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Abstract
1. Classic ecological research into the determinants of biodiversity patterns empha-

sised the important role of three- dimensional (3D) vegetation heterogeneity. Yet, 
measuring vegetation structure across large areas has historically been difficult. 
A growing focus on large- scale research questions has caused local vegetation 
heterogeneity to be overlooked compared with more readily accessible habitat 
metrics from, for example, land cover maps.

2. Using newly available 3D vegetation data, we investigated the relative impor-
tance of habitat and vegetation heterogeneity for explaining patterns of bird spe-
cies richness and composition across Denmark (42,394 km2).

3. We used standardised, repeated point counts of birds conducted by volunteers 
across Denmark alongside metrics of habitat availability from land- cover maps 
and vegetation structure from rasterised LiDAR data (10 m resolution). We used 
random forest models to relate species richness to environmental features and 
considered trait- specific responses by grouping species by nesting behaviour, 
habitat preference and primary lifestyle. Finally, we evaluated the role of habi-
tat and vegetation heterogeneity metrics in explaining local bird assemblage 
composition.

4. Overall, vegetation structure was equally as important as habitat availability for 
explaining bird richness patterns. However, we did not find a consistent posi-
tive relationship between species richness and habitat or vegetation heterogene-
ity; instead, functional groups displayed individual responses to habitat features. 
Meanwhile, habitat availability had the strongest correlation with the patterns of 
bird assemblage composition.
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1  |  INTRODUC TION

Spatial environmental heterogeneity (sensu Stein & Kreft, 2015) 
is considered a primary driver of local species richness patterns as 
more species can coexist in heterogeneous areas, which feature 
greater niche space and ecological opportunities (Currie, 1991; Tews 
et al., 2004). Land cover heterogeneity, that is, the composition and 
configuration of habitat types, has been a major focus of research 
into this relationship (Stein et al., 2014). Yet, vegetation structure 
heterogeneity, which was identified early on as a strong predictor of 
local diversity patterns (August, 1983; MacArthur, 1964), has been 
comparatively overlooked— likely due to the difficulty in obtaining 
data at large scales (Simonson et al., 2014). A key knowledge gap, 
therefore, concerns the role of three- dimensional (3D) vegetation 
heterogeneity in driving local diversity patterns for large geographic 
areas and across multiple habitat types. Active remote sensing is a 
valuable and growing tool for studying these types of species- habitat 
relationships; rasterised LiDAR datasets are now available that mea-
sure fine- scale (10 m resolution) vertical structure across the extent 
of entire countries (Assmann et al., 2022). With accelerating biodi-
versity loss and changes in species communities (IPBES, 2019), un-
derstanding the relationship between species and their environment 
is more important than ever.

To describe species' habitat preferences, we often split land-
scapes into distinct habitat classes using vegetation and other en-
vironmental characteristics. Land cover maps that describe the 
distribution of habitat types have been used to study species' hab-
itat preferences and the drivers of biodiversity patterns from re-
gional to global scales (Stein et al., 2014). However, human- defined 
habitat classes are not always relevant to the organisms being stud-
ied (Davison et al., 2021; Fahrig et al., 2011). The sharp boundar-
ies between neighbouring classes are also a poor representation of 
habitat transition zones (McGarigal & McComb, 1995). Habitat clas-
sifications may therefore be overlooking important environmental 
variation within classes that could help us describe species' physical 
niches (Rotenberry, 1981).

Looking beyond habitat classes and directly measuring the het-
erogeneity of vegetation structure can produce continuous environ-
mental metrics that capture variability within habitat types. Classic 

ecology research emphasised the important role of vegetation 
structure in local patterns of biodiversity (MacArthur, 1964; McCoy 
& Bell, 1991; Pianka, 1966). In their pioneering study, MacArthur 
and MacArthur (1961) showed that heterogeneity in the vertical 
profile of vegetation positively correlated with bird species diver-
sity. Since then, many studies have found positive relationships 
between vegetation heterogeneity and bird species diversity (e.g. 
Carrasco et al., 2019; Clawges et al., 2008; Flaspohler et al., 2010). 
The positive effect of vegetation heterogeneity on faunal diversity 
is consistent with niche theory— as habitats become more structur-
ally complex there are more microhabitats, food resources and sites 
for shelter and breeding (Currie, 1991; Lawton, 1983). Nevertheless, 
our understanding of how vegetation structure affects species di-
versity has been limited by the difficulty of measuring fine- grained 
structure over large extents and by not considering the responses of 
different species groups, especially non- forest species.

