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ABSTRACT

A fundamental goal of ecological research is to understand and model how processes generate patterns so that if
conditions change, changes in the patterns can be predicted. Different approaches have been proposed for modelling
species assemblage, but their use to predict spatial patterns of species richness and other community attributes over a
range of spatial and temporal scales remains challenging. Different methods emphasize different processes of structuring
communities and different goals. In this review, we focus on models that were developed for generating spatially explicit
predictions of communities, with a particular focus on species richness, composition, relative abundance and related
attributes. We first briefly describe the concepts and theories that span the different drivers of species assembly. A
combination of abiotic processes and biotic mechanisms are thought to influence the community assembly process. In
this review, we describe four categories of drivers: (i) historical and evolutionary, (ii) environmental, (iii) biotic, and (iv)
stochastic. We discuss the different modelling approaches proposed or applied at the community level and examine them
from different standpoints, i.e. the theoretical bases, the drivers included, the source data, and the expected outputs,
with special emphasis on conservation needs under climate change. We also highlight the most promising novelties,
possible shortcomings, and potential extensions of existing methods. Finally, we present new approaches to model and
predict species assemblages by reviewing promising ‘integrative frameworks’ and views that seek to incorporate all
drivers of community assembly into a unique modelling workflow. We discuss the strengths and weaknesses of these
new solutions and how they may hasten progress in community-level modelling.

Key words: evolutionary forces, dispersal, species pool, environmental filter, biotic interactions, stochasticity, modelling
framework.
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I. INTRODUCTION

Since the rise of community ecology, many theories have
been proposed to explain the assembly of species diversity
within communities (e.g. Hutchinson, 1959; MacArthur,
1967; Levins, 1969; May, 1975; Pacala & Tilman, 1993).
A large amount of both theoretical and empirical work
has provided much insight into this fundamental topic,
yet some striking questions remain unanswered. To what
extent can we move from descriptive and empirical data to
spatial predictions of community patterns and assembly? By
the same token, if environmental conditions are modified,
to what extent can we predict the resulting changes
in communities? The development of new approaches
for predicting community responses to environmental
modifications is progressing rapidly, especially considering
single-species modelling (e.g. Kearney & Porter, 2009;
Pearman et al., 2010; Zimmermann et al., 2010). However,
major challenges remain in the understanding and simulation
of the processes of species assembly in real, multi-species
communities (Cavender-Bares et al., 2009; Beck et al., 2012).

In this review, we focus on those models that were
developed for making spatial predictions of communities.
We are specifically interested in the prediction of community
attributes reflecting the number of species in a community
and the evenness of species’ abundances (Magurran, 1988):
richness, composition, and/or relative abundance at the
species level, and related attributes at larger scales such as
functional, guild, and vegetation type diversity (Huston,
1994) (Fig. 1). First, we briefly describe the existing
theoretical assumptions on the different forces known to
shape communities. Then we present the main methods
used to predict communities, focusing on their biological
principles, predictive approaches, and expected outputs.
In doing this we illustrate the most-promising examples,
potential extensions, and possible shortcomings. As a working
definition, here we consider communities as assemblages of
distinct populations of species that co-occur in a given space
at a given time. Given that studying all organisms across all
taxonomic groups is hardly feasible by one research team,
communities are often defined according to specific criteria,
typically all species pertaining to a taxonomic, functional
or trophic group, the choice of which depends on the
research questions being asked (Begon, Harper & Townsend,
1996). We do not cover issues of species’ physiology, relative
abundance, or population and metapopulation dynamics.
Moreover, we do not aim to review the detailed methods

of computing the models and mathematical aspects because
these have been extensively treated elsewhere. Similarly,
even if model evaluation is a crucial issue, assessing all
the evaluation techniques for each individual model and
approach is outside the scope of this review. We expect that
the identified perspectives will be beneficial to conservation
studies aimed at anticipating global change effects on
communities.

II. DRIVERS OF COMMUNITY COMPOSITION

A large number of abiotic processes and biotic mechanisms
are thought to shape the patterns of species assembly
in ecological communities. Land use and other human
modifications of the environment may also influence
patterns of community composition through a number of
processes such as local extinctions and species movements
in response to these changes (Fischer & Lindenmayer,
2007). However in this review we focus on the natural
drivers of community assembly, which we recognize as
pertaining to four categories: (i) historical and evolutionary,
(ii) environmental, (iii) biotic, and (iv) stochastic.

From the viewpoint of a long time scale, evolutionary
and historical factors have been shown to influence the
assemblage of species (Willis, 1922; Karr, 1976; Ricklefs &
Schluter, 1993). Evolutionary processes such as speciation,
extinction and adaptation determine the composition of
regional species pools (i.e. the set of species that could poten-
tially colonize by dispersal and establish within a community
over large spatio-temporal scales), through spatio-temporal
dynamics of species’ distributions (Schluter & Ricklefs, 1993;
Emerson et al., 2011; Lessard et al., 2012). At the local scale,
evolutionary relatedness among species may set constraints
on species characters to limit the ecological potential of a
species and its interactions with co-occurring species (Price,
1994, 2003). A range of historical events that have modified
the earth surface and the climate during geological times
resulted for example in episodes of extinction, radiation or
allopatric speciation that have reduced or boosted the rate of
diversification over a period of time for a clade (e.g. Fedorow,
1966; Flessa, 1986). In this context, dispersal acted as a filter
that determined which species in the regional source pool
could have reached a given unit. Over shorter timescales,
species pool richness and composition are influenced by
metacommunity dynamics (Mittelbach & Schemske, 2015).
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Fig. 1. Schematic illustration of the characteristics of the modelling approaches considered in this review pertaining to the strategies
‘assemble first, predict later’ (A), ‘predict first, assemble later’ (B), and ‘assemble and predict together’ (C). For each model, we indicate
the predictive approach, the inclusion of different drivers of community assembly (we consider that the historical/evolutionary driver
is included in the model if species’ phylogenetic relations, or origin of the species pool/dispersal limitation are considered), and the
expected predictive output. In particular, we specify whether the drivers are implicitly or explicitly accounted for in the model and
potential extensions anticipated by the authors. DGVM, dynamic global vegetation model; GDM, generalized dissimilarity model;
GSM, general simulation model; MaxEnt, maximum entropy model; SAD, species abundance distribution; RAD, rank abundance
distribution; SDM, species distribution model; S-SDM, stacked species distribution model.
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Ecological mechanisms regulate the assemblage of
species in a community (Lotka, 1925; Volterra, 1926;
Gause, 1934; Hutchinson, 1959). According to the theory
of trait-based community assembly (Keddy, 1992), the
environment acts like a filter on the regional species
pool including all species that lack specified combinations
of functional traits (i.e. physiological and morphological
properties). Support for environmental filtering typically
comes from plant studies that find positive correlations
between environmental gradients and community-weighted
trait values (e.g. Cornwell & Ackerly, 2009; Shipley, 2010;
Dubuis et al., 2013) and from studies showing that trait
differences generate competitive hierarchies (Freckleton
& Watkinson, 2001; Kunstler et al., 2012). Non-random
patterns in phenotypic traits have also been documented
in a wide range of animal phyla (e.g. Ricklefs & Travis,
1980; Ingram & Shurin, 2009). The abiotic environment
also provides spatio-temporal heterogeneity upon which the
ecological strategies of many different species can be built
(Weiher & Keddy, 2001). In this sense, the environment may
constrain the number of species that can actually coexist in a
determined site based on available energy (Hairston, Smith
& Slobodkin, 1960). The species–energy relationship, first
proposed by Hutchinson (1959), has been reported for many
groups and geographical settings (Connell & Orias, 1964;
Brown, 1981; Wright, 1983). Theoretically, it follows that a
measure of energy availability should allow the prediction
of the number of species in a region (e.g. Currie, 1991).
Such a measure can be seen as a rough expression of the
environmental carrying capacity of a unit, determining the
limits of community saturation (Loreau, 2000). However, an
open question remains whether this constraint should apply
to the total number of species or to the total number of
individuals of all or a given combination of species in a unit.

