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ABSTRACT 

Background: Geographic ranges, randomly located within a bounded 
geographical domain, produce a central hump of species richness (the mid-domain effect, 
MDE). The hump arises from geometric constraints on the location of ranges, especially 
larger ones.  

Questions: (1) How do patterns of species richness in one- and two-dimensional 
MDE models change as a function of range size? (2) How does dispersal affect these 
patterns? 

Methods: We used a spreading dye algorithm to place assemblages of species of 
uniform range size in one-dimensional (1-D) or two-dimensional (2-D) bounded 
domains. In some models, we allowed dispersal to introduce range discontinuity. 

Results: As uniform range size increases from small to medium, a flat pattern of 
species richness is replaced by a pair of peripheral peaks, separated by a valley (1-D 
models), or by a cratered ring (2-D models) of species richness. With large range sizes, 
the peaks or rings fuse to form a central plateau (1-D) or a flat-topped mound (2-D) of 
highest species richness. Adding dispersal to the 2-D model weakens the peripheral ring 
and introduces complex patterns, for long-distance dispersal. 

Conclusions: Heterogeneous range size distributions (whether theoretical or 
empirical) used in most MDE models produce species richness patterns dominated by 
wide-ranged species, hiding complex patterns formed by small- to medium- ranged 
species. These patterns, which are analogous for one and two dimensions, are 
complicated further by long-distance dispersal and discontinuous ranges. Although 
geometric constraints lead to classic mid-domain effects for large-ranged species and for 
mixed range-size frequency distributions, small- and medium- sized ranges of a uniform 
size generate more complex patterns, including peaks, plateaus, canyons, and craters of 
species richness.  
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INTRODUCTION 
Documenting the relative importance of contemporary climate, historical effects, and 
geometric constraints on species richness patterns has been a major research focus in 
biogeography and macroecology (Willig et al., 2003). Colwell and Hurtt (1994) 
introduced one-dimensional stochastic models of species richness, aiming to explain 
Rapoport’s rule, the tendency for range sizes of species to decrease towards the tropics 
(Stevens, 1989). While exploring these models, Colwell and Hurtt (1994) stumbled upon 
a surprising result that, in itself, had nothing to do with Rapoport's rule.  

Suppose the transect, or domain, is modeled as a one-dimensional line segment, 
and geographic ranges are represented as overlapping, randomly-sized, smaller line 
segments, located at random positions within the domain. In the simplest case, the 
domain is a line of length 1 (the unit line), and geographic ranges are represented by line 
segments ranging in length from zero (as a limit) to one. What is the expected pattern of 
species richness (the number of overlapping ranges) at any point along the transect? 
Naively, one might expect that a random distribution of species along a bounded 
geographical transect would produce, on average, a uniform distribution of richness. But 
this turns out to be wrong. Under a wide range of model assumptions, the pattern of 
species richness within the domain is a hump that declines symmetrically from the center 
towards the edges of the domain. Later, Colwell and Lees (2000) named this 
phenomenon the mid-domain effect, or MDE. Whereas previous explanations for species 
richness gradients could be broadly classified as either evolutionary (emphasizing 
historical factors) or ecological (emphasizing contemporary climate), MDE suggested an 
entirely novel class of causal explanations: non-uniform species richness gradients might 
arise because of geometric constraints imposed by a bounded domain. 

Is MDE a null model or an explanatory factor? 
As of the end of 2008, more than 100 papers had addressed MDE, conceptually, 
theoretically, or as a component of the analysis of empirical datasets. Conceptually, the 
issue is whether MDE explains anything we didn't already know about biogeographical 
patterns of species richness in nature. If so, how much does it explain and under what 
conditions? Like any idea that calls for an entirely new way of looking at an old problem, 
MDE has, at times, been either too quickly embraced or too quickly dismissed, but has 
generally met with appropriate skepticism and gradual acceptance.  
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Part of the problem with MDE, from the start, has been that MDE models are null 
models, but not typical ones (Colwell et al., 2004, 2005). They are null models because 
they deliberately exclude a key factor or mechanism believed to be important in nature, 
with the aim of assessing the role of the missing factor in shaping natural patterns 
(Gotelli and Graves, 1996). In the case of MDE, the factor left out by design is any direct 
role of environmental gradients in driving patterns of species richness. No one doubts that 
environmental gradients play a strong role in adaptive evolution of populations and in 
shaping species distributions and range sizes (Brown et al., 1996; Parmesan et al., 2005). 
But the role of such gradients in shaping patterns of overlap of species ranges (species 
richness)—to which MDE models are blind by design—is less obvious. This leaves an 
opening for MDE to serve as a null model of the patterns of range overlap to be expected 
in the absence of any direct influence of environment on richness (e.g. Connolly et al., 
2003). 

