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de Ecologia, ICB, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil, 2Programa de Pós-Graduação em Ciências
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Abstract. 1. The effects of climate change on species’ ranges have been usually
inferred using niche-based models creating bioclimatic envelopes that are projected
into geographical space. Here, we apply an ensemble forecasting approach for niche
models in the Neotropical grasshopper Tropidacris cristata (Acridoidea: Romalei-
dae). A novel protocol was used to partition and map the variation in modelled
ranges due to niche models, Atmosphere-Ocean Global Circulation Models
(AOGCM), and emission scenarios.
2. We used 112 records of T. cristata and four climatic variables to model the spe-

cies’ niche using five niche models, four AOGCMs and two emission scenarios.
Combinations of these effects (50 cross-validations for each of the 15 subsets of the
environmental variables) were used to estimate and map the occurrence frequencies
(EOF) across all analyses. A three-way ANOVA was used to partition and map the
sources of variation.
3. The projections for 2080 show that the range edges of the species are likely to

remain approximately constant, but shifts in maximum EOF are forecasted. Suitable
climatic conditions tend to disappear from central areas of Amazon, although this
depends on the AOGCM and the niche model. Most of the variability around the
mapped consensus projections came from using distinct niche models and
AOGCMs.
4. Although our analyses are restricted to a single species, they provide new con-

ceptual and methodological insights in the application of ensemble forecasting and
variance partition approaches to understand the origins of uncertainty in studies
assessing species responses to climate change in the tropics.

Key words. Climate change, ensemble forecasting, niche models, Orthoptera,
Tropidacris, variance partition.

Introduction

Knowing the geographic distribution of a species and the envi-

ronmental suitability in each of its parts is a crucial step towards
effective conservation strategies (Araújo & Williams, 2000;
Thomas et al., 2008). In general, this is achieved by niche

models, which are built using different algorithms that establish
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correlations between a species’ occurrence and the environmen-
tal variables measured at the same locations (reflecting thus the

‘Grinnelian’ component of ecological niche – sensu Soberón,
2007) (see Pearson & Dawson, 2003; Araújo & Guisan, 2006;
Beaumont et al., 2007; Colwell & Rangel, 2009 for conceptual

discussions on niche models and their projections in geographi-
cal space). Once the models are established, they are projected
into geographical space and thus can be used to estimate the spe-

cies’ potential geographic range based on a relatively small
amount of information.
The use of niche models is usually considered as a useful first

approach to overcome the so-called ‘Wallacean’ shortfall (i.e.,
the lack of knowledge about species distributions; see Bini et al.,
2006). Moreover, after building the niche model for a given spe-
cies, it can also be projected into a different sets of environmental

conditions, obtained for different time periods or biogeographic
regions, thus being potentially useful to predict species’
responses to climate change (e.g., Thomas et al., 2004; Thuiller

et al., 2005a; Araújo et al., 2006), reconstructing past distribu-
tions (e.g., Martinez-Meyer et al., 2004; Kidd & Ritchie, 2006;
Nogués-Bravo et al., 2008; Nogués-Bravo, 2009) or predicting

biological invasions (e.g., Peterson, 2003; Thuiller et al., 2005b;
Giovanelli et al., 2008; Peterson et al., 2008a).
There are now several methods to model occurrences as a

function of environmental variables and build the bioclimatic

envelopes, which are the basis of niche models (see Segurado &
Araújo, 2004; Elith et al., 2006; Meynard &Quinn, 2007; Tsoar
et al., 2007; Phillips & Dudı́k, 2008; Elith & Graham, 2009 for

recent reviews and comparative evaluations). These niche mod-
els range fromvery simple bioclimatic envelopemodels, in which
only occurrences are used to estimate the amplitude of environ-

mental variationwhich is suitable to the species (e.g., BIOCLIM,
Busby, 1991), up to complex artificial-intelligence based algo-
rithms (e.g., neural networks,Ripley, 1996). Thesemethods have

differentmathematical and statistical properties, and possess dif-
ferent fitting abilities that may constrain the predictions (e.g.,
Segurado &Araújo, 2004; Elith et al., 2006). Although it is pos-
sible to begin understanding the why different models provide

different solutions (see Pearson et al., 2006; Elith & Graham,
2009), there aremany issues which have been intensively debated
on (i) the theoretical basis underlying each of these methods, or

model classes and subclasses (sensuAraújo & Guisan, 2006), (ii)
the causal basis for the relationship between occurrences and
environmental or evolutionary factors (Araújo & Pearson, 2005;