In addition to environmental filtering and constraints,
biotic interactions represent another ecological force that
influences community assembly processes (e.g. Gause, 1934;
MacArthur, 1964, 1965). Competition for limited resources
has long been considered one of the most important species
interactions in ecology (Hutchinson, 1959; MacArthur &
Levins, 1967; Brown, 1981), constraining the final diversity
in a community either by leading to a partitioning of resource
requirements among species (driven by the limiting similarity
principle), through evolutionary character displacement, or
as a result of competitive exclusions among species depending
on the same resources (Lack, 1947; MacArthur, 1964,
1965; Tilman, 1982; but see Andrewartha & Birch, 1954;
Wiens, 1977 on the ‘variable environments’ hypothesis).
However, by the early 1980s, important challenges to the
limiting similarity paradigm (MacArthur & Levins, 1967)
emerged, reducing the generality of its applications. The most
important of these challenges was the introduction of null
models in community ecology, causing ecologists to consider
another view on patterns by simply asking the following:
what would these patterns of species assembly look like if
mechanism x (e.g. species interactions) was not in operation.
Some of the patterns that were previously attributed to

interspecific competition were actually simulated by models
that do not account for competitive forces (Abrams, 1975;
Turelli, 1978). Moreover, other empirical and theoretical
studies suggested that a great variety of different interactions
can influence coexistence patterns among species across
trophic levels (Hairston et al., 1960; Connell, 1975; Ricklefs,
1987), but communities where local interactions are low
or absent have also been observed (e.g. Strong, Lawton &
Southwood, 1984), supporting the idea that real communities
lie on a continuum of interactive to non-interactive processes
(Cornwell & Lawton, 1992).

Environmental filtering and biotic competitive interactions
stand as opposite forces regarding species traits (Zobel,
1997; Weiher & Keddy, 1999; Mayfield & Levine, 2010).
Environmental filtering is observed when species in a
community tend to be more similar in their ecological
requirements than by chance, leading to the convergence
(or clustering) of adaptive traits. On the contrary, limiting
similarity is observed when species in a community tend
to be less similar in their traits (i.e. trait divergence
or overdispersion) than observed by chance, due to
biotic interactions restricting coexistence of species with
similar traits and thus similar in their resource acquisition
(Raunkiaer, 1934; MacArthur & Levins, 1967; Keddy,
1992; Weiher, Clarke & Keddy, 1998). When the two
controls operate at the same time, functional or phylogenetic
convergence or divergence can be produced only in the
relevant groups of traits associated with these diverging forces
(Weiher et al., 1998; Cornwell & Ackerly, 2009; Mayfield &
Levine, 2010; Ndiribe et al., 2013). Elucidating how these
forces act based on traits, what their effects are on the
community, and how they relate to ecological gradients may
reveal constraints that can be used to predict community
structure (Shipley, Vile & Garnier, 2006) and ecosystem
function (Diaz & Rosenberg, 2008).

Even if much of the early ecological theory had mainly
a deterministic basis, it has long been recognized that
many patterns in nature have a stochastic component
(Watt, 1947; Wiens, 1977; den Boer, 1981). However,
the relative importance of stochastic versus deterministic
processes (e.g. ecological drift versus selection) on community
assembly is still debated (Strong et al., 1984; Hubbell,
2001; Tilman, 2004; Rosindell et al., 2012). Stochasticity
factors can be related either to the species demographic
fluctuations and genetic drift, or to external factors that
reflect underlying environmental variability (e.g. extremes)
and disturbances; thus, they may be important for explaining
community assembly (McPeek & Gomulkiewicz, 2005).
A major challenge is to determine how much the
environment, history, evolutionary processes, and biotic
interactions combine to explain species distributions and
community assembly (Thuiller et al., 2013) and how much
remains unexplained by any of these factors, i.e. how
much originates from purely stochastic processes (Guisan &
Rahbek, 2011).

The relative importance of each driver often differs at
distinct levels of observation (Rahbek & Graves, 2001;
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Rahbek, 2005). In the classical view, climate is assumed to
be a stronger filter at regional to continental scales (Ricklefs,
1990), whereas species interactions are often assumed to drive
local assembly patterns (MacArthur, 1964, 1965; Pearson &
Dawson, 2003). However, increasing evidence also show
the importance of microclimates in influencing the local
distribution of species and community composition and,
conversely, the impact of biotic interactions in shaping
species ranges at coarser resolutions and larger extents
(e.g. Araujo & Luoto, 2007; Gotelli, Graves & Rahbek,
2010; Jones et al., 2013). This scale dependence can also be
identified in the concept of the environmental niche (Holt,
2009) and can be relevant for understanding the assembly
of species into communities. Analogous with the classical
partitioning of regional diversity, the ecological niche can
be partitioned into α and β components (Pickett & Bazzaz,
1978). The α-niche encompasses environmental axes that
vary on a scale that is smaller than the extent of the focal
community, thus at the scale of the environment that is
experienced by individuals, i.e. the dimension at which
interactions among species occur. The β-niche characterizes
larger units and varies across wider environmental gradients,
and thus expresses coarser environmental filtering, generally
at a regional scale. Therefore, α-niche characteristics
will tend to be key for explaining species coexistence
through resource partitioning and will thus tend to
differ between co-occurring species, whereas β-niche
characteristics will tend to be shared among co-occurring
species within the same site (Ackerly, Schwilk & Webb, 2006;
Silvertown et al., 2006).

To encompass all of the drivers discussed above in a
unique process, community ecologists often use a concept
of successive filters of community assembly (Lortie et al.,
2004; Ferrier & Guisan, 2006; Guisan & Rahbek, 2011).
Evolutionary and biogeographic history first defines the
species pool for a study unit (Graves & Gotelli, 1983; Zobel,
1997). Environmental filtering then excludes from this pool
those species that are physiologically unable to tolerate the
physical environment (i.e. unable to establish and maintain
positive population growth). Finally, positive and negative
biotic interactions further influence the assembly process in
complex ways (e.g. Poff, 1997; Soberon, 2007; Soberon
& Nakamura, 2009). Control through macroecological
constraints can act in the local communities, such as
fine-scale phylogenetic relationships constraining species
composition (Mayfield & Levine, 2010). Complications in
reconstructing this sequence of steps originate from a number
of different factors, such as (i) limits in our biological
knowledge, (ii) limits in the data used for modelling, (iii)
limits in the mathematical approaches behind models, and (iv)
stochasticity. In particular, the latter aspect – i.e. how much
stochasticity should we expect in the assembly of biological
communities – is rarely addressed. Further the strength of
human impacts and the spread of alien species that may
disrupt the natural equilibria can be additional sources of
uncertainty (Ricklefs & Schluter, 1993; see Rahbek, 2005 for
a review).

III. PREDICTING COMMUNITIES IN SPACE AND
TIME: EXISTING APPROACHES

For a given community, one can ask whether species
number and composition are predictable, whether species
are substitutable within a community (ecological equivalent
or counterparts), or whether the rules that predict when such
substitutions occur are discernible. In a thought-provoking
paper, Ricklefs (2008) argued that community ecology, as a
science, should move beyond the study of local communities
as epiphenomena towards a more general understanding
of interactions among populations (and species) across a
continuum of spatiotemporal scales. Such an approach would
provide greater explanatory and predictive power in ecology
and evolution than treating communities as fixed entities. In
this regard, several community-level modelling approaches to
date have attempted to individuate and predict the potential
mechanisms determining the assembly process, which we
review here (Table 1 and Fig. 1; see online Appendix S1,
for a detailed discussion of their theoretical foundations and
principles, with references to the original papers for more
details). We first identify the different modelling strategies,
the possible approaches within them, how the different
drivers are accounted for, and finally discuss the output data
requirements and conservation needs under global change.

(1) Strategies

We start from the classification of community-level models
into three possible ‘strategies’ suggested by Ferrier & Guisan
(2006) and complement it with additional criteria. Our
classification is based on the statistical procedure, conceptual
basis, and expected outputs of the models.

(a) Assemble first, predict later

In this strategy, data are first assembled on the basis of
some biological criteria or ordination analysis and then
these community-level attributes are predicted. The output
of these models is typically richness prediction or other
cumulative community attributes (e.g. vegetation types), but
any information on the single species. This strategy is inspired
by the Clementsonian (Clements, 1916) view of communities
as combinations of a fixed set of co-occurring species: the
distribution of assemblages can be modelled only if the
communities are stable in time and space.