But what if the simple stochastic phenomenon that drives the pattern of richness 
in the model contributes, in it own right, to patterns in nature? MDE becomes in this case 
not just a null model, but a mechanistic model of the effect of geometric constraints that 
arise from the boundedness of domains, which can act in concert or in conflict with other 
causes of geographical pattern in species richness, such as primary productivity, 
topographic complexity, or area. The studies of Jetz and Rahbek (2002) and Brehm et al. 
(2007) exemplify many others that show MDE acting in concert with environmental 
factors, whereas MDE and environmental factors proved to be spatially discordant in 
such studies as McCain (2003) and Lees et al. (1999, with critique and response by Kerr 
et al., 2006; Lees and Colwell, 2007; and Curry and Kerr, 2007). Interactions between 
area and MDE emerged from other studies (e.g. Rahbek, 1997; Sanders, 2002; Bachman 
et al., 2004; Romdal et al., 2005; Romdal and Grytnes, 2007). Currie and Kerr (2008) 
have emphasized the problems of interpretation that arise when MDE predictions and 
environmental factors are collinear, although the same issues arise when environmental 
variable are collinear among themselves. Hawkins and Diniz-Filho (2002), Zapata et al. 
(2003, 2005), and Hawkins et al. (2005) have criticized MDE on several grounds, but as 
we have already responded in full to these critiques (Colwell et al., 2004, 2005), we will 
not recount these discussions here. 

Because any influence of MDE on spatial patterns of richness in nature is 
expected to interact in complex ways with other candidate explanatory variables, an 
appropriate framework for analysis is multivariate model selection, rather than simple 
hypothesis testing (Colwell et al., 2004, 2005). We therefore do not see a basis for the 
continued treatment of MDE (most recently Currie and Kerr, 2008) as a simple null 
hypothesis, to be rejected outright if it fails to fully explain patterns in nature.  

Range size and geometric constraints in models and in nature 
As Colwell and Hurtt (1994) noted, the geometric constraint on range location 

within a bounded domain increases linearly with range size. For a unit-line domain, the 
midpoint of a range of length r 

! 

0 < r "1( )  is geometrically constrained to be located over 
a distance of 

! 

1" r in the middle of the domain. For this reason, in a domain with a 
gradient of environmental "favorability," a key prediction of MDE theory is that the 
location of smaller ranges within a domain is expected to be influenced more by the 
environment and less by geometric constraints, compared with larger ranges (Colwell et 
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al., 2004, 2005). Rangel and Diniz-Filho (2005) demonstrated this effect elegantly for a 
Hubbell-style neutral evolutionary model with spatially explicit speciation and extinction. 
In their model, species richness is influenced by stochastic range shifts weighted toward 
the "favorable" end of a simple spatial gradient. On shallow gradients, ranges are 
naturally larger for a given environmental tolerance (niche breadth) than on steeper 
gradients (Kirkpatrick and Barton, 1997). As a result, a strong MDE develops on shallow 
gradients, whereas species richness accumulates in a peak near the "favorable" end of a 
steep gradient.  

The prediction that larger ranges are more likely to show the signature of MDE 
than smaller ranges has repeatedly been borne out by empirical studies of richness 
patterns (beginning with Pineda and Caswell, 1998; Lees et al., 1999; Jetz and Rahbek, 
2001). To assess the role of MDE for smaller vs. larger ranges, these studies 
deconstructed patterns of species richness by dividing the empirical distribution of range 
sizes into quantiles (halves or quartiles) by rank or by absolute range size. Separate 
richness predictions are then generated for the ranges of each quantile. A recent review 
and meta-analysis of this approach by Dunn et al. (2007) concludes that, overall, larger 
ranges fit MDE predictions better than smaller ranges from the same domain. Fig. 1 
shows an example for fern species on a tropical elevational transect (Cardelús et al., 
2006). 

