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Animals form groups for many reasons, but there are costs and benefits

associated with group formation. One of the benefits is collective memory.

In groups on the move, social interactions play a crucial role in the cohesion

and the ability to make consensus decisions. When migrating from spawning

to feeding areas, fish schools need to retain a collective memory of the desti-

nation site over thousands of kilometres, and changes in group formation or

individual preference can produce sudden changes in migration pathways.

We propose a modelling framework, based on stochastic adaptive networks,

that can reproduce this collective behaviour. We assume that three factors con-

trol group formation and school migration behaviour: the intensity of social

interaction, the relative number of informed individuals and the strength of

preference that informed individuals have for a particular migration area.

We treat these factors independently and relate the individuals’ preferences

to the experience and memory for certain migration sites. We demonstrate

that removal of knowledgeable individuals or alteration of individual prefer-

ence can produce rapid changes in group formation and collective behaviour.

For example, intensive fishing targeting the migratory species and also their

preferred prey can reduce both terms to a point at which migration to the

destination sites is suddenly stopped. The conceptual approaches represented

by our modelling framework may therefore be able to explain large-scale

changes in fish migration and spatial distribution.
1. Introduction
Grouping behaviour is a widespread phenomenon in animal ecology and is thought

to be an emerging property of the self-organization of individual organisms [1].

While living in groups, social animals benefit from several advantages, among

which is a more efficient capacity in problem solving [2–4]. Of particular interest

is the ability of the group to make collective decisions also when it is composed of

individuals with contrasting preferences and information [5,6]. How groups reach

a consensus decision has recently received much attention [7–10], and several mech-

anisms to pool the information in the group have been proposed [1,6].

Often no obvious reason can be adduced to explain the social behaviour of

certain species except the fact that those groups are more efficient than single

individuals in retrieving information from the environment [9,11,12]. For

groups on the move, such as fish schooling, bird flocking or mammal herding,

it has been shown that information transfer and social interactions are important

factors of group cohesion and can promote the ability of making consensus

decisions [10,13,14].

An example of such a collective decision-making problem is the structure of

migration routes in some fish species. Migration between widely separated, but

geographically stable locations of spawning and feeding sites raises several

questions about how these animals manage to learn and remember the migration

route between feeding and spawning sites. Where is the information on the

path stored? How is it retrieved, shared and elaborated by a migrating
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Figure 1. Connection between the link creation and destruction process and
real space models where h is the link creation rate and l is the link destruction
rate. (Online version in colour.)
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group? Are these tasks performed significantly better by the

group with respect to the individuals? Shedding light on the

functioning of these mechanisms is a fundamental issue in

ecology but may also be relevant to fields such as sociology

and economy where it is common to deal with large systems

of competitive agents that share information [4,11]. We

hypothesize that collective memory might play an important

role in the migration process of fish populations [13] and

model its effects on schooling behaviour and migration effi-

ciency. We tackle these questions by assuming that

individuals have different amounts of information about

migration routes and that only a fraction of them possess

some information, whereas the rest only exhibit a social be-

haviour. Those assumptions are consistent with numerical

simulations of the evolution of leader and social traits in

migratory populations [15,16] but are introduced in our

model in a different way. In fact, previous approaches

mainly fall in a class of agent-based models with spatial

interaction [1,15,17–19] where ‘social’ individuals tend to

align and to follow the individuals that are nearby, in a

finite spatial range. This reproduces a realistic dynamics,

but it gives little insight into the mechanisms by which the

collective behaviour emerges from individual interactions.

Indeed, due to their complexity, spatial dynamics models

can be studied only with extensive numerical simulations.

Here, instead, we take a stochastic adaptive network

approach. Network approaches have already been success-

fully applied to address collective behaviour in animal

groups [8,20,21]: adaptive network models provide, in fact,

a simpler mathematical structure that can be analysed more

easily than real space models (i.e. without relying on simu-

lations). In all these models, as in ours, spatial dynamics is

implicitly taken into account through link creation and

destruction processes: changes in the neighbourhood of the

individuals due to spatial dynamics are reproduced by link

dynamics between nodes (figure 1).