(b) Predict first, assemble later

In this strategy, single species are individually modelled (e.g.
with single-species distribution models) and later stacked to
produce a community prediction. The application of these
models allows the reconstruction of community composition
and theoretically also other attributes from single species.
This strategy is based on the view that communities result
from the coincidental assemblage of individualistic ecological
responses of species (Gleason, 1939).
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(c) Assemble and predict together

In this strategy, all species are modelled simultaneously
accounting for the entire community structure, but a final
prediction can be provided for each species individually, so
informing about species composition or relative abundance.
This strategy reflects an intermediate theoretical view. The
existence of interactions between species is recognized, so that
communities are not completely fixed units (Callaway, 1997),
but these interactions are only implicitly accounted for.

(2) Predictive approaches

In this review, we account for models based on predictive
approaches belonging to either one of the two extremes,
‘static’ or ‘dynamic’ (i.e. when processes are explicitly
modelled), as well as for those falling in the continuum
defined by the extent to which processes are explicitly
represented. Among classic correlative models (models 1–3,
Table 1 and Fig. 1) are macroecological models, which were
extensively used to evidence macroecological relationships
from species-specific patterns, building on solid biological
foundations (Kerr, Kharouba & Currie, 2007; Lemoine,
Schaefer & Böhning-Gaese, 2007, but see Rahbek et al., 2007;
Rangel, Diniz-Filho & Colwell, 2007). These models are
easy to use and interpret and require only a limited amount
of information to predict community attributes (Ferrier &
Guisan, 2006). They can thus be applied to large numbers
of species even if limited information is available, a valuable
characteristic for reconstructing macroecological patterns
or for supporting large-scale conservation plans. However,
these models also have a number of limitations discussed in
recent reviews, such as the difficulty of inferring causality
from observed patterns, correlated predictor variables, the
loss of species’ identities, the problematic assumption of
stationarity through space and time, and the difficulty of
accounting mechanistically for many processes known to be
important for community dynamics (e.g. Chase & Leibold,
2003; Rahbek et al., 2007; Schurr et al., 2012). Due to these
simplifications, the reliability of macroecological models in
making predictions under different environmental conditions
has been questioned (e.g. Araújo & Rahbek, 2006; Zurell
et al., 2009; but see Kearney et al., 2009; Hothorn et al., 2011;
Blois et al., 2013).

Dynamic models are better suited to integrate some of
the underlying processes shaping communities, such as
demographic processes or non-equilibrium dynamics (Chave
& Leigh, 2002; Travis, Brooker & Dytham, 2005; Brooker
et al., 2007; Kerr et al., 2007), and thus to build on new
conceptual developments, such as the metabolic theory
(Brown et al., 2004) or the stochastic niche theory (Tilman,
2004). However, dynamic models can be developed for
only a few communities for which sufficient knowledge
exists for the constituent species (e.g. physiology, population
dynamics; see Jeltsch et al., 2008), thus limiting the generality
of their predictions (Thuiller et al., 2008). The reduction of the
number of parameters in dynamic models may increase their
generality, prediction capability and applicability to higher

community levels, but such simplifications would require
clear assumptions to be made about what is modelled in these
systems. Examples of attempts made to tackle this duality
(simplicity versus realism) include the Spatial dynamic simulation
model (13 in Table 1 and Fig. 1C), which classically simulates
spatial sea or forest dynamics (e.g. He & Mladenoff, 1999;
Lischke et al., 2006, respectively). Other approaches employ
different ways and degrees of simplification, e.g. limiting the
prediction to functional types (Dynamic global vegetation model;
Cramer et al., 2001, 4 in Table 1 and Fig. 1A) or using
integrated simulations of multiple species with attributes of
various degree of realism (General simulation model, Gotelli et al.,
2009, 5 in Table 1 and Fig. 1A).

The two predictive approaches – correlative versus
dynamic – have complementary advantages: the generality,
tractability, and applicability to large communities achieved
by correlative static models and the precision and causality
achieved by dynamic models (Levins, 1966; see Guisan
& Zimmermann, 2000). The future development of
community-level modelling is likely to see a mixing of their
strengths, as has occurred for single-species predictions
(semi-mechanistic or ‘hybrid’ approaches, see Thuiller
et al., 2013, for a review; Mokany & Ferrier, 2011).
The non-mechanistic elements could include correlations
between community properties or single-species predictions
with environmental variables (Connor & McCoy, 1979;
Sommer et al., 2010), and the dynamic components may
inform processes such as dispersal, biotic interactions and
adaptation (Guisan & Thuiller, 2005; Thuiller et al., 2008).
For instance, Midgley et al. (2006) developed a spatially
explicit approach to integrate species’ bioclimatic suitability
and population-level demographic rates with simulation of
landscape-level processes (dispersal, disturbance, species’
response to dynamic dominant vegetation structure). Midg-
ley, Thuiller & Higgins (2007) linked mechanistic dispersal
models with Dynamic global vegetation models (4 in Table 1 and
Fig. 1A) to simulate migration processes of tree propagules at
the leading edge of species distribution under climate change.

(3) Drivers’ inclusion and potential extensions

(a) Evolutionary and historical drivers

Over the previous decade, evolutionary and historical
components have been increasingly integrated in community
modelling procedures (Emerson et al., 2011; Lessard et al.,
2012). Defining the regional source pool of the modelled
spatial units (i.e. the pool of species known to have colonized
the region) may help place the study of local diversity
patterns in the context of regional distribution, together
with evolutionary and environmental history. A species is
a member of the regional species pool if it can potentially
disperse from the meta-community (a subset of the regional
pool) into a local community (e.g. Sonnier, Shipley & Navas,
2010). In the absence of dispersal limitation within a study
area (e.g. over small extents), all of the spatial units can
be considered to share the same source species pool (e.g.
D’Amen et al., 2015). For analyses that cover large spatial
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extents, it would be necessary to define different local species
source pools from the regional source pool (Graves & Gotelli,
1993; Guisan & Rahbek, 2011). The study of source pool
geometry through dispersion fields, which can be visualized
as the overlap of the geographical ranges of all species that
occur at a given site (Borregaard & Rahbek, 2010; Lessard
et al., 2012), could be useful to include dispersal limitations in
the case of global studies. Moreover, Pigot & Etienne (2014)
recently showed the dynamic nature of species pools over a
range of temporal and spatial scales. This dynamic nature
implies ecological and evolutionary feedback mechanisms
from communities to the species pool that are currently
lacking in the conventional model of community assembly
(Mittelbach & Schemske, 2015).

Also placing phylogenetic studies in a geographic context
can be valuable for studying the importance of historical
processes in community assembly (see Graham et al., 2009, for
an example). Patterns across phylogenies (either phylogenetic
clustering or overdispersion) can provide insights about the
dominant ecological forces (e.g. limiting phenotypic or niche
similarity) acting in the community over long time frames
(Webb, 2000; Webb et al., 2002). Moreover, phylogenetic
structure provides information on the origin of differences
in diversity between communities (Ricklefs & Schluter,
1993). Significant non-random phylogenetic structure has
been evidenced in communities at multiple spatial and
taxonomic scales across diverse taxa (e.g. Cavender-Bares
et al., 2004; Kozak et al., 2005; Kembel & Hubbell, 2006).
Again, as discussed by Lessard et al. (2012), it is important
to take into account the potential effects of the available
source species pool as that can significantly alter the
derived patterns and results of phylogenetic predictions
based on community modelling (Ndiribe, Salamin & Guisan,
2013). Many measures of phylogenetic diversity within
communities have been developed (Emerson et al., 2011).
The first quantitative metric of phylogenetic relatedness
within communities is phylogenetic diversity (PD) (Faith,
1992; Pio et al., 2014), but more recent metrics have also
been produced (Ferrier et al., 2007; Bryant et al., 2008;
Prinzing et al., 2008). The application of these metrics shows
theoretical increasing promise to help predict community
properties and responses to changing environments (see
Webb, 2000, and Cavender-Bares et al., 2009, for specific
reviews on this topic). Moreover, detailed genetic analyses
and field experiments can be useful to test for heritable
variation in fitness, leading to new insights for potential
adaptations of species to new conditions.