Fig. 1. Observed and predicted species richness as a function of elevation for ferns, on 
the Barva Transect, Costa Rica. The left-hand graph displays results for all fern species, 
whereas the middle and right-hand graphs show the 50% of fern species with larger and 
smaller ranges, respectively. Solid points indicate observed richness for each field 
sampling elevation. Open points show mean richness and fine lines give the 95% 
confidence intervals predicted by a mid-domain effect "range-shuffling" model 
(Connolly, 2005; Colwell and Hurtt, 1994, Model 2, using empirical ranges). The 
coefficient of determination for the regression of observed on expected appears on each 
graph (from Cardelús et al., 2006). 

 
 
Pursuing this approach to richness deconstruction, our aim in this study is to 

explore the deep structure of a widely-used class of mid-domain effect (MDE) models, 
spreading dye models (Jetz and Rahbek, 2001). We do this by simplifying, then varying 
the data that goes into them—the distribution of geographical range sizes—in relation to 
the size of the geographical domain. We extend this approach to examine the effect of 
range discontinuity by relaxing the spreading dye model assumption of strict range 
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cohesion and introducing long-distance dispersal. We show that the classic MDE pattern, 
a mid-domain hump or sloped plateau, while typical for species with medium to large 
range sizes, is but one of many patterns that readily emerge from stochastic models of 
range location. At smaller range sizes, more complex landscapes of species richness—
including peaks, plateaus, canyons, and craters— are generated by the spreading dye 
model. 

Conceptual and historical context of the spreading dye model 
Colwell and Hurtt (1994) explored the MDE using a Monte Carlo approach. Lyons and 
Willig (1997), likewise pursuing a stochastic approach to modeling Rapoport's rule, 
independently discovered the MDE (Michael Willig, personal communication). Later, 
they developed a simple analytical MDE model based on binomial probabilities for range 
limits on the unit line (Willig and Lyons, 1998). Eventually, David Lees (Box 2 in 
Colwell and Lees [2000]) was able to show that Colwell and Hurtt's (1994) Model 2, 
Willig and Lyon's (1998) binomial model, and MacArthur's (1957) Type II ("overlapping 
niche") broken stick distribution are mathematically identical. (Because MacArthur was 
modeling the relative abundance distribution of species, he was concerned with the length 
of the "pieces" and did not explore the pattern of their overlap). Pielou (1977a, 1977b), 
studying the latitudinal distribution of seaweeds along shorelines, was the first to apply 
this model to the study of biogeographical patterns, but she considered only pairwise 
overlap and did not take notice of the pattern of multiple-species overlap (richness) (E. C. 
Pielou, personal communication). 

In this "fully stochastic" model, as Colwell and Lees (2000) called it, not only 
does the overlap of ranges (species richness) peak in the middle of the domain, but so 
does the distribution of range midpoints, because larger ranges are constrained 
geometrically to have their midpoints towards the domain center, as first illustrated by 
Graves (1985). Reviewing a draft of Colwell and Hurtt (1994), Michael Rosenzweig 
(personal communication) questioned whether the midpoint distribution by itself might 
be driving the humped pattern of richness. In response, Colwell and Hurtt (1994) created 
an alternative model (Model 3) in which range midpoints were constrained to follow a 
uniform distribution across the domain. In this doubly-constrained "uniform midpoint" 
model, range sizes were stochastic within the midpoint distribution constraint as well as 
within the constraint posed by the domain bounds. The shape of the hump changed 
somewhat, but it was still a hump (Fig. 4 in Colwell and Hurtt, 1994). This model treats 
range size stochastically, conditional upon specified range midpoint. Lees et al. (1999, 
see also Box 3 in Colwell and Lees, 2000) developed the opposite model, which treats 
range midpoint stochastically, conditional upon specified range size. Colwell (2008) 
provides all three models (as well as others) in the freeware application RangeModel, for 
one-dimensional domains. 