The response of species to the type, heterogeneity and struc-
ture of habitats can vary greatly depending on their individual traits 
(Goetz et al., 2007; Weisberg et al., 2014). Considering only total 
species richness can overlook species- specific responses to habitat 
features and miss important changes in assemblage composition. 
Tall canopies support more forest species, for example, yet overall 
species richness may decline with increasing canopy height if most 
species in the regional pool have different habitat requirements— 
for example, they are mostly non- forest species. A solution to make 
useful generalisations about a taxonomic assemblage, while mini-
mising the noise of individual species responses, is to group species 
into functional groups (Weisberg et al., 2014), for example, based on 
their habitat use, nesting behaviour or primary lifestyle. These divi-
sions help us identify the environmental features that are involved 
in habitat selection and therefore better understand this process.

Remote sensing, such as LiDAR, presents an opportunity for 
investigating the relative roles of habitat and vegetation heteroge-
neity in driving diversity patterns (Simonson et al., 2014). Several 
studies have demonstrated the potential of LiDAR for improving 
predictions of species diversity and habitat use; however, they have 
generally been limited to forest habitats or relatively small areas (Hill 
et al., 2004; Lesak et al., 2011). In their review of LiDAR use in avian 
research, Bakx et al. (2019) found that the median spatial extent 

5. Our results show how LiDAR and land cover data complement one another to 
provide insights into different facets of biodiversity patterns and demonstrate 
the potential of combining remote sensing and structured citizen science pro-
grammes for biodiversity research. With the growing coverage of LiDAR surveys, 
we are witnessing a revolution of highly detailed 3D data that will allow us to in-
tegrate vegetation heterogeneity into studies at large spatial extents and advance 
our understanding of species' physical niches.

K E Y W O R D S
bird diversity, citizen science, habitat availability, heterogeneity, land cover, LiDAR, remote 
sensing, vegetation structure
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of studies was only 53 km2 and that 82% included only one habitat 
type— generally forests. Broad- extent LiDAR data is now becoming 
more available, permitting investigations into the relationship be-
tween measures of 3D vegetation structure and biodiversity across 
large areas and varied habitat types (e.g. Moeslund et al., 2019).

In this paper, we combine remote sensing data and citizen sci-
ence observations to test the relationship between bird species and 
environmental heterogeneity at the extent of a whole country. Our 
primary aim was to evaluate the roles of heterogeneity in habitats 
and vegetation structure for determining local bird species diver-
sity in Denmark. We were specifically interested in answering the 
following research questions: (1) What is the relative importance of 
habitat availability and vegetation structure in explaining local spe-
cies richness patterns? (2) how do different functional groups re-
spond to these features of environmental heterogeneity? and (3) to 
what degree does fine- grained data on vegetation structure provide 
additional insights compared to traditional habitat classifications?

Overall, we expected a positive relationship between total 
richness and environmental heterogeneity, both in terms of hab-
itat and vegetation structure heterogeneity, due to the predicted 
increase in niche availability (MacArthur & MacArthur, 1961; Tews 
et al., 2004). We expected functional groups to respond differently 
to features of the environment depending on their characteristics 
(Goetz et al., 2007; Weisberg et al., 2014)— for example, arboreal 
nesting species would benefit from a well- developed canopy layer. 
Lastly, we expected vegetation structure variables to capture varia-
tion within habitat classes that would help explain richness patterns 
(Culbert et al., 2013). Together, our research questions will address 
the importance of considering 3D vegetation structure in analyses 
of diversity patterns and demonstrate the potential of LiDAR and 
citizen science for research across large extents.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

Denmark (42,394 km2) has a temperate climate that is milder in the 
west because of its proximity to the Atlantic Ocean and is slightly 
drier and more continental in the east. Agricultural land makes up 
more than 60% of the Danish landscape (Levin, 2019), while rem-
nant natural and semi- natural habitats persist in small patches. The 
present- day breeding avifauna is largely migratory with few seden-
tary residents (<5%) and is therefore not considered dispersal lim-
ited (Gotelli et al., 2010).