Among the techniques considered herein, evolutionary
origins are simulated in General simulation models (Gotelli
et al., 2009; 5 in Table 1 and Fig. 1A) within a neutral
community that can then be compared to empirical
data. Similarly, Colwell & Rangel (2010) developed a
geographical range-based, stochastic model that simulated
speciation, anagenetic evolution, niche conservatism, range
shifts and extinctions under true temperature cycles (late
Quaternary) and along tropical elevation gradients. These
techniques are theoretical modelling approaches, but to our

knowledge, the integration of true species phylogenies to
predictive modelling at a community level is still lacking. As
molecular and analytical methods became more applicable
and reliable it should become increasingly easier to account
for phylogenetic relationships when modelling communities
(e.g. Ndiribe, Salamin & Guisan, 2013; Pellissier et al., 2013).
A particular challenge is to apply the knowledge gained
from community phylogenetic structures to more general
applications in predictive modelling of communities.

(b) Environmental drivers

All of the modelling approaches considered herein attribute
a central role to environmental filtering in determining com-
munity attributes. Several recent studies support this choice
showing that species within assemblages are functionally
more similar than expected by random assembly from a
regional trait pool, i.e. suggesting that processes of trait
convergence (as a result of environmental filtering) are dom-
inant over those of trait divergence (as a result of limiting
similarity) at the assemblage level given the environmental
variables available (e.g. Cornwell, Schwilk & Ackerly, 2006).
Correlative models statistically link spatial data to distribution
records: environmental data are used to make inferences on
species range limits and habitat suitability (e.g. S-SDMs, mul-
tispecies extension from SDMs; Dubuis et al., 2011; Pottier
et al., 2013), on species richness or other community prop-
erties (Correlative Macroecological Models for richness or other
community properties; e.g. Thuiller et al., 2006; Dubuis et al.,
2011, 2013; or β-diversity models, Ferrier et al., 2007) (1–3,
5, 6, 8–10 in Table 1 and Fig. 1). Mechanistic/dynamic
models rely on our understanding of the dominant processes
behind the pattern to be measured. Therefore these mod-
els attempt explicitly to incorporate the mechanistic links
between the biological attributes (e.g. physiology) of organ-
isms and their environment (e.g. Dynamic global vegetation models,
Spatial dynamic simulation models, Cramer et al., 2001; Midgley
et al., 2010, 4, 13 in Table 1 and Fig. 1A, C). In both cases,
the objects of the models are individuals or single species, or
community aggregated properties (Dubuis et al., 2011).

Another approach to account for environmental filtering
is to focus on species traits (e.g. Grime, 1977; Connell, 1978).
Traits can be modelled by classical correlative approaches
(e.g. Dubuis et al., 2013) under the ‘Assemble first, predict
later’ strategy (Correlative trait models, 3 in Table 1 and Fig. 1A).
These approaches are applicable to a range of systems
because they are taxon independent and because traits can be
linked directly to the environment, thus facilitating prediction
across environmental gradients (McGill et al., 2006; Westoby
& Wright, 2006). The drawback is the risk of a high level
of abstractness that strongly limits their usefulness in climate
change predictions (Thuiller et al., 2008). In recent years,
trait databases and trait-based ecology have improved our
predictive ability (e.g. Dawson et al., 2013) so that outcomes
of trait models are increasingly informative (i.e. relative
abundance of the component species of the community;
Shipley et al., 2006; Webb et al., 2010; Laughlin & Laughlin,
2013), but on the other hand remain very demanding in
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terms of source data [e.g. the Traitspace model of Laughlin
et al. (2012) requires measures of traits for all individuals to
derive the biotic term in his computation, so that it can be
applied only to small, well-surveyed communities] (11, 12 in
Table 1 and Fig. 1C).

(c) Biotic drivers

In a few cases, biotic interactions are accounted for
in community-level models in an explicit fashion. Two
examples can be found among the approaches considered
here. The Spatial dynamic simulation models (13 in Table 1
and Fig. 1C) consider in the simulation process species’
interactions, where inter- or intraspecific competition for
light (or space, water, or nitrogen) are modelled via empir-
ical or physiology-based mathematical functions describing
resource competition, growth and demographic processes of
establishment and mortality (see Cramer et al., 2001; Sitch
et al., 2003). In the Traitspace model, competition is modelled
by allowing single individuals to overlap in trait space (Laugh-
lin et al., 2012, 12 in Table 1 and Fig. 1C). Most often the effect
of biotic interactions is accounted for indirectly by consider-
ing as the response variable synthetic community attributes,
spatial species dissimilarity indices or interspecific covariation
in species ranges (e.g. Ferrier et al., 2007), or traits dependent
on biotic interactions (Norberg et al., 2001). Using surrogates
is necessary because the study of pairwise interactions in
highly diverse communities is virtually impossible. However,
some alternative solutions were proposed, e.g. by indirect
measures of non-consumable environmental conditions that
mediate interactions, interaction currencies [as described in
Kissling et al., 2012 and implemented in food-web models and
in Spatial dynamic simulation models (Fulton et al., 2004; Lischke
et al., 2006, 13 in Table 1 and Fig. 1C)] or by latent variables
(Pellissier et al., 2013). Alternatively, the interactions of each
individual with a community background could be quanti-
fied, e.g. the interaction milieu (McGill et al., 2006). An example
could be competition for light in a forest, where the light is the
resource, the height of individual plants at given site are an
approximation of a competition milieu, and the frequency distri-
bution of heights of all plants is the community background.

Another promising approach to include biotic drivers into
predictive community models is their integration through
network analysis (Gilman et al., 2010; Araújo et al., 2011;
Gravel et al., 2013). As this approach may require extensive
data, complex food webs can be reduced using tractable
smaller ‘community modules’ of species that interact strongly
and share the same type of interaction (Gilman et al.,
2010) before integrating them within community models.
Food-web models are generally not spatially explicit, but
a few spatialization attempts were recently made (Naisbit
et al., 2012, but see Massol et al., 2011). For instance, Jabot
& Bascompte (2012) integrated a spatial meta-community
structure into food-web network approaches by studying
a bitrophic plant–pollinator interaction, and Pellissier et al.
(2013) used interaction links between species inferred from
food-web models as predictor variables in stacked species
distribution models. Moreover, as interactions effects are

also mediated by the environmental context in which species
coexist, an increasing number of macroecological analyses
correlated networks metrics with environmental conditions
at the sites (e.g. Dalsgaard et al., 2011, 2013; Trøjelsgaard &
Olesen, 2013). A potential shortcoming of current network
analyses is that they are built upon taxonomically resolved
interactions so requiring species-specific source data that
limit their application to large scales. Incorporating traits
effects in multispecies interactions could be a way to increase
their generality (Kissling & Schleuning, 2014).

One route to address the lack of data to characterize biotic
interactions (Araújo et al., 2011; Gravel et al., 2013; Wisz et al.,
2013) could be the analysis of patterns of geographic overlap
in the distributions of species. Using matrices of species spa-
tial co-occurrences associated with a null model approach,
potential broad-scale interactions could be derived (e.g.
Diamond, 1975; Gotelli & Graves, 1996; Gotelli et al., 2010).
Precautions should be taken before inferring the cause
of the observed overlap in distribution (Diamond, 1975).
For instance, controlling for species habitat requirements
in null models could increase the chances to discriminate
between environmental influences and biotic interactions
(e.g. Gotelli, Buckley & Wiens, 1997; Peres-Neto, Olden
& Jackson, 2001). There are many indices available to
summarize patterns in species distribution from matrices of
spatial co-occurrence (e.g. Stone & Roberts, 1992; Gotelli,
2000) and some recent papers explored their use in the
context of explanatory community modelling studies (e.g.
Boulangeat, Gravel & Thuiller, 2012; Kissling et al., 2012).

(d ) Stochasticity

Purely stochastic processes can be of a different nature, being
related to species demography fluctuations and genetic drift
(Hubbell, 2001; Keith et al., 2008), or to external factors
reflecting underlying environmental variability (Guisan &
Zimmermann, 2000). Their effects further depend on many
non-stochastic factors, for instance the specific process that is
affected, e.g. birth, death, competition, or predation, or the
species attributes, e.g. body size (Farjalla et al., 2012). Finally,
the scale can influence the effect of stochastic processes both
within and among biogeographic regions, e.g. for instance,
stochasticity may lead to a poorer predictability of species
composition in smaller species pools, i.e. in fine-resolution
analyses (Shipley, 2010; Pellissier et al., 2012; Pottier et al.,
2013). Due to this variability, the importance given to
stochasticity in planning any community model should be
strictly related to the system under study and questions being
addressed.