Capitalizing on previous models [22,23], we build a

model introducing the key ingredient of memory for pre-

ferred route directions in a fraction of the individuals (the

informed ones). This is introduced as an a priori bias for a par-

ticular route in the choice behaviour of the informed

individuals, that is, based on their experience in that particu-

lar habitat: their memory. Therefore, the collective choice of

the route direction is a function of individual and social pro-

cesses. We are able to find an exact solution for the model that

provides a clear picture of how information is elaborated,

stored and shared in the group and allows us to describe

an observed switch of migratory path in fish populations as

a result of a loss of group-level information.
2. Theoretical framework
Most studies about swarming phenomena in animal groups

have relied on real space dynamical models [1]. Here,

we address the issue of group formation using a network

dynamical model [22,23]. Neighbouring nodes in the graph

correspond to neighbouring individuals in space (figure 1).

Let us consider a group with N individuals. In our net-

work model, each individual is represented by a node (thus

N is the total number of nodes), and each node, i, has an

internal dynamical variable, ai, that can take integer values

ranging from 1 to q. Although the mathematical solution
does not depend on the specific interpretation of the variable

ai, in the context of migrating groups, ai might be considered

as the direction taken by a single individual to reach the

destination site. Links between nodes represent interactions

among individuals by which they influence each other in

their choice of the destination. While space is not explicitly

resolved, we assume that neighbouring nodes in the graph

correspond to neighbouring individuals in space (figure 1).

Yet, nearby individuals need not necessarily influence each

other (see below).

More precisely, a state of the system is defined by the adja-

cency matrix of the system gij and by the set of the internal

dynamical states variables ai. In our model, links are mutual
and, thus, the adjacency matrix is a symmetric matrix (i.e.

for all i, j, we have that gij ¼ gji), such that gij ¼ 1 if there is a

link between the nodes i and j, and gij ¼ 0 otherwise. The evol-

ution of the system is governed by stochastic dynamics in

which both the neighbourhood and the values of the internal

dynamical state may vary, according to stochastic Poissonian

processes. These are discussed in the following (we refer the

reader to the electronic supplementary material for a detailed

mathematical definition).

2.1. Network dynamics
The network evolves by creation and destruction of links

that mimic the spatial interaction between individuals. Link

creation is quantified by the rate h at which individuals

form new links with other individuals. This rate encodes

both evolutionarily selected traits for pro-social behaviour

and environmental factors, notably the average distance

between individuals. In our model, we assume that the

interactions between individuals heading towards different

directions decay much faster than interactions between

close individuals heading towards the same direction.

This is in agreement with the real space dynamical model

and is achieved in the network by assuming that link creation

can occur only when individuals have the same internal state

ai ¼ aj. This is equivalent to saying that if ai = aj, then the link

between nodes decays immediately.

Finally, individuals linked and moving in the same direc-

tion can also move further apart from each other, which is

http://rsif.royalsocietypublishing.org/
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formally encoded by assuming that links between nodes

decay with a constant rate l. These two processes provide a

mean field description of the real space dynamics. Indeed,

link creation and decay depend on the geometry of the neigh-

bourhood in spatially explicit models, which is averaged out

within the mean field description. Mean field approximations

such as this one work very well to capture the qualitative behav-

iour of complex systems. To set an analogy, in a gas, one does

not need to trace the trajectory of each molecule. It is enough

to provide a ‘collision integral’ that loosely speaking gives the

probability that a particle moving in a certain direction will

interact with a particle moving in a different direction. Here,

we are taking the same approach.
c.Interface
11:20140043
2.2. Internal state dynamics
The change of the internal state is a Poissonian process

that occurs with rate n for each individual. The choice of the

destination ai is influenced by two factors: (i) pro-social behav-

iour, by which an individual keeps the same destination of

their neighbours, and (ii) memory, by which an isolated indi-

vidual preferentially heads towards a destination ai that is

encoded in its memory.

More precisely, when an individual updates its internal

state, (i) if it is linked to other individuals, then it will

update its internal state conforming to the state of the

majority in its neighbourhood, i.e. the new state a0i is

a0i ¼ argmax
x

X
j

gijdxaj

0
@

1
A: (2:1)

In formula (2.1), dxy is Kronecker delta function, i.e. if x ¼ y,

dxy¼ 1, otherwise dxy ¼ 0. Again, this rule is necessary

within our mean field description of spatial interaction,

because if an individual were to choose a direction which is

different from that of the (majority of the) group it is in, then

it would quickly move far apart and its links would decay.