Rahbek (1997), Pineda and Caswell (1998), Willig and Lyons (1998), and Lees et 
al. (1999) were the first to treat MDE as a null model for biogeographical patterns in the 
natural world. Pineda and Caswell (1998) introduced the key idea of randomizing the 
location of empirical ranges within the domain, while maintaining the empirical range 
size frequency distribution (RSFD). This approach has been applied repeatedly in later 
studies using both one- and two-dimensional domains (reviewed by Colwell et al., 2004, 
2005 and Dunn et al., 2007; see also Cardelús et al., 2006; Storch et al., 2006; Brehm et 
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al., 2007; Davies et al., 2007; Rahbek et al., 2007; and Arita and Vazquez-Dominguez, in 
press, for more recent examples of this approach).  

MDE models were originally proposed for one-dimensional domains, but were 
later extended to two dimensions, initially by Lees et al. (1999), by Bokma et al. (2001), 
and by Jetz and Rahbek (2001, 2002). Bokma and colleagues (2001) developed two 
approaches. One was an evolutionary, cellular automaton algorithm that presaged later 
evolutionary models by Rangel and Diniz-Filho (2005), Brayard et al. (2005), Rangel et 
al. (2007), and Arita and Vazquez-Dominguez (in press). In a second approach, Bokma et 
al. (2001) extended the Willig and Lyons (1998) binomial model to two dimensions, in 
both cases allowing both range size and range placement to emerge from the model. Arita 
(2005) further explored the properties of the two-dimensional binomial model 
analytically, focusing on range size distributions in different regions of a hypothetical 
square domain. 

In contrast, Jetz and Rahbek (2001) based their two-dimensional model on the 
strategy of Pineda and Caswell (1998) and Lees et al. (1999), both one-dimensional 
approaches, enforcing a match of the modeled range size frequency distribution (RSFD) 
to an a priori RSFD, with stochastic range location. In this model, each range has a 
predetermined size—the range is drawn either from an empirical RSFD or from a 
theoretical RSFD, rather than emerging from colonization and extinction dynamics. The 
Jetz and Rahbek (2001) approach has come to be known as the spreading dye model (or 
spreading dye algorithm). 

The spreading dye algorithm, first suggested by Gotelli and Graves (1996, p. 
256), has become the approach of choice for two-dimensional domains, and has formed 
the basis for more complex models of species richness that incorporate both geometric 
constraints and other factors (e.g. Jetz and Rahbek, 2002; Rangel and Diniz-Filho, 2003; 
Storch et al., 2006; Davies et al., 2007; Rahbek et al., 2007). Connolly (2005) developed 
an analytical version of a spreading dye model for one-dimensional domains, and Colwell 
(2008) implemented a one-dimensional Monte Carlo version in the freeware application 
RangeModel. An analytical version of the spreading dye model has not been developed 
for two-dimensional domains and may not be possible, except for geometrically simple 
domains such as perfect circles, triangles, or squares.  

Theoretical studies of MDE, to date, have used heterogeneous distributions of 
range sizes (either empirical or simulated) to generate MDE patterns. These studies have 
emphasized the interaction between geographic range size and domain size, usually 
revealed by partitioning the RSFD into quantiles. We conjectured that it might be 
revealing, then, to take the quantile approach to its logical limit in studying the behavior 
of simple MDE models. In this study, we explore the MDE patterns that are expected for 
assemblages of species that have identical range sizes. Independently, Connolly (in press) 
has explored the spreading dye model with the same strategy. 

Objectives 
We use Monte Carlo versions of both one- and two-dimensional spreading dye models to 
explore the role of range size in driving species richness patterns. We ask two questions: 
(1) How do the predictions of MDE models change as a function of geographic range 
size, in both one and two dimensions? (2) How do the predictions of MDE models 
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change as the assumption of strict range cohesion is relaxed and species are allowed to 
disperse longer distances within a bounded geographic domain? 