2.2  |  Bird data

We used point count data from the Common Bird Monitoring pro-
gramme organised by Birdlife Denmark (1975– present, for more in-
formation see Eskildsen et al., 2021). This structured citizen science 
database provides standardised, geolocated, annual observations at 

a national scale. We used volunteer observations from the summer 
breeding season (1 May to 15 June) in 2014, 2015 and 2016. Surveys 
were conducted along routes consisting of at least 10, but mostly 
20 points— at which all birds seen or heard at any distance within 
5 min were recorded. To avoid double counting, points are placed 
300– 1000 m apart (median nearest- neighbour distance = 362 m; 
IQR = 259– 547 m). Repeat observations of routes were made at the 
same time of year (±7 days) and time of day (±30 min), and under 
good weather conditions. We retained points that were repeated in 
all 3 years and were from route surveys that began before midday; a 
total of 10,704 five- minute point counts from 3568 individual sur-
vey points (total observation time ~892 h; Figure S1). At each survey 
point, we summed observations across all survey seasons (2014– 
2016). We only included species recorded as breeding in any of the 
three Danish Breeding Bird Atlas projects (covering 1971– 2022; 
Vikstrøm & Moshøj, 2020). We retained 176 breeding species, while 
16 non- breeding species were removed (Table S1).

We separated bird species into functional groups based on 
shared characteristics, focussing on habitat use, nesting behaviour 
and primary lifestyle (Table 1). Habitat use and nesting behaviour 
were from a database version of ‘The Birds of the Western Palearctic’ 
(Cramp, 2006; Storchová & Hořák, 2018). Habitat use was consid-
ered as the environments a species occupies during the breeding 
season— although we excluded habitat types absent in Denmark. 
We aggregated some similar habitat groups because our analyses 
indicated very similar responses (deciduous and coniferous forest 
species; shrub and woodland; freshwater and marine). Species can 
belong to more than one habitat use or nesting group. Primary life-
style describes the predominant locomotory niche of a species and 
these groups were mutually exclusive. Primary lifestyle was taken 
from the AVONET trait database (Tobias et al., 2022). In total, we 
calculated the species richness of 19 functional groups (Table 1). 
Furthermore, we calculated four global- level metrics including over-
all species richness and the richness of habitat, nesting and primary 
lifestyle functional groups (i.e. the number of unique groups at a 

TA B L E  1  Species functional groups. The total number of 
species for each group is in parentheses. Habitat and nesting 
groups are not mutually exclusive but primary lifestyle groups are. 
Insessorial = perching birds.

Habitat use Nesting behaviour
Primary 
lifestyle

Forest (70) Closed arboreal (5)a Aerial (19)a

Shrub/woodland (72) Open arboreal (56) Aquatic (20)

Grassland (37) Ground (52) Insessorial (56)

Reed (12)a Ground close (25) Terrestrial (62)

Swamps (29) Hole (41) Generalist (21)a

Freshwater/marine (69) Brood parasite (1)a

Rocks (9)a

Human settlements (31)

aFunctional groups that were not modelled due to limited 
representation (no sites with at least 10 species present across years).
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site). We also summed species abundances across years to analyse 
bird assemblage composition.

2.3  |  Environmental data

We considered two groups of environmental variables: habitat avail-
ability and vegetation structure (Table 2)— and included degrees lati-
tude and longitude to account for spatial gradients of unmeasured 
variables. All environmental variables (n = 18) were sampled from 
a circular plot with a radius of 150 m at each point count location 
(area ≈ 7 ha). This radius size was chosen to capture local effects of 
land cover and vegetation structure, although we a sensitivity analy-
sis of radius choice. All data cleaning and analyses were conducted 
in R version 4.2.0 (R Core Team, 2022).

Land cover data was extracted from a 2015 pan- European land 
cover map (Pflugmacher et al., 2019). For our analysis, we merged 
some rarer land cover classes with closely related common classes: 
perennial and seasonal cropland, water and wetlands and the 

three types of forest (coniferous, broadleaved, mixed)— resulting 
in six classes. The habitat availability of each point count was con-
sidered as the percent cover of each class. We calculated habitat 
diversity, using the reciprocal Simpson index of land cover classes 
(Simpson, 1949). This metric represents compositional heterogene-
ity by calculating the probability that two randomly selected points 
are in different classes. The metric increases with the number and/or 
evenness of habitat types. We excluded a metric of configurational 
heterogeneity, landscape division (Jaeger, 2000), due to strong col-
linearity with habitat diversity (Pearson's r = 0.98).