On the other hand, (ii) if an individual is isolated (not

linked), then its choice of the internal state is influenced by

its preference for a destination that is encoded in its

memory. More precisely, we assume that each individual

has a preferred value of the internal variable, let us call it

ai. In the case of an internal state update event, an unlinked

individual will pick up a state according to the following

probability distribution:

Prob(ai ¼ a) ¼ ehai daai

q� 1þ ehai
, (2:2)

where hai is a parameter that measures the intensity of the

preference. This also encodes, besides information processing

and storage capabilities, environmental factors related to the

properties of a given feeding site, such as quantity of prey,

water temperature, water quality, etc.

The fraction of individuals with a preferred destination a

is na, but we also contemplate a fraction n0 of ‘uninformed’

individuals who have no a priori preference for any memor-

ized destination. We use the convention that uninformed

individuals have ai ¼ 0 and hai ¼ 0: Therefore, uninformed

individuals update their direction at random, which is

described by equation (2.2) with ha¼0 ¼ 0.

Previous network approaches used a voter model update

rule, instead of a majority rule [8,20,21]; this choice makes no

qualitative difference in the stationary case, because our main
results are based on a state space decomposition (see the elec-

tronic supplementary material) that remains valid as long as

the update rule promotes local uniformity. However, we

expect detectable differences in the transient behaviour of

these systems. Biologically, a majority rule captures the

nonlinearity of group behaviour.

As in spatially explicit models, in our description, individ-

uals compromise about directional choices. The majority rule

does not prohibit that an individual i heading towards a

given destination may change its route upon encountering

another individual j. While this is not an elementary event

described by the processes above, it can clearly occur as a com-

posite event that entails the decay of all the links of i, an

update of its choice and the formation of a link with j. The

probability of this event is non-zero and it decreases with

the number of individuals i is interacting with, as one expects.

In some cases, individuals in groups need to compromise

between information gathering from the environment and

social cohesion of the group [9,24], and thus some previous

modelling approaches have assumed a trade-off between infor-

mation capabilities and pro-social behaviour, in that informed

individuals have a reduced tendency to follow their peers. The

present modelling framework may be extended to encompass

this situation also by making, for example, h take different

values for informed and uninformed individuals. This general-

ization of the model leads to the same conclusions as those

discussed below, but it comes at the cost of more complex

mathematics. In addition, there is no conclusive evidence,

as far as we are aware of, that such trade-offs really exist in

populations of fishes [10]. We have, however, checked that

adding these trade-offs to the model is inconsequential as

far as the main results of the model discussed here are con-

cerned, which is why we discuss these aspects in the

electronic supplementary material.

2.3. Invariant distribution
Given the above transition rates, we can write down the

master equation (see the electronic supplementary material)

and derive the invariant distribution that describes the station-

ary state. One key observation in this is that, because only links

between nodes with the same internal state can be established,

the process will converge to states where all links (i, j) are

between nodes with ai ¼ aj. Any state with links (i, j) connect-

ing nodes with ai= aj is transient, i.e. it is not going to occur in

the long run. This allows us to partition the states of the system

into a transient class and a closed ergodic class. This ensures

that the invariant distribution is unique. It can be shown (see

the electronic supplementary material for details) that the pro-

cess satisfies the detailed balance and the probability to

observe a state with a given network fgijg and profile of

choices faig in the stationary state is given by

p({gij}, {ai}) ¼
1

Z

Y
j,i

e
P

i
hai daiai

2hdaiaj

l(N � 1)

� �gij

, (2:3)

where Z is the normalization constant. In particular, when, for

some i and j, we have that ai=aj and gij¼ 1, the invariant distri-

bution is zero. We are also assuming the convention that 00 ¼ 1.

Let Na
a ¼

P
j dajadaja be the number of individuals that are

in state a, but would like to be in state a, and let na
a ¼ (Na

a /N).