MATERIALS AND METHODS 

Domains and range sizes 
We simulated the random origin and spread of species in a gridded geographic domain. 
The one-dimensional domain was 1 x 100 linear grid cells (line segments) and the two-
dimensional domain was 100 x 100 grid cells (identical, square cells). We created 
assemblages of 100 species, in which all species shared an identical range size. For the 
one-dimensional domain, these range sizes were 1, 2, 4, 8, 16, 32, 64, 80 or 100 grid 
cells. For the two-dimensional domain, the range sizes were 1, 2, 4, 8, 16, 32, 64, 128, 
256, 512, 1024, 2048, 4096, 8192, 9000, and 10,000 grid cells. Because all range sizes 
are identical within each assemblage, we can directly assess the contribution of range size 
to MDE patterns. In contrast, in most MDE analyses, empirical or simulated range size 
frequency distributions are heterogeneous, with a mixture of larger and smaller ranges. 
When range sizes are not equal, patterns of species richness are dominated by the effects 
of widespread species, making it difficult to assess the spatial patterns and contributions 
of smaller ranges (Lees et al., 1999; Jetz and Rahbek, 2001, 2002; Jetz et al., 2004; 
Lennon et al., 2004). 

Simulation models: spreading dye model 
 We implemented a spreading dye model (Jetz and Rahbek, 2001) by randomly choosing 
an initial grid cell to represent the origin of a species' geographic range. Subsequent cells 
for the range were also chosen randomly, but range cohesion was enforced by restricting 
the candidate cells to those adjacent to a currently occupied cell. In the one-dimensional 
domain, at each time step only one or two grid cells were available for range expansion, 
depending on whether the species had reached the edge of the domain or not. In the two-
dimensional model a maximum of eight adjacent cells was available for range expansion, 
as in a King’s move in chess. Qualitatively similar results were obtained for two-
dimensional models in which only a maximum of four adjacent, non-diagonal cells were 
available (a one-square rook's move in chess). The simulation continued by randomly 
choosing and filling grid cells until the geographic range for a species was complete. The 
next species in the assemblage was then seeded in a new random grid cell, without 
consideration of previously placed ranges. The procedure was repeated until all 100 
species ranges in the assemblage had been placed. Because no cells outside the 
boundaries of the domain were permitted to be occupied, an expanding range that "hit" a 
boundary expanded, as necessary, toward the center of the domain, in the one-
dimensional model, or both inward and laterally along the boundary, in the two-
dimensional model. 

We then determined the total species richness in each grid cell, which could 
theoretically range from zero (if a grid cell was never chosen) to 100 (if all species 
occurred in the grid cell). As range size is increased, the minimum and average species 
richness per grid cell also increases. In the extreme, for models in which the range size 
equals the domain size, observed species richness in every grid cell is inevitably 100, 
with no variation among runs.  
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We simulated each assemblage 300 times and calculated the average species 
richness for each grid cell. For the two dimensional model, the results were plotted in a 
bivariate color plot, in which the “hot colors” (red and orange) indicate grid cells with 
large average species richness, and the “cold colors” (blue and green) indicate grid cells 
with low average species richness. Color plots were scaled internally so that variation in 
richness within the domain could be visualized most easily. 

Stepping-stone model 
For the two-dimensional domain, we built a model that relaxed the assumption of strict 
range cohesion in the spreading dye model. The initial cell for a range was chosen at 
random, just as in the algorithm specified above. To choose the second and subsequent 
cells, one of cells already occupied by the species was chosen at random to be the source 
of a colonization event. (For choosing the second cell, this source cell is simply the initial 
cell.) A compass orientation (0 to 360 degrees) was selected at random as a dispersal 
direction for the subsequent ("destination") cell. The dispersal distance to the destination 
cell from the source cell was chosen as a random variable from a Poisson distribution: 

 

! 

P(d) =
"de#"

d!
, 

where P(d) is the probability of dispersing distance d, and 

! 

"  is the Poisson parameter. 
Dispersal distance d was measured in grid cell units. If the destination grid cell selected 
in this way was not already occupied by the species in question, it was added to the 
species' geographic range. If the destination grid cell was already occupied by the 
species, or if the dispersal distance was beyond the map boundary, the same source cell 
was used and a new destination grid cell was selected. This process was repeated until the 
geographic range was filled for a given species. All species were simulated in the same 
way (with identical 

! 

"  values), and average species richness per grid cell was calculated 
and plotted as described for the spreading dye model. All simulations were carried out 
using BioGeoSim, a dedicated software package programmed in Delphi for modeling 
geographic ranges and species richness patterns in gridded domains (Gotelli et al., 2007). 