We acquired all measures of vertical structure from the 
EcoDes- DK15 dataset, which describes a broad range of ecologi-
cal descriptors across all of Denmark (Assmann et al., 2022). This 
dataset was assembled from freely available nationwide active 
laser scanning data from the Danish Agency for Data Supply and 
Infrastructure. The original LiDAR scans were predominantly carried 
out during leaf- off in 2014– 2015 and had a point density of 4– 5 per 
m2 with a horizontal accuracy of 15 cm and vertical accuracy of 5 cm 
(Assmann et al., 2022). All ecological descriptors are at a resolution 

TA B L E  2  Environmental variables (n = 16). All variables were extracted from a circle with a radius of 150 m (area ≈ 7 ha) at each point 
count.

Variable Value Ecological reasoning

Habitat availability

Artificial land Percent cover (%) of different habitat 
classes

The presence and area of different habitats is a key determinant of diversity 
patterns— particularly for specialist speciesGrassland

Shrubland

Cropland

Water and wetlands

Forest

Habitat diversity Reciprocal Simpson diversity (0– 1)— 
that is, the probability that two 
randomly selected points are in 
different classes

Habitat diversity is often positively correlated with bird diversity through the 
expansion of ecological opportunities (or niches) associated with adding 
complementary habitats (and reducing the distances between them)

Vegetation structure

Canopy height
Canopy height SD

Metres— mean and standard deviation 
of cell values

Vegetation height affects bird movement and foraging/nesting 
opportunities. Taller vegetation may provide greater habitat volume for 
forest bird species, while greater variability may correspond to a greater 
diversity of resources available

Canopy openness
Canopy openness SD

Proportion (0– 1)— mean and standard 
deviation of cell values

Open areas feature distinct environmental conditions, plant species and food 
resources, which are exploited by certain species. Mixed landscapes with 
interspersed open and closed areas (higher SD) may harbour greater bird 
diversity by fulfilling the requirements of more species

Low vegetation Total number of LiDAR returns from 
vegetation below 1.5 m

Low vegetation, such as shrubs and thickets, is important for foraging and 
nesting of many bird species

Foliage height 
diversity

Foliage height 
diversity SD

Shannon diversity of vegetation 
returns in five vertical layers— 
mean and standard deviation of 
cell values

Complex vegetation structure has been linked to greater bird diversity— 
due to increased habitat volume or niche addition, whereby a greater 
diversity of tree species and/or age classes provide more ecological 
opportunities

Space

Latitude
Longitude

Decimal degrees Included to account for other environmental or sampling effects that were 
not the focus of this study

Abbreviation: SD = standard deviation
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of 10 × 10 m. A limitation of airborne LiDAR is that dense vegetation 
in the upper canopy (such as in pine plantations) can limit light beam 
penetration resulting in increased uncertainty of lower vegetation 
layers (Assmann et al., 2022). However, we did not expect a strong 
influence on our results as only 6.5% of the total area across our sites 
was coniferous forest. For our analysis, we focussed on descriptors 
of vegetation structure and amount that were likely to be important 
for birds: canopy height, canopy openness and the total number of 
LiDAR returns from vegetation.

Using the LiDAR return counts (in various height bins), we also 
recorded the amount of vegetation that was close to the ground 
(below 1.5 m) as this is an important layer for birds and could help 
identify grassland or cropland areas. Furthermore, we calculated an 
index of foliage height diversity (MacArthur & MacArthur, 1961). 
This is equivalent to the Shannon diversity index and is calculated 
as −

∑

i

pi loge pi where pi is the proportion of the total foliage, or 
LiDAR returns, which lies in the vertical layer i. We stratified the ver-
tical vegetation into five layers (0– 2, 2– 5, 5– 10, 10– 15 and >15 m). 
Clawges et al. (2008) found that the more layers near the ground 
the stronger the correlation with bird species diversity and their 
best- performing model included these five layers. Additionally, the 
analysis by Clawges et al. (2008) included some open areas, unlike 
most studies of foliage height diversity, and the height bands closely 
matched the distribution of returns at our sites (quintiles: 0– 2, 2– 6, 
6– 11, 11– 16 and >16 m). For all vertical structure metrics, we found 
the mean value of all cells within a 150- m radius from the point 
count centre. Total vegetation returns were found to be strongly 
correlated with foliage height diversity (Pearson's r = 0.98); there-
fore, we only kept the latter going forward. For the three metrics: 
canopy height, canopy openness and foliage height diversity, we also 
calculated standard deviation to describe the spatial variability of 
these features.