Kearney et al., 2008; Pearman et al., 2008), (iii) the relationship
between model fit and model transferability (Araújo & Rahbek,
2006; Randin et al., 2006; Peterson et al., 2007; Peterson &
Nakazawa, 2008), and (iv) on how to correctly evaluate model

fit (e.g., Liu et al., 2005; Lobo et al., 2008; Peterson et al.,
2008b).
To overcome some of these challenges, Araújo and New

(2007) proposed that a more conservative approach to model
species distributions should be based on a combination of
models and their derived projections, built under different initial

conditions (e.g., datasets, pseudo-absences), model parameteri-
sation (e.g., distinct sets of environmental variables, or their
polynomial expansions), model classes (e.g., different niche

models) and boundary conditions [e.g., Atmosphere-Ocean

Global Circulation Models (AOGCMs)]. This approach has
been termed ‘ensemble forecasting’ and has recently started to

be used in species distribution modelling (Araújo et al., 2005;
Thuiller et al., 2005a; Araújo et al., 2006; Marmion et al., 2009;
O’Haney, 2009; Coetzee et al., 2009; Roura-Pascal et al., 2009;

Diniz-Filho et al., 2009a,b). Actually, some of the more
complex niche models, such as Genetic Algorithm for Rule
Set Production (GARP) (Stockwell & Noble, 1992), random

forests (Breiman, 2001) and neural networks (Ripley, 1996), are
often applied with the same reasoning, generating a large
number of models, performing an evaluation and then combin-

ing the results of the best models (for review, see Araújo &New,
2007).
Here, we discuss the application of the ensemble forecasting

approach to evaluate shifts in the suitable climatic conditions for

a tropical insect, the giant grasshopperTropidacris cristata (Car-
bonell, 1986). However, beyond a simple comparative evalua-
tion of the different modelling techniques and the projected

shifts in the distribution of climatically suitable areas, as usually
performed, we applied a new protocol (Diniz-Filho et al.,
2009a) that allow us to partition the variance of ensembles of

forecasts into multiple components and map the sources of
uncertainty across niche models, AOGCMs, and emission
scenarios, as well as their interactions.

Methods

The species

Tropidacris cristata belongs to the largest known grasshopper

genus of the family Romaleidae (Orthtoptera: Acridoidea). The
species achieves almost 14 cm in length (frons to wing tips) and
a wing span of ca. 24 cm. These grasshoppers are locally

abundant and widely distributed, being found in different
habitat types across their range. The genus was reviewed by
Carbonell (1986) and three species (T. cristata, Tropidacris
collaris and Tropidacris descampsi) were recognised. In South

America, T. collaris is locally more abundant than T. cristata,
but it does not expand towards Central America. Tropidacris
descampsi is a recently described species based on a single

specimen from Colombia. Also, T. cristata was subdivided by
Carbonell (1986) into three subspecies, Tropidacris cristata cris-
tata, occupying the central part of South America, T. c. grandis,

occupying the southern part of South America (up to extreme
south of Brazil and northernArgentina) andT. c. dux, occurring
in Central America, from Costa Rica up to Yucatán and
southernMexico.