RESULTS 

One-dimensional spreading dye model 
Fig. 2 depicts the effects of geometric constraints on ranges of different size in a one-
dimensional domain. For an assemblage in which all species have a range size of only 
one grid cell, the pattern is purely random and uniform, because no geometric constraints 
are in play. As range size increases (range size r = 2 to 4 grid cells), the average species 
richness in the center of the range shows a reduction in the variance, because ranges 
begin to overlap more often, so the richness count evens out spatially. Meanwhile, two 
symmetric peripheral “peaks” appear near the edges of the domain, reflecting a mixture 
of ranges that landed within the boundaries, but extend into the area of the peaks, and 
ranges that originated on or near the edge of the domain and then randomly accumulated 
back towards the center. As range size increases (range size r = 8 to 32 grid cells), the 
relative height of these peaks increases, with a progressive narrowing of the canyon floor 
of richness near the center of the domain. This narrowing is caused by the increasing 
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penetration into the interior of the domain by larger and larger "reflected" ranges that 
were forced inward.  

Fig. 2. One-dimensional expected species richness plots. The x-axis represents position 
along the number line, the y-axis represents expected species richness. Each plot 
represents a different simulation for an artificial assemblage of 100 species with identical 
range sizes. Each point represents the average species richness in the one-dimensional 
domain, based on 300 stochastic runs of the model. Note that the y-axis scale varies 
among the plots. 
 
 

With the transition from 32 to 64 grid cells per range, range size now exceeds half 
of the 100-cell domain, so that the canyon floor inverts to a flat-topped plateau. The 
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plateau lies between 100 - r on the left and r on the right side domain, with a richness of 
exactly 100 species, because all ranges must overlap in this region. Thus, as range size r 
increases from 64 to 100 grid cells, the width of the richness plateau expands. Connolly's 
(2005) analytical model for the one-dimensional spreading dye model specifies the exact 
quantitative expectations for all regions of the richness plots in Fig. 2. 

Two-dimensional spreading dye model 
Fig. 3 shows the color-graded pattern of average species richness with increasing range 
size in a two-dimensional geographic domain. At small range sizes (range sizes = 1 to 8 
grid cells), the pattern is virtually random, although as range size increases, more small-
scale aggregations appear in the domain. (Repeated runs of the model show that these 
aggregations do not appear consistently in the same locations.) At larger range sizes 
(range size = 16 to 128 grid cells), an increasing concentration of species richness 
emerges in a band running parallel to the edge of the domain, concentrated even more 
strongly near the corners at higher range sizes. These bands correspond to the peripheral 
peaks in the one-dimensional model, and like them, move towards the center of the 
domain as range size increases. The four local richness peaks near the corners of the 
domain arise from the intersection of the peripheral bands because ranges that are 
"reflected" from both adjacent sides overlap in the corners. At still larger range sizes 
(range size = 256 to 2048) the band expands to form a distinct ring or doughnut, with a 
crater of species richness in the center of the domain. The ring contracts for the same 
reason the peaks converge in the one-dimensional model: larger ranges are reflected by 
the borders are forced further toward the center. In the transition from 2048 to 4096 grid 
cells the doughnut coalesces to a classical mid-domain peak, just as in the one-
dimensional model. As the range size is increased beyond 5000 grid cells, half the size of 
the domain, the area of the peak becomes a plateau, and expands towards the edges of the 
domain (8192 to 9000 grid cells), 

Two-dimensional stepping-stone model 
Fig. 4 depicts the simultaneous effects of altering dispersal distance (

! 

" ) and geographic 
range size in the stepping-stone model. At very small dispersal distances (

! 

"= 0.5 to 1.0), 
the model behaves much like the two-dimensional spreading dye model with strict range 
cohesion, although the formation of the ring or doughnut of species richness at 
intermediate range sizes is not so apparent, probably because reflected ranges are less 
constrained in their location. As the dispersal distance increases (

! 

"= 2 to 16), a broad 
mid-domain peak emerges at intermediate to large geographic range sizes, with only a 
narrow band of decreased richness near the edges and corners of the domain.  