2.4  |  Analysis

For our primary analyses, we used random forest models 
(Breiman, 2001) with species richness or functional group richness 
as response variables. Random forests are a nonparametric machine 
learning method that exploits structure in high- dimensional data 
by combining the predictions of numerous decision trees (Cutler 
et al., 2007). Random forests do not require a priori specification 
of a model linking predictors and responses but use an algorithmic 
approach to learn the form of key relationships (Oppel et al., 2009). 
This method has a low cost to including many predictors, can handle 
nonlinear effects and is relatively insensitive to collinearity between 
predictors (Dormann et al., 2013). We appraised model fit using 
the percent of variation explained (pseudo- R2; 1 − residual sum of 
squares/total sum of squares) using external cross- validation (Oppel 
et al., 2009). We used 70% of the data to build the models and the 
remaining 30% (spatially explicit; Figure S2) to assess their perfor-
mance and determine variable importance.

We ran random forest models for all species groups that had a 
minimum richness of 10 species co- occurring at least once (summed 
across years) and for the four global level metrics (17 models total). All 
random forest modelling was conducted with the randomForestSRC 
package in R (Ishwaran et al., 2008; Ishwaran & Kogalur, 2021). We 
built forests of 300 trees with a terminal node size of five (details in 
Supporting Information). At each split, one- third of all variables were 
randomly selected as splitting candidates.

To compare the roles of vegetation structure and habitat avail-
ability, we relearnt abridged models using each group of variables 
separately (latitude/longitude was always included). Models with 
fewer variables can sometimes perform better due to the random 
selection of splitting candidates at each node, which can result in 
unproductive splits if all the candidate variables are uninformative. 
For models with ≥10% variation explained, we calculated variable 
importance on the validation data by randomly permuting variables 
and comparing the resulting prediction error to the original (mean 
decrease in accuracy, MDA; Cutler et al., 2007). A consequence of 
this method is that importance measures are not calculated as an 
isolated effect on the response but consider all other variables in the 
model (i.e. interactions and collinear relationships). Consequently, 
collinear variables can experience inflated variable importance 
values— although only when at least one is related to the response 
(Nicodemus et al., 2010). To avoid this issue, we identified groups 
of co- dependent variables (including nonlinear dependencies) using 
the Chi- squared (χ2) statistic and permuted these groups simultane-
ously (Figure S3). We standardised variable importance values rela-
tive to the total importance of each model (0– 1).

We conducted a sensitivity analysis to assess the role of scale on 
model fit and the importance of habitat and vegetation structure. 
We reran the random forest algorithm at two additional scales: a 
50- m radius buffer and a 450- m radius buffer, approximating a 10- 
fold decrease and increase of our focal scale. We compared the mean 
model fit (Pseudo- R2) between scales for all models using one- way 
ANOVA. To assess changes in the importance of vegetation struc-
ture versus habitat availability, we compared the fit of new abridged 
models using each subset of the predictor variables for each scale (as 
in the main analysis).

For visualising the individual effect of environmental variables 
on the response, we used accumulated local effects (ALE) plots, 
which are unbiased for correlated features (Apley & Zhu, 2020). We 
split each predictor variable into 25 intervals for calculating the ALE 
plots and we repeated the process 50 times with bootstrap sampled 
data to visualise uncertainty. ALE plots show the isolated effect of 
each variable on the response, unlike variable importance estimates 
which also capture hierarchical interactions with other features.

We used Mantel tests (Mantel, 1967) to assess the ability of dif-
ferent environmental metrics for predicting entire bird assemblages 
(relative abundance of species). Mantel tests estimate the signifi-
cance of the Pearson correlation between pairs of distance matri-
ces using permutations. We correlated distance matrices based on 
subsets of environmental variables with changes in bird assemblage 
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composition— calculated as the Euclidean distance of Hellinger 
transformed abundance data (summed across years). A principal 
coordinates analysis of assemblage composition is included in the 
Supporting Information alongside further details on methods.

3  |  RESULTS

A total of 178 bird species were recorded in the study period. The 
three species with the highest occupancy were Blackbird (Turdus 
merula), Common Wood Pigeon (Columba palumbus) and Common 
Chaffinch (Fringilla coelebs). The median species occupancy was 66 
point counts (M = 556; of a possible 10,704). We observed a range of 

model performance across the 17 richness- based models; the model 
of total species richness failed to predict better than the mean of 
the response (pseudo- R2 = 0%), while the model of grassland spe-
cies richness explained 40% of the variation in observed values 
(Figure 1). Habitat availability and vegetation structure variables 
each achieved the best accuracy in half of the better performing 
models (n = 6/12; full model pseudo- R2 ≥ 10%). For some bird groups, 
habitat and vegetation variables appeared to explain overlapping 
portions of variation— as both the full and abridged models per-
formed similarly well. For other functional groups, however, a large 
difference in abridged model performance suggests that the variable 
sets conveyed unique information and that one was more important 
for predicting richness.