An extreme view on the role of stochasticity in
community assembly is represented by the popular neutral
metacommunity model arising from the Hubbell’s neutral
theory for community assembly (Hubbell, 2001). The
neutral community theory explains species coexistence as
a stochastic balance between immigration and extinction on
a local level, and between speciation and extinction on a
regional level, with all individuals being expected to have
exactly the same biological traits (Etienne & Alonso, 2006).
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Models based on the neutrality principle often produce
relative-abundance patterns that are indistinguishable from
those derived from niche theory (e.g. Bell, 2001; Hubbell,
2001; Volkov et al., 2007). Among the community-level
models previously described, the General Simulation Model has
a very strong stochastic component as it simulates stochastic
origin, spread, and extinction of species geographical ranges
in a heterogeneous landscape (Rahbek et al., 2007; Gotelli
et al., 2009, 5 in Table 1 and Fig. 1A). Also Spatial dynamic
simulation models (13 in Table 1 and Fig. 1C) incorporate
stochastic elements in demographic processes such as
individual tree establishment and mortality, so that patch
dynamics is partially Bayesian as a stochastic process. The
other approaches usually only acknowledge the existence
of, but do not simulate explicitly, stochastic factors, so that
the predictive ability of the models rests on the relative
importance of the deterministic drivers versus other stochastic
forces influencing community assembly (Shipley et al., 2006;
Guisan & Rahbek, 2011).

A different approach to consider stochasticity in commu-
nity modelling could be to address its consequences a posteriori.
Evidence suggests that in most cases, community assembly
can lead to multiple stable equilibria (e.g. Luh & Pimm, 1993;
Pottier et al., 2013), which could happen due to assembly
history when a stochastic variation in colonization influences
more-deterministic priority effects and consequently the final
assemblage composition (Chase, 2003) or due to shorter-time
stochastic processes, e.g. random dispersal and demography
(Chase & Myers, 2011; Weiher et al., 2011). To depict the
uncertainty associated with community prediction in every
studied unit, Pellissier et al. (2013) applied a probabilistic
approach to S-SDMs and provided a variability map along
with the prediction outcome (6 in Table 1 and Fig. 1B).

(4) Data requirements and conservation needs
under global change

As the success in dealing with environmental change emerges
from our anticipative capacity (Bellard et al., 2012; Guisan
et al., 2013), providing predictive tools is a crucial challenge
for ecologists and conservation planners. The modelling
approaches considered herein can provide information about
the potential distribution of specific diversity, with variable
degrees of accuracy according to their characteristics and
the available initial data. Data availability often hampers the
possibility to predict communities, and this limitation is even
more severe for dynamic models that require more detailed
information (e.g. physiology, demographic parameters, and
dispersal ability). In the case of incomplete data for many
regions and taxonomic groups (e.g. Dunn, 2005; D’Amen
et al., 2013), especially for large-scale conservation plans,
modelling the emergent patterns of species diversity directly
seems to be the most straightforward solution (Myers et al.,
2000). Only count data are required and the sampling
effort is relatively low. Moreover, all available data across
species can be used regardless of the number of records
per species [models from the ‘Assemble first and predict
later’ strategy (1–5 in Table 1 and Fig. 1A)]. However,

even the simplest count data could be biased in many ways:
counts of species are challenging for many taxonomic groups,
geographic locations, and ecosystems, and differences in
sampling effort should be considered before comparisons can
be made (Fleishman, Noss & Noon, 2006). Other synthetic
community properties can be of particular interest for
conservation (Dubuis et al., 2013). For instance, community
phylogenetic diversity can inform conservation managers
about the communities’ capacity to respond to environmental
changes, a larger phylogenetic diversity being indicative of
a higher evolutionary potential and resilience (Faith, 1992;
Thuiller et al., 2011). Functional properties of communities
can provide information about future impacts on ecosystem
goods and services (Dubuis et al., 2013).

Species richness has often been assumed to be an indicator
of conservation value related to the protection of multiple lev-
els of biodiversity (e.g. Meir, Andelman & Possingham, 2004),
but it alone provides no information on species identity or
the functional roles of individual species and their population
attributes. Complementary measures based on species com-
position can overcome some of these limitations (Margules &
Pressey, 2000). Compositional information allows attribution
of differential conservation value to the species and estimation
of indices such as complementarity and irreplaceability for
maximizing the total number of species to be represented in a
set of conservation areas (Margules & Pressey, 2000). Often,
the specific data employed are readily available (e.g. samples
from museum collections) and are typically incomplete (Ron-
dinini et al., 2006). In these cases, precautions should be taken
because models based on these data could be biased, and this
error could propagate in the planned system of protected
areas. Community composition is the natural outcome for the
models pertaining to the ‘Predict first, assemble later’ strategy
(6, 7 in Table 1 and Fig. 1B). Many studies based on stacked

species distribution modelling proposed their results to identify
priority areas for natural protection (e.g. D’Amen et al., 2011;
Faleiro, Machado & Loyola, 2013; Leach, Zalat & Gilbert,
2013; Mateo et al., 2013), notwithstanding, examples of real
application of these S-SDM outcomes to guide conservation
planning are still scarce in the literature (Guisan et al., 2013).
Composition is also predicted by most of the approaches in
the ‘Assemble and predict together’ strategy (8–13 in Table 1
and Fig. 1C). Among these approaches, models of compositional

dissimilarity (GDM) are especially promising for conservation
planning in data-poor regions because they can extrapolate
community-specific information by modelling turnover in
community composition (9 in Table 1 and Fig. 1C) (Ferrier
& Guisan, 2006; Ferrier et al., 2007). Some limitations in
predicting species composition should be highlighted. Filter-
ing and sorting processes can constrain community assembly
and make some assemblages less likely to persist than others,
without reaching a unique equilibrium. This fact along with
the neutral processes influencing species assembly, make a
fixed species composition hardly predictable (Weiher et al.,
2011).

Another important criterion to consider in conservation
planning is to maximize the probability of persistence of
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Fig. 2. Schematic illustration of the characteristics of the integrative frameworks considered in this review. For each framework, we
indicate the predictive approach, the inclusion of different drivers of community assembly (we consider that the historical/evolutionary
driver is included in the model if species’ phylogenetic relations or origin of the species pool/dispersal limitation are considered),
and the expected predictive output. In particular, we specify whether the drivers are implicitly or explicitly accounted for in the
model and potential extensions anticipated by the authors. FBM, first-principles Bayesian multilevel model; M-SET, dynamic
metacommunity model; SESAM, spatially explicit species assemblage modelling; SS-DBEM, size-spectrum dynamic bioclimate
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viable populations. Attempts have been made to maximize
persistence across multiple species using occurrence data only
(Araújo & Williams, 2000). Other reserve selection methods
use species relative abundance or density as proxies for
population viability (Pearce & Ferrier, 2002). However, one
of the problems with abundance data is that it requires a high
sampling effort, and it may be difficult to compare among
different areas (Araújo & Williams, 2000). Some modelling
approaches reviewed here provide predictions of the relative
abundance of species (e.g. trait-based models and dynamic
ones, 11–13 in Table 1 and Fig. 1C), but it usually comes
at the cost of high data demand for parameterization (see
Section III.2). Dynamic forest models often have been used
to optimize sustainable management planning (e.g. Shifley
et al., 2006; Zollner et al., 2008) and to forecast changes
in wildlife habitat suitability (Shifley et al., 2008). A few
examples of species abundance predictions exist also from
the ‘Predict first and assemble later’ strategy, e.g. hybrid
SDMs (combination of static SDMs with dynamics landscape
and/or population models) have been stacked to forecast the
impacts of environmental change on population viability in
communities (e.g. Bonnot, Thompson & Millspaugh, 2011).