As 

! 

"  increases from 16 to 32 grid cell units, the patterns change abruptly, 
producing a second wave of peripheral richness peaks that coalesce centrally at high 
range sizes, but fail to become circular. We conjecture that this abrupt shift and pattern 
are caused by dispersal distances being so long that many trial destination cells fall 
outside the domain. Repeated trials do not find all grid cells in the domain with equal 
frequency, imitating the pattern with no dispersal (Fig. 3.) As 

! 

"  increases from 32 to 128 
grid cell units, a complex “wavelet” pattern emerges, and geometrically symmetric hot-
spots of species richness form in the domain. With a dispersal distance of 128 grid cells 
and geographic range sizes of greater than 4096 cells, the pattern again returns to a 



 Geometry of simple mid-domain effect models 11 

  

simple flat plain of species richness. These complex patterns cannot be easily interpreted, 
and they are probably idiosyncratic to the particular combination of domain size, domain 
shape, range size, and dispersal distance. 

Fig. 3. Contour plots representing expected numbers of species in a 100 x 100 cell grid. 
These plots were generated using a simple spreading dye model for assemblages with 
different geographic range sizes. Blue represent the lowest species density and red 
represents the highest species density. Each graph represents the mean of 300 stochastic 
runs of the model. 
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Fig. 4. Contour plots of expected species richness in a stepping-stone model. Each row 
represents a different value of 

! 

" , the Poisson dispersal parameter, and each column 
represents a different geographic range size. Domain size and color scale as in Fig. 3. 
Each graph represents the mean of 300 stochastic runs of the model. 

 

DISCUSSION 
Most previous stochastic models of range location in a bounded domain produce a 

classic mid-domain hump or, for smaller ranges, a plateau of richness (Fig. 1 shows an 
empirical case; see Figs. 2 and 3 in Colwell and Hurtt [1994] for a theoretical example). 
But, unlike our simulations here, previous models (with the exception of two of the 
models of Connolly [in press]) have consistently used heterogeneous RSFDs It has long 
been appreciated that large-ranged species dominate the overall pattern of species 
richness in gradient plots (Pineda and Caswell, 1998; Lees et al., 1999) and maps (Jetz 
and Rahbek, 2001), "voting" in proportion to their range size. Any effects of small and 
intermediate-sized ranges are masked by the strong MDE of the large-ranged species. 

In a study that developed independently of ours, Connolly (in press) used an 
analytical version of the one-dimensional spreading dye model (Equation 2 in Connolly, 
2005) and a two-dimensional simulation model that was identical to our model with full 
range cohesion (Fig. 3) to examine richness patterns for assemblages with constant range 
size. His results (Connolly, in press, Fig. 5B, 5C, and 5D and accompanying text) were 
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identical to ours for the range sizes he explored (10, 40, and 70% of the domain for the 
one-dimensional model; 10 and 50% of the domain for the two-dimensional model). He 
points out that the abrupt discontinuities shown by simple, one-dimensional spreading 
dye models (e.g. Fig. 5B in Connolly, in press, and our Fig. 3) are not evident in 
alternative models in which ranges limits are determined stochastically, with no fixed 
RSFD. 

Understanding the distributional pattern of small-ranged species, which often 
differs substantially from the pattern for total species richness, requires partitioning 
ranges into range-size quantiles (e.g. Jetz and Rahbek, 2001) or separating out small-
ranged species for special study. Major studies of continental-scale species richness in 
two-dimensional domains (e. g. Jetz and Rahbek, 2002, Rahbek et al., 2007) and along a 
variety of more local, one-dimensional gradients (e.g. Cardelús et al., 2006; Dunn et al., 
2006) reveal that the effects of environment and geometric constraints on species richness 
patterns differ strikingly among range-size quantiles. 

The complex two-dimensional patterns of species richness that emerge from the 
spreading dye model for small range sizes (Figures 3 and 4) may provide some insight 
into empirical richness maps. The upper map in Fig. 5 (based on Jetz et al., 2004) shows 
the observed pattern of total species richness for sub-Saharan African birds, on a 1° 
latitude x longitude grid (1599 species, 1738 map grid cells). Completely obscured by the 
richness patterns of larger-ranged species is the lower map, which shows the species 
richness of the subset of 190 bird species with the very smallest geographic ranges (≤ 10 
grid cells).  