F I G U R E  1  Relative importance 
of vegetation structure and habitat 
availability for all bird richness models as 
assessed by model accuracy (pseudo- R2). 
Full models are compared to abridged 
models built with a subset of the 
predictors. Models are organised by global 
metrics (a) and functional group type (b) 
to (d).
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Among the global metrics, the richness of habitat functional 
groups performed best and achieved optimal fit using only habitat 
availability variables— as with most models in this group (Figure 1a). 
For grassland species richness, the best- performing model, grass-
land cover appeared to be less influential than features of vegeta-
tion structure (Figures 1 and 2a). Grassland species favoured areas 
where vegetation was open and not vertically complex (Figure 3a). 
Vegetation structure variables performed better than habitat avail-
ability for most habitat association models. The exceptions were 
freshwater and marine species and human settlement species, for 
which the presence of water/wetland and artificial land were key 
features respectively (Figure S4). Forest species richness was largely 
explained by vegetation structure; foliage height diversity had a 
strong positive effect; and there was a unimodal response to the 
variability of canopy height (Figures 2b and 3b).

Among nesting behaviours, ground nester richness was the best- 
performing model— being negatively affected by the presence of 
tall vegetation and positively affected by the presence of water and 
open areas (Figures 2c and 3c). The richness of species forming open 
arboreal nests was explained much better by vegetation structure 
than habitat availability. For primary lifestyles, aquatic species were 
best predicted by the presence of water; it was twice as important 
as the next group of four variables describing vegetation (Figure 2d). 
Insessorial species favoured the presence of forest and vertical 
vegetation structure, while for terrestrial species, a lack of tall com-
plex vegetation was key— especially as measured by canopy height 
(Figure S5). No functional groups appeared to be strongly influenced 
by habitat diversity (Figures S4 and S5).

Our sensitivity analysis showed no differences between mean 
full- model pseudo- R2 for different environmental buffer sizes 

F I G U R E  2  Variable importance for selected bird richness models (a– d), assessed by the mean decrease in accuracy (MDA) after 
permutation of a variable (or group of variables). Co- dependent variables were permuted simultaneously to avoid inflated individual 
importance. Bar width corresponds to the number of variables per group. Additional figures in Supporting Information.
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(50, 150, 450 m; one- way ANOVA; F2,48 = 0.664, p = 0.519). The 
relative importance of vegetation structure versus habitat avail-
ability varied greatly between models, although, overall, vege-
tation structure became less important, and habitat availability 
more important, as scale increased (Figures S6 and S7). At the 
focal 150 m scale, the mean fit of vegetation structure models 
was 0.4% higher than habitat availability models (50 m: 1.3% 
higher; 450 m: 1.6% lower). When considering the average per-
formance across models the full models performed best at all 
scales (Figure S7).

Bird assemblage composition (as summed relative abundances) 
correlated better with the difference between sites calculated using 
habitat availability metrics than with vegetation structure metrics 
(Table 3). The highest correlation of all subsets was for habitat and 
vegetation metrics combined (rM = 0.321); meanwhile, the lowest 
correlation was with geographic coordinates (rM = 0.063). A principal 
coordinates analysis explained 19% of the variation in assemblage 
composition in the first two axes. The first and most important axis 
correlated with a gradient of open to closed habitats, while the sec-
ond axis correlated with artificial habitat area (Figure S8).

F I G U R E  3  Independent effect of key variables in selected bird richness models (a– d). Effects were estimated using accumulated local 
effects plots. Vegetation structure metrics are green, habitat availability metrics are blue. Grey lines are 50 bootstrap reiterations of the 
data and rugs denote five percentiles of the variable's distribution (interpret cautiously areas with low coverage). The y- axis is the change in 
predicted species richness relative to the average prediction and varies between models (rows). Additional figures in Supporting Information.
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4  |  DISCUSSION

Using remotely sensed metrics of habitat availability and vegeta-
tion structure, we investigated the importance of environmental 
heterogeneity for patterns of local bird diversity over more than 
40,000 km2. Overall, vegetation structure measured by LiDAR made 
an important contribution to explaining the species richness of cer-
tain functional groups (e.g. forest species), while habitat availability 
was more important for others (e.g. aquatic species). At this scale, 
habitat diversity calculated from land cover maps played only a 
minor role. We found divergent responses of bird functional groups, 
which showed unique and predictable relationships to their environ-
ment. Differences in bird assemblage composition correlated more 
with site differences based on habitat availability than on vegeta-
tion structure. However, a combination of both data sources gave 
the best results, suggesting they provide complementary informa-
tion. These findings enhance our understanding of the trait- specific 
responses of birds to 3D vegetation features and highlight the rel-
evance of considering vegetation structure in studies of species– 
environment relationships across large areas.

