landscape (Fig. A1d). High WS along the Bay of
Fundy and past harvesting practices, for instance, may have prevented
balsam fir from establishing and growing in the southcentral-most part
of the province, notwithstanding the occasional pockets of high HS-
scores along the coast (Fig. 3a). Relative extractable soil water content
is the least important variable (Table 2) most likely because of scale
differences driving balsam fir distribution regionally. Extractable soil
water content affects tree growth and development at the individual-
tree scale, which remains mostly undetected, especially when the target
resolution is 30 m. Furthermore, plant response is marginally impacted
when actual extractable soil water content lies between the lower and
upper limits of plant-available water, i.e., permanent wilting point and
field capacity. Only at the extremes and beyond (i.e., extreme soil
dryness and waterlogged conditions) does soil water content begin to
have an appreciable impact on plant growth. Waterlogged conditions
are a common feature of NB landscapes, with all its wetlands and lakes.
Historically, droughts have happened in the province, but not fre-
quently (Turkkan et al., 2011).

Although balsam fir habitat is fairly high-quality (high HS-scores) in
northwestern and northcentral NB (Location A, Fig. 3b) due to low PAR
and below average WS, balsam fir trees in the area tend to be younger,
due to recurring disturbance associated with spruce budworm [Chor-
istoneura fumiferana (Clem.)] infestation, episodic windstorms, com-
mercial thinning, and other industrial operations in the region
(Etheridge et al., 2006). Although the warmest region in the province,
good-quality growing sites adjacent to Grand Lake and surrounding
areas (Location B, Fig.’s 3a and 3b) are mostly there as a result of the
lowering of growing-season temperatures brought on by the cooling
effects of the Lake (Akalusi and Bourque, 2018). This pattern is re-
plicated in many other areas adjacent to large lakes throughout the
province, particularly in the southwest of the province (Location C,
Fig. 3b). Unlike large deep lakes, small shallow and potentially warmer
waterbodies have a limited role in controlling local climate.

In general, SI has a weak functional relationship with HS-scores
(Fig. 4). We found some inventory plots with low HS-scores, possess SI’s
greater than one would expect. Some studies have shown that there is
sometimes greater temporal affinity between HS and species vital at-
tributes (Pellissier et al., 2013), human density and urbanisation
(Araújo, 2003), or management activities (Fois et al., 2018) that help to
structure species distribution. Here, we use static, long-term occurrence
data (from 1987 to 2014) in the development of the SDM, essentially to
eliminate some of the temporal effects. However, their removal may not
have been completely realised, introducing some level of inconsistency
between data sources. This inconsistency may also, in part, be related to
artefacts that may have been created because of the inherent resolution
differences (i.e., from the single tree-level to 30-m grid cells) and the
inadequate number of sample trees used in the determination of SI.
Although intraspecific heights may not vary greatly across climatic
gradients (Lines et al., 2012), our findings, albeit tenuous, suggest some
functional relationship between tree height (and SI) and site factors

(Fig. 4). Some of these discrepancies may vanish with the application of
DEM’s of improved quality and resolution, e.g., LiDAR-data based
products.

Aboveground biomass (AGB) is shown to increase with increasing
HS-scores. This is particularly noticeable among the high-quality sites,
illustrating an increasing trend from poor-to-excellent site quality as
approximately exponential (Fig. 5; Table 3). As AGB is calculated from
many trees and approximates a stand-level estimate, unlike SI, AGB
provides a stronger relationship with site quality and consequently
modelled HS-scores. Some studies have shown that relative abundance
and AGB have a closer relationship with HS at small spatial scales (de
Moraes Weber and Viveiros Grelle, 2012; VanDerWal et al., 2009).

Although correlation-based SDM’s aim to use abiotic surfaces and
statistical/machine-learning techniques to evaluate species occurrence,
other characteristics of plant species, such as density (Fois et al., 2018),
reproductive performance (Brambilla and Ficetola, 2012; Sergio et al.,
2003), and inter- and intraspecific competition (Baah-Acheamfour
et al., 2017), can be integrated into these non-dimensional values, re-
defining the shared impact of abiotic variables in determining species
habitat selection (Baah-Acheamfour et al., 2017). Our analysis confirms
that variation in HS-scores can be used to address variation in SI and
AGB, given current technologies and resolutions. Establishing a re-
lationship between HS-scores and on-the-ground-forest conditions is
particularly important to inform decision-making and planning in for-
estry and conservation of biodiversity (Hirzel et al., 2006).