IV. NEW SOLUTIONS AND PERSPECTIVES:
INTEGRATIVE FRAMEWORKS

A solution to manage the complexity of factors and
processes leading to community assembly could be that
instead of searching for a universal formula to apply,
work should be carried out in a case-specific setting

within a general conceptual and methodological framework.
Ideally, this framework should be general enough to
incorporate in separate but interconnected steps (here called
‘modules’) all of the drivers that can potentially influence
community assembly. A pre-analytical step should first
identify which drivers are important to switch ‘on’ or
‘off’ the relevant modules of the framework, such as the
integrative framework. Thus, the ‘integrative framework’
may represent an answer to the need to encompass all of
the drivers of community modelling in a unique approach.
This approach is expected to progress quickly in the field of
community modelling because it may, in principle, resume in
its structure the current knowledge of community assembly
process and should be flexible enough to accommodate
promptly any technical improvement coming from new
theoretical advances. Moreover, the different modules can be
implemented with pre-existing modelling approaches, taking
advantage of their strengths and correcting their identified
pitfalls, e.g. it allows the integration of static and dynamic
approaches. A highly challenging perspective from both the
theoretical and technical points of view would be to link
the different modules. The exact procedures for such linking
need further development, but some community modelling
studies can be found in the most recent literature, which
proposed a framework structure (here called ‘integrative
frameworks’). Below, we provide an overview of these newer
implementations to portray the range of views regarding how
to combine different approaches (Fig. 2).

Webb et al. (2010) proposed a theoretical framework that
attempted to revise and unify conceptual and technical
advances in trait-based ecology. The framework is based
on three elements: (i) a trait distribution from the pool
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of possible traits of all organisms (individual level); (ii) a
performance filter defining the fitness of traits in different
environments; (iii) a dynamic projection of the performance
filter along environmental gradients to make predictions.
The three elements are integrated into series of modules that
can be applied sequentially or alternatively, according to
the study system, the information content of the trait data,
and the biological questions. The framework is exemplified
by applying Bayesian multilevel models (Gelfand et al., 2005;
Latimer et al., 2006), along with dynamic system models
that can be projected outside the original data range to
obtain predictions (Norberg et al., 2001; Loreau, Mouquet
& Gonzales, 2003; Savage, Webb & Norberg, 2007). The
resulting model (first-principles Bayesian multilevel model,
FBM) is expected to be used for mechanistic exploration
of systems or for predictions across time or space. In the
reported conceptual example, the output of the model
consists of predictions of the temporal trajectories in biomass
for each combination of trait values as well as richness and
species information under given climate change scenarios.
The conceptual foundation of this framework is extremely
appealing and the generality of the formulation is achieved
by focusing on trait types that are independent from any
particular species within the target group, and can thus be
linked directly to the environment (Grime, 1977; Keddy,
1992; McGill et al., 2006; Shipley et al., 2006; Cornwell &
Ackerly, 2009). Considering intraspecific variability in traits,
biotic drivers can be taken into account (Laughlin et al.,
2012), allowing us to discern between the effects of habitat
filtering versus limiting similarity. The addition of the dynamic
dimension should allow improving predictions outside the
measured range of parameters. However, the framework
does not overcome the need for a large amount of information
evidenced previously for many trait-based models. Moreover,
building realistic filters based on species performance under
a set of conditions requires a deep understanding of the
nature of the trait–environment relationship, based on
species eco-physiological knowledge.

Guisan & Rahbek (2011) proposed a framework
(SESAM – ‘spatially explicit species assemblage modelling’)
for predicting spatio-temporal patterns of species assem-
blages. This framework aims at reconstructing species
assemblages by four successive steps: (i) designing the species
pool (the candidate species); (ii) applying abiotic filter based
on species’ ecological niche; (iii) applying macroecological
constraints to set the limit of coexisting species number (e.g.
species–energy or metabolic theory; Brown et al., 2004); (iv)
applying biotic rules for selecting among the potential species
from step ii, those actually able to coexist in the modelled
community. Each of these modules can be implemented
with different modelling options and assessed independently.
The authors exemplify the SESAM framework by coupling
Stacked-species distribution models (6 in Table 1 and Fig. 1B) (in
step ii) to apply the abiotic filter, with Macroecological models

(1 in Table 1 and Fig. 1A) (in step iii) to define a macroeco-
logical constraint for each modelled unit. Each step of the
SESAM framework is anchored in robust and tested bodies

of ecological theory and its formulation allows a broad appli-
cability to different study cases. A comprehensive application
of this framework has the potential to provide synthesis of
the joint effects of biogeographical and community-level
processes on the diversity and structure of local commu-
nities. Both static and dynamic techniques can be used to
implement different steps of the framework, so that this
structure is particularly suited to build hybrid approaches.
For instance, more dynamic approaches (Keith et al., 2008) to
predict distribution ranges may be included in the framework
by stacking new-generation SDMs accounting for dispersal
(Hortal et al., 2012), and more mechanistic (e.g. fundamen-
tal niche; Kearney & Porter, 2009) approaches to mapping
species distribution could be tested. Macroecological mod-
els not based on correlative statistics can also be included
explicitly to incorporate the mechanisms responsible for the
observed distributions (e.g. Gotelli et al., 2009). To date the
SESAM framework has been tested on plant and insect
communities in the Swiss Alps combining S-SDMs, macroe-
cological models (also based on species traits) and different
approaches to set biotic rules, based either on a ranking of
probability of presence or on co-occurrence analyses. The
SESAM application improved the community predictions
when the simple ‘predict first and assemble later’ approach
using SDMs is not able alone to depict the community struc-
ture (D’Amen et al., 2015; D’Amen, Pradervand & Guisan,
2015).

The Dynamic FOAM model (dynamic framework for
occurrence allocation in metacommunities), proposed
by Mokany et al. (2011), combines correlative richness
(α-diversity) models and models of compositional turnover
(β-diversity) (1 and 9 in Table 1 and Fig. 1A, C). The model
then generates compositional data for metacommunities and
γ -diversity, and predicts species distributions consistently
with known community diversity patterns. This output
forms the initial conditions to apply the new spatially
explicit, dynamic metacommunity model (M-SET, Mokany
et al., 2011) that incorporates stochastic dispersal processes.
M-SET predicts compositional changes for each community
over time, consistent with the predicted changes in α- and
β-diversity under climate change: the overall loss or gain of
species is calculated to maximize the richness of the commu-
nity without exceeding the potential richness calculated by
the α-diversity model, and the resulting turnover is adjusted
on the basis of the predictions from the β-model. M-SET is a
general model that can be applied to any taxonomic group. It
is technically well resolved in the links among the framework
modules, especially concerning the integration of α- and
β-diversity models. The approach has the potential to reduce
neutrality if incorporating attributes for individual species
or functional groups, such as specifying different dispersal
kernels for each species. However, no step has been devoted
to explicitly include the effect of biotic interactions, which are
only indirectly accounted for in α- and β-diversity models.
Mechanistic models of either α- or β-diversity could equally
be applied in the different steps, to make this framework more
process-based.
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More recently, Fernandes et al. (2013) proposed a
framework based on stacking dynamic bioclimate envelope
models (DBEM) that explicitly consider population
dynamics, dispersal (larval and adult) and ecophysiology,
used so far to project changes in marine species distribution,
abundance, and body size (Cheung et al., 2008, 2013).
An improved framework called size-spectrum DBEM
(SS-DBEM) allows coupling these models with a size-based
spectrum model to account for biotic interactions. The
size-based spectrum model describes the energy transfer from
primary producers to consumers as a log–log relationship
between abundance and body size and estimates the total
abundance of individuals from all species that can be
supported in any defined body-size class (Dickie, Kerr &
Boudreau, 1987). The integration of the two approaches
allows SS-DBEM to (i) estimate the potential biomass
supported by the system, (ii) predict habitat suitability,
and (iii) model species interactions. This framework is a
successful example of the integration of correlative and
dynamic dimensions to predict changes in growth and other
life-history traits in response to changes in temperature and
oxygen concentration (Cheung et al., 2013). The model also
simulates spatial and temporal changes in relative abundance
within a cell based on the carrying capacity of a cell,
density-dependent population growth, larval dispersal, and
adult migration (Cheung et al., 2008).