If, in equation (2.3), we call

z ¼ 2
h

l
(2:4)
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the non-dimensional parameter that accounts for the effective

creation of links in the network, thus measuring the sociality
of the group, then with standard mathematical manipula-

tions (see the electronic supplementary material) we can

easily write the stationary state distribution in terms of the

densities n ¼ {na
a } as follows:

p(n) ¼ 1

Z
e�N[F(n;z,h)þO(1=N)], (2:5)

where

F(n;z,h) ¼
X

a
n0

a log (n0
a )þ

X
aa

na
a log (na

a )

�
X

aa
hana

a daa �
z
2

X
a

(na)2, (2:6)

and Z is the normalization constant. In the large population

limit (N!1), this distribution peaks exponentially in N
around the minima of F.

The stationary points of F(n;z, h) satisfy the following

system of equations:

na
a ¼ ehadaaþzna

na

(eha � 1)ezna þ
P

a ezna
, (2:7)

where na ¼
P

i ni
a is the total density of individuals whose

internal state is a (see the electronic supplementary material

for the detailed calculation).

Therefore, with a large number of individuals and in the

stationary state of the system, we are able to use equation

(2.7) to analytically describe the fraction of individuals with

a priori preference a that end up heading towards destination a.

This set of nonlinear equations has many solutions in prin-

ciple. Those corresponding to stationary states can be fully

characterized in terms of the average degree of the network

kkl (i.e. the average number of neighbours of individuals)

that is a proxy for the school density. It can be shown that

one measure of the network degree is kkl ¼ z(1� (1/q))

sþ (z/q), where the quantity

s ¼ q
P

i (ni)
2 � 1

q� 1
(2:8)

is a direct measure of the school efficiency and it takes values

between s ¼ 1, when all individuals belong to a group that

migrates towards the same destination, and s ¼ 0, when indi-

viduals distribute equally between different destinations.

Hence, the solution with high coordination (s ≃ 1) also

corresponds to high network densities kkl ≃ z.

Among all the solutions of equation (2.7), we shall focus

on those corresponding to the global minimum of F(n;z,h)

that determine the behaviour of the system, because they

correspond to the values around which the stationary

distribution shall peak.
3. Results
We shall analyse two cases: (1) the case of a population with-

out informed individuals, n0 ¼ 1, and (2) the case where a

fraction n1 ¼ 1 2 n0 of the individuals have a preferred

migratory destination, whereas the rest are not informed.

3.1. Migration without information
When no information is available in the group, the system

reduces to an adaptive network model in which group
coordination depends only on the rates at which links are

created or destroyed [22,23].

Below a certain threshold ž, only one local minimum exists

that corresponds to a symmetric solution s ¼ 0 (figure 2a);

there the network is sparse, kkl , 1, and the group does not

migrate. At ž, a new bundle of q local minima appear at

which s . 0. There the network is dense, kkl . 1, and a frac-

tion of the individuals comparable to N (called in graph

theory the giant component) are connected with one another

and coordinated on the same destination choice.

The analysis also produces the full probability distribu-

tion of different states that allows ranking the solutions in

terms of their probability (see the electronic supplementary

material). Between ž and ẑ, both solutions coexist, and individ-

uals can migrate in a coordinated manner or not. Above ẑ, the

only local minima are for s . 0, whereas the sparse solution

s ¼ 0 becomes unstable. There is an intermediate point z*

below which the sparse solution is the most likely outcome

whereas, above it, the high-density solution will prevail.
3.2. Informed migration
In order to analyse the role of information in the model, we

study the simplest possible case, with q destinations, a den-

sity of informed individuals n1 ¼ 1 2 n0 and a preference h
about a single destination.

Equation (2.7) again can be solved numerically to obtain a

prediction on schooling behaviour. Information has two main

effects on the system (figure 2b). First, it breaks the symmetry

between the q high-density solutions found in the n0 ¼ 1

case, by selecting the solution with the preferred destination

a ¼ 1 as the most likely. The q 2 1 solutions corresponding

http://rsif.royalsocietypublishing.org/
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to migration towards other destinations remain stable, but are

much less likely to be selected by the population.