5. Conclusion

RandomForest provided the best overall description of balsam fir HS
spatially. Balsam fir is shown to grow best in the highlands and
northern uplands of the province and in the vicinity of large deep lakes,
because of the cooler summer temperatures and low seasonal wind
speeds that prevail in these locations. Growing degree-day and wind
speed were shown to provide a stronger control on HS regionally, than
relative extractable SWC, mostly because of differences in scale de-
pendencies. Modelled HS were partially supported by tree-based cal-
culations of SI. Aboveground biomass provided a stronger association
with modelled HS because AGB represents an areal integration of tree
information at the plot level. Although calculations of HS were based
entirely on abiotic-based inputs, the calculations provided a reasonable
assessment of tree species distribution (AUC ~ 0.86), as expressed in
regional and local differences in AGB of balsam fir and forest in-
ventories.
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Appendix

See Figs. A1 and A2 and Table A1.

Fig. A1. Long-term growing-season distribution of abiotic variables, i.e., (a) photosynthetically active radiation (PAR; MJ m−2), (b) growing degree-days (GDD;
degrees), (c) relative plant extractable soil water content (SWC; non-dimensional and values> 1.0, coincide with SWC > field capacity), and (d) wind speed
(WS; m s−1).
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Fig. A2. Receiver operating characteristic (ROC) curves in the application of Generalized Linear Model (GLM; a), Generalized Additive Model (GAM; b),
Classification and Regression Tree (CART; c), and Random Forest classifiers (RF; d). The light blue curvilinear lines in the background correspond to ROC-curves
generated by repeated application of the models by bootstrapping (n= 50 replicates). Red and dark blue lines represent mean ROC-curves for the training and
validation data, respectively.

Table A1
Equation coefficients and exponents in the calculation of aboveground biomass for stemwood, bark, branches, and foliage for 33 different tree species (after Lambert
et al., 2005), including balsam fir and other tree species addressed in Fig. 1b.

Species wood1 wood2 bark1 bark2 branches1 branches2 foliage1 foliage2

Black spruce 0.0477 2.5147 0.0153 2.2429 0.0278 2.0839 0.1648 1.4143
White spruce 0.0229 2.5775 0.0116 2.3022 0.0283 2.0823 0.1601 1.467
Red spruce 0.0989 2.2814 0.0220 2.0908 0.0005 3.275 0.0066 2.4213
Cherry 0.3743 1.9406 0.0679 1.8377 0.0796 2.0103 0.084 1.2319
Balsam fir 0.0534 2.403 0.0115 2.3484 0.007 2.5406 0.084 1.6695
White pine 0.0997 2.2709 0.0192 2.2038 0.0056 2.6011 0.0284 1.9375
Jack pine 0.0804 2.4041 0.0184 2.0703 0.0079 2.4155 0.0389 1.729
Red pine 0.0564 2.4465 0.0188 2.0527 0.0033 2.7515 0.0212 2.069
Eastern white cedar 0.0654 2.2121 0.0114 2.1432 0.0322 1.9367 0.0499 1.7278
Eastern hemlock 0.0619 2.3821 0.0139 2.3282 0.0217 2.2653 0.0776 1.6995
Tamarack 0.0625 2.4475 0.0174 2.1109 0.0196 2.2652 0.0801 1.4875
Red maple 0.1014 2.3448 0.0291 2.0893 0.0175 2.4846 0.0515 1.5198
Sugar maple 0.1315 2.3129 0.0631 1.9241 0.033 2.3741 0.0393 1.693
Yellow birch 0.1932 2.1569 0.0192 2.2475 0.0305 2.4044 0.1119 1.3973
Beech 0.1478 2.2986 0.012 2.2388 0.037 2.368 0.0376 1.6164
Grey birch 0.072 2.3385 0.0168 2.2569 0.0088 2.5689 0.0099 1.8985
Red oak 0.1754 2.1616 0.0381 2.0991 0.0085 2.779 0.0373 1.674
White ash 0.1861 2.1665 0.0406 1.9946 0.0461 2.2291 0.1106 1.2277
White birch 0.0593 2.5026 0.0122 2.4053 0.0122 2.5532 0.0546 1.6221
Trembling aspen 0.0605 2.475 0.0168 2.3949 0.008 2.5214 0.0261 1.6304
Large-tooth aspen 0.0959 2.343 0.0308 2.224 0.0047 2.653 0.008 2.0149
Hardwood 0.0871 2.3702 0.0241 2.1969 0.0167 2.4807 0.039 1.6229
Ash 0.0941 2.3491 0.0323 2.0761 0.0448 1.9771 0.0538 1.2284
Balsam poplar 0.051 2.4529 0.0297 2.1131 0.012 2.4165 0.0276 1.6215
Elm 0.0402 2.5804 0.0073 2.4859 0.0401 2.1826 0.075 1.3436

Note that the hardwood category groups striped and mountain maple, witch hazel, willow, serviceberry, and alder together; while ash groups black and American
mountain ash; cherry groups pin cherry, black cherry, and choke cherry together.
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