The concentrations of these small-ranged species (Fig. 5, lower map) in interior 
mountainous areas (Cameroon Highlands, Albertine Rift Mountains, Kenya Highlands, 
Eastern Zimbabwe mountains, Lesotho Highlands) is obvious, and probably reflects the 
effects of topography on speciation rates (Graves, 1985; Rahbek and Graves, 2000, 2001; 
Fjeldså and Rahbek, 2006). But a second pattern is less readily explained: small-ranged 
species also tend to be concentrated along the coastlines (Fig. 5, lower map). This pattern 
might be accounted for by a combination of coastal mountains, unusual coastal habitats, 
and narrowly distributed coastal climates. But the pattern is also reminiscent of the 
peripheral band (doughnut) of richness for small ranged species that emerges in our two-
dimensional null model (Fig. 3). If the doughnut effect contributes to the empirical 
pattern of African birds, the mechanism would likely be the same as in the spreading-dye 
model: a range that cannot expand past a boundary tends instead to expand laterally, 
along the edge of the domain, producing a level of range asymmetry near domain 
boundaries that cannot be accounted for by topography, climate, or historical factors. In 
the model, range size is prescribed; in nature, on the other hand, peripheral ranges that do 
not expand along the coast and, instead, occupy a "truncated" range (Sandel and 
McKone, 2006) of arbitrarily small size may have been subject to higher probability of 
extinction (Colwell and Hurtt, 1994). Only carefully constructed null models and 
analyses of environmental historical factors can uncover the causes of this and other 
intriguing patterns of small-ranged species that remain hidden under the smokescreen of 
wider-ranged species. Empirical and theoretical studies would benefit from even further 
deconstruction of species richness gradients by range size than is currently practiced. 
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Fig. 5. Species richness for (top map) all 1599 species of birds endemic to Africa and 
(lower map) 190 small-ranged (each occupying 10 or fewer 1 x 1 degree quadrats) local 
endemic bird species, which tend to occur along the periphery and in mountainous 
regions (Jetz et al., 2004). The concentration of species along the periphery of the domain 
resembles some of the patterns that emerge from spreading dye simulations of small-
ranged species (Figures 2 and 3). 
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The domains illustrated in Fig. 3 can be viewed as classes of patterns representing 
size-based categories of ranges. Any natural range-size frequency distribution can be 
approximated by a mixture model composed of a weighted combination of the range 
sizes in the figure (or perhaps some other series of discrete range size classes; Lees et al., 
1999, pp. 541-546). In this view of the model, the resulting richness pattern for all range 
sizes considered together can be envisioned as a weighted sum of the patterns in the 
figure, or perhaps a series of layers of varying depth, representing the proportions in the 
mixture. In this way, the artificial quality of single-range-size models can be made 
realistic, while still preserving the distinct geometric effects that emerge for species of 
differing ranges. 

The two-dimensional stepping-stone model produced an even greater wealth of 
pattern (Fig. 4), including the subset of patterns that arose from the strict range cohesion 
of the spreading dye model (Fig. 3). As Connolly (2005) noted, introducing dispersal into 
a range-based model converts richness from the probability of range overlap to the 
probability of cell co-occupancy, with increasingly porous ranges weakening the mid-
domain pattern (bottom rows in Fig. 4). As dispersal distance increases, a phase of 
constant species richness throughout the domain reappears, resembling the pattern for 
small ranges with cohesive ranges, but of course with much higher richness (as illustrated 
in Fig. 4 by the column with range size = 2048). With very long dispersal distances (λ ≥ 
32), strange patterns appear, as most attempts at dispersal point outside the domain, so 
that trial and error redirects unsuccessful "destinations" into the left-hand tail of a 
widening Poisson distribution. After many unsuccessful trials, the algorithm eventually 
finds a small subset of cells within the domain that meet these constraints and accumulate 
hot spots of species richness. These latter parameter combinations are not realistic, but 
they are included for the sake of completeness, curiosity, and aesthetics. No one ever said 
that constrained randomness should not be beautiful, as well as instructive. 
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