Second, the coexistence region between high- and low-

density solutions [ž, ẑ] is reduced in the case of informed

migration (figure 2). In fact, this region becomes smaller as

the number of informed individuals increases (figure 3).

Eventually, there exists a critical value of n1 at which the

region collapses into a point. This change in the behaviour of

the system is equivalent to a second-order phase transition

in physics. For values of n1 greater than this critical point,

the system has a smooth transition between low- and high-

density states, as z increases, and a single solution is found.

Moreover, the coexistence region and the critical value

change with h. The thick line in figure 3 marks the point, in

the coexistence region, where the two solutions are equally

probable; on the right (left) of this line, we expect to see the

high (low) density solution.

The behaviour of the solution as the parameters h and

n1 ¼ 1 2 n0 vary, at fixed z, is depicted in figure 4. For low

values of z (figure 4a), we observe a smooth crossover from

low- to high-density solutions as h and/or n1 increase,

whereas when z is larger the system exhibits a sharp tran-

sition between the two solutions (figure 4b). The presence

of a sharp transition with coexistence in a broad range of

parameters is a robust feature of this model.

For more complicated settings using competing groups

with different preferred migratory destinations, it can be

shown that, for large z, the population coordinates towards

the migratory destination that provides the largest product

naha (see the electronic supplementary material). This quantity

can be interpreted as the strength of the group’s collective

memory towards a given migration site, a.

This provides us with a vivid picture of how we expect

the collective behaviour of the population to change when

the parameters z, h and n0 change. Adapting this picture to

the observed behaviour of populations provides hints on

the likely underlying causal effects. In brief, when z is

large, i.e. for individuals with a marked pro-social behaviour,

we expect abrupt transitions when either the density na of

individuals with a given preference or the intensity ha of

that preference varies in such a way as to cross the boundaries

in the phase diagram (figure 3).
When both the density of informed individuals and the

intensity of preference ha decrease, abrupt transition from

efficient group formation to collapse of migration efficiency

is visible. We note that this hysteresis cycle is consistent

with observed stock collapses of migratory fish populations

[25]. When the migratory population is described using a

social parameter z close to the critical point, then the inter-

play between the memory for a given destination, h, and

the fraction of the individuals informed, n1, about this desti-

nation can produce an abrupt transition in the migration of

the species.

In the case of a school migrating in direction 1, a

decrease of the value of h and n1 over the years, due, for

example, to overfishing of both individuals and prey in

the migration site, can force the system to cross the critical

line reaching eventually low values of both h and n1.

When in this condition, an increase in the value of h
might occur due, for example, to better habitat conditions

or food availability, for those few vagrant fish that might

still be present in the area. However, this increase alone

cannot bring the system back to the original state, because

the system may not cross again the critical line. Thus, the

group may not migrate in direction 1, even though previous

habitat conditions are re-established.

http://rsif.royalsocietypublishing.org/
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4. Discussion
We show that abrupt changes in migratory patterns of animal

groups can be caused by removal of knowledgeable individ-

uals from the group or by decreasing preference of the

individuals towards a particular migratory destination. We

demonstrate this with a robust analytical approach that

allows us to clearly identify the factors regulating group for-

mation processes. Our results are consistent with previous

models suggesting that a small number of informed individ-

ual can lead to large group migrations [14,26]. Additionally,

we demonstrate that diminishing individual preference for

a given migration site can preclude group formation and

break the migration process.

4.1. The migration game
The migration process can be described as an emergent property

of the population undertaking a group formation game: when

the spatial density of fish is locally low, each individual moves

independently, and the system is in a sparse network configur-

ation with a value of z below the lower edge of the coexistence

region. In this state, uninformed individuals cannot migrate,

whereas informed individuals can undertake a solitary migration

towards their preferred destination. Owing to external stimuli

(water temperature, local currents, topography, etc.), the density

may increase and so does the value of z, driving the system

towards the coexistence region. In this region, even though the

local density of fish is high, a sparse network configuration

with fish moving independently is still stable, but an alternative

and stable dense network configuration also appears. When the

system reaches the upper edge of this region, further increasing

the density, the sparse network state becomes unstable, whereas

the dense network state prevails, and the school starts a

migration towards the preferred destination. On the other

hand, a hysteretic cycle is present in this system and when the

local density of fish decreases in the school, the sociality, z,

decreases and the system is driven back to the coexistence

region. A similar effect can be reproduced in the system by low-

ering the preference factor, h. The schooling configuration

remainsstable until the system reaches the loweredge of the coex-

istence region: at this point, fish stop schooling, and the system

switches back into the sparse configuration (solitary fish).