Vegetation structure influences bird habitat selection in 
both open and closed environments through its effect on move-
ment (Brokaw & Lent, 1999), foraging success (Whittingham & 
Markland, 2002) and predator avoidance (Gotmark et al., 1995). 
We found high importance of vegetation structure relative to habi-
tat availability for many models of local bird richness. We expected 
niche addition to lead to a positive linear relationship between 
richness and foliage height diversity, especially for forest species 
(Clawges et al., 2008; MacArthur & MacArthur, 1961). Indeed, we 
found positive effects of foliage height diversity and canopy height 
that appeared to exceed the influence of forest cover on forest bird 
richness. Other functional groups also responded distinctly to the 
presence or absence of tall, complex vegetation and canopy height 
appears to be a key variable in this group (Figure S5).

We found that the positive relationship between canopy height 
and forest species richness plateaued after approximately 60% of 
its distribution, which may indicate that other factors such as struc-
tural complexity, tree species composition or the size of fragments 
constrain richness in forests. Interestingly, the relationship between 
foliage height diversity and forest bird richness did not plateau 
early— suggesting an important role of structural diversity in for-
ests. Danish forests are highly fragmented, and we observed the 

plateauing effect of canopy height occurred at a higher value when 
using a 50- m radius and was lower with a 450- m radius (not shown). 
As the focal area grows, it tends to incorporate more open habitats 
(the dominant type) and the mean canopy height decreases. These 
scaling effects, along with potentially complex interactions between 
foliage height diversity, canopy height and canopy openness, merit 
further investigation when applying these metrics across broad ex-
tents and mixed habitats.

Large- grain studies have often shown positive heterogeneity– 
diversity relationships based on habitat availability (Atauri & De 
Lucio, 2001; Redlich et al., 2018). Contrary to expectations, how-
ever, our metric of habitat diversity did not play an important role 
in explaining richness patterns. Instead, vegetation structure and 
the presence of specific habitat types identified suitable areas for 
different species. Habitat diversity may have been a weak explan-
atory variable if the scale of our main analysis (7 ha) was smaller 
than the taxon- specific scale of this effect (Mayor et al., 2009; 
Tews et al., 2004). Indeed, our sensitivity analysis showed that 
habitat availability became more important with increasing spa-
tial grain. Due to a trade- off between habitat heterogeneity and 
the area of suitable habitat per species (Allouche et al., 2012), the 
heterogeneity– diversity relationship often depends on spatial scale 
(Tamme et al., 2010) and on species' unique habitat requirements 
(Atauri & De Lucio, 2001). Nonetheless, we did not find strong nega-
tive effects of habitat heterogeneity that would have been predicted 
by microfragmentation of habitat patches in small areas (Tamme 
et al., 2010).

One aspect of habitat availability had a particularly strong ef-
fect on bird richness patterns: the presence of water and wetlands. 
Despite its rarity, this habitat class was crucial for some functional 
groups, highlighting the importance of certain habitats for specialist 
species (Pickett & Siriwardena, 2011). For example, the richness of 
ground- nesting species was strongly correlated to water and wet-
land availability, and this group is suffering the greatest long- term 
declines of any in Denmark (Heldbjerg et al., 2018). Widespread sub-
surface draining was initiated in the 19th century in Denmark to in-
crease the amount of land available for agriculture (Mortensen, 1987) 
and to convert forests to plantation forestry. Historical maps from 
the turn of the 19th century show that wetlands made up 20%– 30% 
of the Danish landscape (Korsgaard, 2004). While ecosystem res-
toration projects are underway that aim to restore natural wetland 
and forest hydrology, our findings highlight the importance of their 
continuation and development.

Species richness was best explained when species were split 
into functional groups, echoing analyses restricted to forest habitats 
(Goetz et al., 2007). We could not predict total species richness and 
instead found that functional groups showed diverse responses to 
the environment, highlighting the need to consider species identity 
when studying richness patterns (Stirnemann et al., 2015; Weisberg 
et al., 2014). Most results followed our ecological expectations. For 
example, the richness of water- associated functional groups de-
pended strongly on the availability of water and wetlands. We also 
identified important negative correlations, such as the avoidance of 

TA B L E  3  Mantel statistics (Pearson's r) between distance 
matrices based on assemblage composition and different variable 
groups. p Values were estimated using 999 permutations.