All of these integrative frameworks make use of previous
modelling techniques and can potentially integrate static and
dynamic approaches, resulting in predictions of increasing
ecological realism, although a good equilibrium between
complexity and generality is still not achieved. For instance,
the complete implementation of the Webb et al. (2010)
framework has a good predictive potential but needs a high
amount of input. A simplified version was proposed that
approximates individual-level with species-level trait data,
suggesting that data sets coming from different sources can
represent a valid substitute to ad hoc experiments estimating
species’ physiological requirements. Interestingly, most of
the integrative frameworks include a macroecological model
to estimate changes in how many species/biomass may be
supported in each location over time. This approach implies
the concept of community saturation (Elton, 1950) used
in different contexts but referring here to niche saturation
of species richness in the community (MacArthur, 1972;
Cody & Diamond, 1975) or to saturation of any measure
of community-level performance related to resource use
(Loreau, 2000). Specifically, both M-SET and the SESAM
frameworks limit species richness in each site by an
α-diversity model (but see D’Amen et al., 2015a). In this
case, saturation is viewed in relation to the saturation of
niche spaces. Instead, SS-DBEM is based on the concept
of maximum potential biomass supported by the system
in any defined body class size, which limits the number
and the abundance of species that can be supported in
each geographical unit. In this latter case, the saturation
is relative to a community-level performance measure (i.e.
biomass) to indicate the saturation of available energy up

to the environmental carrying capacity. The assumption of
community saturation is still matter of debate in ecology,
i.e. whether communities or regions can become saturated
with species and how to assess this process, with a recent
shift of focus to the more general relations among assembly
processes at local and regional scales (e.g. Loreau, 2000;
Mouquet et al., 2003; Freestone & Harrison, 2006).

Among the integrative frameworks, only one (Webb, 2000)
is explicitly based on traits. However, as models based on
traits alone could miss the influence of important drivers of
community assembly, such as environmental filter and biotic
interactions, the integration of trait analyses in frameworks
accounting for multiple drivers could represent a promising
advance. Yet, few attempts have been made. For instance,
in the SESAM framework predictions of different trait
community values were used to filter, from the species
predicted by S-SDM, those occurring in each modelled
community (D’Amen et al., 2015a,b). The use of traits data
holds promise to increase our mechanistic understanding of
biological responses and to allow the prediction of species
distributions based on the traits that each species possesses
without prior knowledge of the aggregated trait values of
the community. However, it should be noted that trait
models can become taxon/system specific, thus allowing few
cross-taxa applications and comparisons. To face climate
change, particular focus should be placed on those traits
that could be good predictors of species adaptation or
vulnerability (e.g. diet specialists) (Guisan, 2014), which
could facilitate the prediction of novel communities under
climate change (Lurgi, Lopez & Montoya, 2012). In
addition, connections between traits and phylogeny could
be particularly useful as the variation in trait states could be
related not only to environmental filters but also to phylogeny
(Desdevises et al., 2003; see Pavoine & Bonsall, 2011 for a
review).

V. CONCLUSIONS

(1) The community assembly process is highly complex
because usually more than one mechanism is acting with
varying importance according to the case study, and these
multiple processes interact with each other. We believe
that a promising solution to manage this complexity and
obtain more reliable community predictions could be the
integration of multiple drivers in a unique modelling
framework. Here, we define ‘modelling frameworks’ as
methodological procedures made of a series of sequential
analytical and/or modelling steps. This structure should be
anchored in a solid theoretical background, still allowing the
implementation of case-specific settings according to the case
study. The steps can use pre-existing methods independently
developed to predict communities or incorporate new
technical advances and include static and dynamic models
to make the most of their respective strengths. In the most
recent literature, some proposed solutions agree with the
framework structure, and in describing these approaches,
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we exemplify the range of views on how to combine different
steps into a comprehensive modelling workflow. Further
development is still needed to test the proposed framework
under different conditions and applications. In particular,
the complexity of the frameworks should be constrained as
much as possible in order to maintain a good predictive
power (see e.g. Merow et al., 2014).

(2) By analysing the most recent solutions for
community-level modelling, it emerges that understanding
the complexity of interspecific interactions remains a major
challenge (Kissling et al., 2012; Wisz et al., 2013). Interspecific
interactions are often indirectly addressed in the analyses,
but substantial evidence at a range of spatial scales supports
the view that incorporating the biotic drivers is an advance
over models that do not account for species interactions
(e.g. Leathwick & Austin, 2001; Meier et al., 2010; Fernandes
et al., 2013). It should be noted that many models assuming
no spatial interaction have been very successful at making
predictions about macroecological species richness patterns
(McGill, 2010), and a recent review paper showed that
non-random co-occurrence of plant species is still difficult to
uncover in meta-analyses due to high heterogeneity of the
methods used (Götzenberger et al., 2012). This difficulty does
not mean that biotic drivers have negligible importance in
shaping species in communities, but the above observations
can be the result of statistical arguments (McGill, 2010).
In considering large communities, the number of possible
pairwise interactions becomes very high and few may be
strong enough to have predictive value. An absence of strong
interactions in a community would validate the assumption of
independence among species and allow accurate community
predictions without interactions. Thus, the importance of
explicitly taking into account biotic interactions is highly
dependent on the ecosystem under study.

(3) The threat of human impacts on biodiversity makes
the need for reliable predictions of species communities
pressing (Nogués-Bravo & Rahbek, 2011). Modelling
currently provides the most comprehensive and flexible
approach to generate projections of community change
under predicted global change. We have shown many
alternative solutions and what their expected outputs can
teach us in the context of current and future conditions.
Here we focused on the natural processes of assembly,
but complementary studies could be valuable in reviewing
how the different modelling approaches are able to address
these socio-economic components. Notwithstanding all of
the possible advances in theoretical model formulations, the
type and quality of distributional data available will often
constrain what can be accomplished analytically (Dawson
et al., 2013). Many situations of sparse or biased biological
data exist, with species’ presence/absence or abundance,
which could perhaps be overcome by simulation approaches,
but most often real data are needed when the results are
intended to inform conservation managers to help reduce
or minimize climate change impacts on biodiversity. In
addition, even with improved availability of distribution
data, we would still have limited ability to use them if we do

not also have better insights on the processes involved, which
is better obtained through experimentation. Finding ways to
cope with the availability of data, manage the complexity
of the relevant processes and maintain tractability of the
modelling process, will likely challenge future research in
community ecology and spatial modelling.
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Appendix S1. Description of the modelling approaches analysed in the text 

 

The ‘Assemble first, predict later’ strategy 

Examples of the ‘Assemble first, predict later’ strategy are the traditional correlative-based 

macroecological models that can identify changes in how many species may be supported in each 

location over time. Macroecologists have devoted decades of study to spatial patterns of diversity (e.g. 

Fischer, 1960; Currie & Paquin, 1987; Rahbek & Graves, 2001), this research leading to the 

development of empirical theory. If the observed links between environmental characteristics and 

species richness (or other measures of biodiversity) are causal, then spatial models based on 

macroecological theory should accurately predict temporal species richness trends as the environment 

changes (White & Kerr, 2006). Thus, this discipline offers a theoretical basis to build models for 

biodiversity predictions, demonstrating high relevance for improving conservation decisions under 

global change (Kerr, Kharouba & Currie, 2007). 

According to the response variable utilized, e.g. community types or richness, the prediction could 

inform if current community types will or will not be able to persist at their present locations, or if the 

expected number of species will be able to coexist in a site, respectively. Community-level properties, 

such as interspecific interactions and community assembly, are implicitly included in the predictions. 

A number of models have been proposed to describe patterns of species abundance distributions 

(SADs), based on the log-normal distribution or some variant of it (see McGill et al., 2007 and Ulrich, 

Ollik & Ugland, 2010, for a review), or more recently its related measure rank abundance distribution 

(RAD; Foster & Dustan, 2010; Dunstan & Foster, 2011). Other approaches use classification or 

ordination techniques to create assemblages of species as analytical units (e.g. Ferrier et al., 2007, and 

Ferrier & Guisan, 2006, for a review). A recent implementation of this strategy is the Species 

archetypes model (SAD; Dustan & Foster, 2011) that predicts communities using a finite mixture of 

regression models on the basis of common responses to environmental gradients. Community types 

have also been created and modelled on the basis of species’ traits, mainly for plants, i.e. 

characterizing organisms in terms of their multiple biological attributes such as physiological, 

morphological, or life-history traits. This category includes both static models (e.g. Douma et al., 

2012; Dubuis et al., 2013) and dynamic approaches [e.g. Dynamic global vegetation models 

(DGVMs); Cramer et al., 2001; Sitch et al., 2003; see Scheiter, Langan & Higgins, 2013, for new 

extensions]. These DGVMs simulate the behaviour of plant functional traits to reproduce 

biogeochemical processes and ecosystem structure and allow for competition. Generally DGVMs treat 



vegetation cover as a fractional representation consisting of different types (Cramer et al., 2001), thus 

in their main application they predict changes in only vegetation distribution, without allowing 

identification of single species: for this reason they are listed in this first category. Potentially, 

extension from DGVMs can derive species composition from the functional type and the ecological 

processes considered. 