The group formation game described above can be repeated

each year naturally driving changes in the preference term h,

hence in the memory of migratory fish. Likewise, changes in

this or in the other term of the model can occur when the

migratory population is affected by external stimuli, for

example overfishing, habitat degradation, demographic fluctu-

ations. Because of the hysteretic cycle, such variations may then

result in abrupt changes in the migratory patterns.

4.2. Conflicting preferences
From the asymptotic analysis (electronic supplementary

material), we demonstrate that, for large value of z, the

group shall migrate towards the direction a for which the pro-

duct naha is maximal, whereas in the limit of small z the sparse

configuration is the only stable one. This suggests that our

results might be extended to groups with conflicting prefer-

ences. It is relevant to note that in our model all individuals
have a social component. For example, in groups with conflict-

ing preferences, our model suggests that, for some range of the

parameters, an informed individual can follow the group and
migrate towards a site different from its preferred destination.

This approach makes our definition of leaders dependent not

only on the amount of information stored, but also on the

social context in which they live. Therefore, the interaction

between personal information and social effects is explicitly

resolved in our model and—we note—it has been suggested

to operate in living groups [10,27].

4.3. Collective memory and breakdown of social
traditions

Breakdown of social traditions, due to selected fishing on

older informed individuals, has been hypothesized to have

contributed to stock collapses in several large commercially

important fish populations [13,25].

Our sketch of the migration game suggests that social

dynamics may lead to such collapses and that the integrity of

migration pathways and spatial distributions of migratory pre-

dators might be particularly vulnerable to perturbations such

as fishing or habitat degradation. Fishing out informed individ-

uals and their prey can exacerbate the loss of collective memory

up to the point where a migratory pathway is suddenly inter-

rupted. We can assume that each year young individuals join

the group: among them a fraction are able to gather infor-

mation and remember a migratory route, whereas the rest

have a purely social behaviour. The ‘information-gathering-

able’ individuals behave as uninformed individuals (h ¼ 0),

but learn a new migratory route during the first migration(s).

If the group does not succeed in starting migration, or migrates

towards a different location, the young ‘information-gathering-

able’ individuals will not learn the traditional migration route

of the group and the social traditions of the group will not

be transmitted to the new generations. The loss of collective

memory in the group will then force the system to cross the

critical line, and the migration towards the destination site

will stop.

An example of a prey–predator collapse and subsequent

abrupt disappearance of migratory route is provided by

Atlantic bluefin tuna (Thunnus thynnus Linnaeus, 1758) and

its main prey, herring (Clupea harengus Linnaeus, 1758) in

the Norwegian and the North Seas. During the 1950s to

1970s, both species were heavily exploited in these regions,

resulting in the disappearance of both species [28–30].

Since then, the herring populations in both regions have

recovered to moderate to high levels [28,29], but bluefin

tuna have been extremely rare during the 1980s to 2000s

and apparently have not migrated to these areas in large

numbers since their disappearance several decades ago [30].

These hysteretic dynamics are consistent with a fishing-

induced removal of predators having preference for

migration to these regions and a fishing-induced decline in

habitat quality which then leads to the collapse of group for-

mation and a sudden change in migratory path (cf. figure 4).
5. Conclusion
We have presented a model that offers and elucidates a plaus-

ible mechanism for migration dynamics. By extending and

generalizing previous approaches, our model shows that

group formation dynamics have a critical dependence on

sociality, number of informed individuals and strength of

the preference in informed individuals. For example, partial
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removal of knowledgeable individuals may be sufficient to

interrupt the transmission of social traditions in groups of

animals. Such critical dependence is consistent with abrupt

transitions that are commonly observed in migration patterns

of social animals such as Atlantic bluefin tuna as well as other

fish populations [25].