Variables n rM p

Geographic location 2 0.063 0.001

Vegetation structure 7 0.245 0.001

Habitat availability 9 0.286 0.001

Habitat and vegetation 16 0.321 0.001

Abbreviation: n = number of variables.
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artificial land by grassland species. Models of habitat use functional 
groups generally performed well and for both forest and grass-
land models, vegetation structure metrics produced better model 
accuracy— although they diverged in the direction of their responses 
as expected. The analysis of separate functional groups facilitates 
our interpretation of species– environment relationships, which 
could be extended to guide the conservation efforts of targeted 
groups.

We found that greater differences in habitat availability between 
sites across Denmark lead to greater differences in bird assem-
blages. While the same pattern was found for vegetation metrics, 
the correlation to bird composition was not as strong. This finding 
may indicate that abundance is influenced more by habitat type than 
by its structure or complexity. The amount of artificial land, for ex-
ample, likely affects bird composition but was not well captured by 
our LiDAR metrics (Figure S8). Nonetheless, while we focussed on 
LiDAR metrics representing vegetation structure, these are only a 
small subset of the environmental descriptors that can be calculated 
from LiDAR (e.g. classifying urban surfaces; Yan et al., 2015). Overall, 
combining both LiDAR and satellite data produced the best correla-
tion to bird assemblages. With appropriate variable choice, these 
complementary methods can help predict biodiversity patterns and 
aid the development of remotely sensed EBVs (essential biodiversity 
variables; Valbuena et al., 2020).

Taken together, our analysis confirms the effectiveness of LiDAR 
as a tool for measuring 3D habitat structure across broad extents 
and demonstrates the importance of vertical structure to spatial 
patterns of biodiversity. Considering the still limited availability of 
LiDAR in many countries, our results help identify the functional 
groups that could benefit most from the inclusion of structural vari-
ables in predictive models. Our findings highlight how fine- grained 
metrics of 3D vegetation structure can capture within- class differ-
ences in habitat quality and improve the explanation of diversity 
patterns. The combination of land cover and vegetation structure 
metrics explained a high proportion of the variance in richness pat-
terns, though many individual models still had a large amount of 
unexplained variance. Stochastic processes at the local scale may ex-
plain part of this missing variance, along with unaccounted for eco-
logical processes such as species interactions (Gotelli et al., 2010), 
climatic gradients or temporal heterogeneity in resources and pre-
dation pressure (Mayor et al., 2009).

Our nationwide assessment opens promising avenues for future 
research and management applications. As the coverage of high- 
resolution LiDAR expands, it will be possible to investigate differ-
ences in the relationship between species diversity and vegetation 
structure at a local scale across biomes and between regions with 
different management histories. As demonstrated in this study, 
citizen science monitoring programmes can be an ideal counter-
part to large- scale remote- sensing efforts. Having standardised, 
geolocated observations is particularly helpful, even if limited to 
more common species. In the future, leveraging the full temporal 
dimension of these data types will permit research into dynamic 
changes over time. Furthermore, the development of standardised 

structural metrics that also apply in open areas may offer insights 
into the role of structural features in habitats with different vertical 
scales (e.g. in wetlands; Koma et al., 2021). Establishing the links 
between vegetation structure and management— either for produc-
tion or conservation— will help guide actions to promote the fea-
tures relevant to species' requirements. For Denmark, our results 
suggest that promoting water availability and vegetation complex-
ity in forests, which are often intensively managed, could benefit 
bird diversity.

In conclusion, our study shows how national- scale LiDAR data 
allows us to investigate the response of bird functional groups to 
3D features of the environment across large extents. We found that 
vegetation structure helped explain richness patterns, but that hab-
itat availability best described bird assemblage composition. There 
was no universal relationship between species richness and habitat 
or vegetation heterogeneity; bird functional groups displayed indi-
vidual responses to these drivers. Identifying which environmental 
features are important for functional groups, or individual species, 
could help inform future conservation actions and monitoring 
schemes. Our findings demonstrate the value of combining citizen 
science and active laser scanning for studying the relationships be-
tween animals and their environment across large spatial extents, 
which may help further our understanding of species' physical niche 
requirements and improve predictions of future change.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Appendix S1. Additional text and figures supporting the analysis.
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