To overcome many limitations of correlative macroecological models evidenced in recent years, a new 

class of predictive macroecological models was introduced by Rahbek et al. (2007). These were 

spatially explicit Monte Carlo models of the placement of geographical ranges in an environmentally 

heterogeneous landscape, which mechanistically simulates species richness patterns. The approach 

was subsequently discussed and advocated by Gotelli et al. (2009), who named them General 

simulation models (GSMs). A typical General simulation model could expand the approach of Rahbek 

et al. (2007) by also simulating the occurrence of similar but not identical species with a small number 

of parameters, and incorporating key processes, e.g. speciation, dispersal, and extinction. Because the 

General simulation model predicts community attributes, as species richness, from the overlap of 

species ranges, and in the original formulation does not account for biotic interactions, operatively it 

could be seen as part of the ‘Predict first and assemble later’ strategy. However, as for the 

macroecological models mentioned above, its main result is species richness, and it cannot provide 

information on the community constituent species, as they are only simulated. All patterns simulated 

by the General simulation model can be directly compared to empirical patterns providing a direct 

goodness-of-fit test of the model being tested or simulated. For this reason we place it in this first 

strategy. In fact, the original aim is to explain (not to predict) observed patterns of species richness. 

Extensions of the model are possible, by appointing different degrees of realistic attributes to species 

(e.g. species assigned to different functional groups, up to a theoretical species-specific attribute) and 

adding biotic terms. Future implementations could also allow projection of species richness under 

climate change (Gotelli et al., 2009). 

The ‘Predict first, assemble later’ strategy 

Following the strategy of ‘Predict first, assemble later’, Stacked Species Distribution Models (S-

SDMs) derive community properties from the stacking of individual species’ distributions predicted 

by bioclimatic species distribution models (SDMs; Guisan & Zimmermann, 2000). Species 

distribution models are essentially a form of sophisticated curve-fitting algorithms developed to 

project species distributions from correlations between occurrence and environmental conditions in a 

static fashion (Guisan & Thuiller, 2005). In these models processes are implicit and the explanatory 

variables employed are expected to represent as many as possible causal mechanisms (Austin, 2002; 

Dormann et al., 2012). In recent years many improvements and extensions have been proposed for 

species distribution models, making explicit assumption about dispersal (e.g. Midgley et al., 2006; 



Engler & Guisan, 2009) or incorporating processes such as extinction and stochastic population 

models (e.g. De Marco, Diniz-Filho & Bini, 2008; Keith et al., 2008). Such new implementations 

could in turn improve the Stacked single-species distribution models making them more dynamic by 

including data on dispersal, population dynamics or other relevant processes (Guisan & Thuiller, 2005, 

Thuiller et al., 2008).  

Potentially also species-level predictions derived from pure dynamic models can be used in the 

‘Predict first, assemble later’ strategy, if interaction processes are ignored in the simulation, i.e. 

community properties resulting from the sum of individual species’ dynamics. Typically, species-

specific dynamic models predict the response of a population to environmental conditions by 

explicitly incorporating biological processes calibrated with observations on individuals in natural 

populations, e.g. integrated metabolic rate or energy uptake from animal physiology, i.e. ‘Mechanistic 

SDMs’ (e.g. Buckley, 2008; Kearney & Porter, 2009), plant demography i.e. ‘Demographic SDMs’ 

(e.g. Keith et al., 2008; Schurr et al., 2012) and stages of growth for plants, i.e. ‘Phenologic SDMs’ 

(e.g. Morin, Viner & Chuine, 2008, see Morin & Thuiller, 2009, Dormann et al., 2012, for a 

discussion on process-based models for single species, and a comparison with correlative models). 

However, to our knowledge, pure-dynamic models for real species have never been stacked across a 

whole species pool to reconstruct community attributes, probably due to parameterization difficulty 

for the large number of community constituent species. Gap models (Bugmann, 2001) go some way in 

this direction but usually only include the dynamics of a few dominant species. 

The ‘Assemble and predict together’ strategy 

Many widely used static approaches in single-species modelling have been extended to model 

assemblages using data on all species simultaneously to obtain an overall view of the community (e.g. 

Glonek & McCullagh, 1995; Hastie & Tibshirani, 1996; De’ath, 2002; see Table 1 of the main paper). 

Their main output is the predicted distribution for each species, but these applications generally fail to 

show in detail how the relationship between environmental covariates and the species community 

builds up from species-specific responses (Ferrier & Guisan, 2006). These approaches remain static 

and thus projections to different environmental conditions (e.g. in the future) will nevertheless 

implicitly consider the fitted biotic interactions to remain fixed. Other classical models belonging to 

this strategy are those predicting β-diversity patterns (Legendre, Borcard & Peres-Neto, 2005). For 

instance, the Generalized dissimilarity model (GDM; Ferrier et al., 2007) predicts the compositional 

dissimilarity observed between pairs of surveyed locations as a continuous non-linear function of the 

relative position of these sites along multiple environmental gradients. This model does not assume 

fixed community types (in that it does not fit in the ‘Assemble first and predict later’ strategy), while it 

assumes that emergent rates of spatial turnover along environmental gradients under current climatic 

conditions can act as a reliable surrogate for temporal turnover given changing conditions (Fitzpatrick 



et al., 2011). Finally, traditional Landscape simulation models also fall in this strategy. Dynamic forest 

models simulate single-species dynamics considering in the process intraspecific interactions i.e. at 

least intra- and interspecific competition for light (Botkin, Janak & Wallis, 1972; Pacala & Tilman, 

1993; Lischke et al., 2006; see Bugmann, 2001, for a review). These models can differ for the 

parameterization but in general the level of ecological and environmental detail is very high, and their 

predictions simulate species composition, abundance, and potentially other community-level attributes 

(forest dynamics). Similarly, the marine environment simulation models, spatially resolved in three 

dimensions, track nutrient (usually N and S) flows through the main biological groups in the system. 

Many ecological processes are modelled: consumption, production, waste production, migration, 

predation, recruitment, habitat dependency, and mortality. These models usually connect the 

biophysical world with fisheries to manage marine living resources (e.g. Atlantis model; Fulton et al., 

2004). 

The ‘Assemble and predict together’ strategy may also encompass a number of highly varied 

approaches developed in the last decade (e.g. Dorazio & Royle, 2005; Shipley, Vile & Garnier, 2006; 

Laughlin et al., 2012), although some are hard to classify. An original starting point for assessing 

community composition is the occupancy criterion (Zipkin, DeWan & Royle, 2009): by using 

occupancy data the Community occupancy model links within a hierarchical (or multi-level) Bayesian 

model individual species occurrence models (Gelman & Hill, 2007; Royle & Dorazio, 2008). In this 

way it accounts for both species-level effects as well as aggregated effects of landscape ⁄ habitat on the 

community as a whole (MacKenzie et al., 2003). Rooted in trait-based community assembly theory, is 

the Shipley et al. (2006) MaxEnt model (Maximum entropy model; Shipley et al., 2011; Shipley, 

Paine & Baraloto, 2012). MaxEnt treats community development as a sorting process involving 

species that are ecologically equivalent except with respect to particular functional traits, where the 

relative abundance of each species follows a general exponential distribution as a function of its traits. 

MaxEnt predicts the distribution of relative abundances for every species in a regional pool on the 

basis of species’ mean trait values (Shipley et al., 2011). The main weakness of this approach is that it 

ignores competition for limiting resources that tends to limit the functional similarity of co-occurring 

species. The two opposite forces of trait convergence and divergence are reconciled in the other trait-

based approach recently proposed by Laughlin et al. (2012), Traitspace. Traitspace extends the 

MaxEnt formulation incorporating intraspecific trait variation as a quantification of species niches, 

thus it requires a data set of trait measurements from individual plants growing under known 

environmental conditions. It predicts relative abundances using a Bayesian framework. Both of these 

trait-based models are generalizable to any ecosystem and can theoretically accommodate any number 

of species, traits, and environmental conditions (see Laughlin & Laughlin, 2013, for a detailed 

comparison between these trait-based models). 
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