Our findings offer deep insights into migration dynamics

and suggest interesting directions both for data analysis

(e.g. new interpretations of spatial temporal dynamics of

migratory populations) and for further theoretical development

(e.g. accounting for conflicting preferences, continuous direc-

tions, different segregation policies, topological interaction).
Contrary to previous agent-based approaches [1,15,17–19],

our model has the advantage of being analytically soluble,

and thus it provides a powerful theoretical bench test for

hypotheses on collective animal behaviour.
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changes in migration pattern of herring: collective
behaviour and numerical domination. J. Fish Biol.
60, 571 – 582. (doi:10.1111/j.1095-8649.2002.
tb01685.x)

27. Herbert-Read JE, Krause S, Morrell LJ, Schaerf TM,
Krause J, Ward AJW. 2013 The role of
individuality in collective group movement.
Proc. R. Soc. B 280, 20122564. (doi:10.1098/rspb.
2012.2564)

28. International Council for the Exploration of the Sea. 2011
Report of the herring assessment working group for the
area south of 62 deg N. Copenhagen, Denmark: ICES.

29. International Council for the Exploration of the Sea.
2012 ICES Advice. Book 6. Copenhagen, Denmark: ICES.

30. International Commission for the Conservation of
Atlantic Tunas. 2012 Report of the 2012 Atlantic
Blufin Tuna stock assessment session. Madrid, Spain:
ICCAT. See http://www.iccat.int/Documents/
Meetings/SCRS2012/SCI-003_ENG.pdf.

http://dx.doi.org/10.1016/j.tree.2009.06.016
http://dx.doi.org/10.1006/anbe.1998.0760
http://dx.doi.org/10.1098/rsfs.2011.0090
http://dx.doi.org/10.1016/j.cub.2008.09.064
http://dx.doi.org/10.1126/science.1210280
http://dx.doi.org/10.1126/science.1210280
http://dx.doi.org/10.1073/pnas.1007102108
http://dx.doi.org/10.1073/pnas.1007102108
http://dx.doi.org/10.1073/pnas.1217513110
http://dx.doi.org/10.1038/471040a
http://dx.doi.org/10.1038/471040a
http://dx.doi.org/10.1126/science.1225883
http://dx.doi.org/10.1046/j.1467-2979.2003.00122.x
http://dx.doi.org/10.1046/j.1467-2979.2003.00122.x
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1073/pnas.1006874107
http://dx.doi.org/10.4161/cib.4.3.14887
http://dx.doi.org/10.1073/pnas.1107583108
http://dx.doi.org/10.1016/j.physrep.2012.03.004
http://dx.doi.org/10.1140/epjb/e2008-00275-9
http://dx.doi.org/10.1140/epjb/e2008-00275-9
http://dx.doi.org/10.1088/1367-2630/13/7/073022
http://dx.doi.org/10.1098/rsif.2007.1229
http://dx.doi.org/10.1103/PhysRevE.74.036106
http://dx.doi.org/10.1103/PhysRevE.74.036106
http://dx.doi.org/10.1007/BF00166700
http://dx.doi.org/10.1093/icesjms/fsq082
http://dx.doi.org/10.1093/icesjms/fsq082
http://dx.doi.org/10.1111/j.1095-8649.2002.tb01685.x
http://dx.doi.org/10.1111/j.1095-8649.2002.tb01685.x
http://dx.doi.org/10.1098/rspb.2012.2564
http://dx.doi.org/10.1098/rspb.2012.2564
http://www.iccat.int/Documents/Meetings/SCRS2012/SCI-003_ENG.pdf
http://www.iccat.int/Documents/Meetings/SCRS2012/SCI-003_ENG.pdf
http://www.iccat.int/Documents/Meetings/SCRS2012/SCI-003_ENG.pdf
http://rsif.royalsocietypublishing.org/

	Fishing out collective memory of migratory schools
	Introduction
	Theoretical framework
	Network dynamics
	Internal state dynamics
	Invariant distribution

	Results
	Migration without information
	Informed migration

	Discussion
	The migration game
	Conflicting preferences
	Collective memory and breakdown of social traditions

	Conclusion
	Acknowledgements
	Funding statement
	References