Data

Weobtained a total of 112 records of occurrence ofT. cristata
(including the three subspecies) fromCarbonell’s (1986) compre-

hensive review of the genus, which were recorded in a grid with
1646 cells with 1� of latitude and longitude covering the Neo-
tropics. A search for recent records of this species in different

databases (e.g., Thomson ISI) and CRIA (http://www.cria.org.
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br) did not add new occurrences. These records are widely
distributed along the Neotropics (Fig. 1) and suggest that spe-
cies can be foundmainly in wet forests of Central America up to

Yucatán and southwestern part of Mexico, the Amazon and
Atlantic Forest, and in parts of the BrazilianCerrado and north-
ern Argentina. The species is lacking in most of the dry areas of

Central Brazil, in Cerrado and Caatinga biomes. We modelled
the distribution of the species both for current and future (fore-
casted) climate conditions throughout theNeotropics.

The occurrences of T. cristata were modelled as a function of
four climatic variables (mean annual rainfall and its variability,
average temperature of thewarmest and coldestmonths) derived

from four different AOGCMs: CCSM3, CSIRO-MK3.0,
UKMO-HadCM3, and ECHAM5 ⁄MPI-OM. For each
AOGCM, we obtained the estimated current climate and the
projected climate in two emission scenarios, A1 (more pessimis-

tic in terms of CO2 emissions) and B1 (more optimistic). Data
were extracted from the World Climate Research Program’s
(WCRP) Coupled Model Intercomparison Project phase 3

(CMIP3) multimodel dataset (Meehl et al., 2007) (see Diniz-
Filho et al., 2009a for further details).

Niche models and partitioning sources of uncertainty

WemodelledT. cristata distribution using the following ‘pres-

ence-only’ niche models (see Tsoar et al., 2007): a simple surface
range envelope model based on orthogonal limits, the BIOC-
LIM (Busby, 1991), Euclidean distances (EUCL), Mahalanobis

distances (MAH; Farber & Kadmon, 2003), GARP (Stockwell
& Noble, 1992), and Maximum entropy (MAXENT; Phillips
et al., 2006; Phillips & Dudı́k, 2008). These methods have been

widely used and comparative analyses of their statistical perfor-
mance can be found elsewhere (Segurado & Araújo, 2004; Elith
et al., 2006;Meynard &Quinn, 2007; Tsoar et al., 2007; Phillips

& Dudı́k, 2008; Elith & Graham, 2009), so only a brief descrip-
tion of their implementation will be provided here. BIOCLIM,

EUCL and MAH are strictly presence-only methods, because
they use only environmental data, where the species occur to
build the climatic envelopes (models), whereas both GARP and

MAXENT generated pseudo-absence data to fit the environ-
mental models. However, in all cases, pseudo-absences were
used to allow model evaluation using receiving operating curve

(ROC) and true skill statistics (TSS) (see below). GARP was
implemented as a single-run and the best subset was defined by
modelling different dataset partitions and variable combina-

tions. MAXENT algorithm is the same available at http://
www.cs.princeton.edu/~schapire/maxent/ (see Phillips & Dudı́k,
2008) and was run using default options (including regularisa-

tion parameter equal to 1).
For each one of the niche models described above, a total of

750 models were generated. First, the full dataset was randomly
partitioned into two subsets (training and projection), with 70%

and 30% respectively, and this procedure was replicated 50
times. For each partition, we obtained a total of 15 models by
performing a full factorial combination of the four environmen-

tal variables. Adding a quadratic term to temperature did not
qualitatively improve the results. For each model, pseudo-
absences were generated to allowbuilding theROC (see Fielding

& Bell, 1997; Allouche et al., 2006), and the ROC was used to
transform quantitative predictions of models (e.g., distances
from species’ niche centroids as given by the Mahala distances)
into a binary vector of 0 ⁄1, which indicates absence or presence

of the species in each cell. The cut-off point in BIOCLIM,
EUCL and MAH was established by using multiple delimita-
tions of the bioclimatic envelope (99%, 95%, etc.) allowing us to

generate theROC.
Following Allouche et al. (2006), the evaluation of models

was done by the TSS, which was used to weight the final esti-

mated occurrence frequencies (EOF) vector before ensembling
(see below) (after deleting models with TSS < 0.5). There are
discussions about the validity of any of these statistics in terms

of model fit and transferability (see Peterson et al., 2007,
2008a,b; Lobo et al., 2008) but here the focus is on generating a
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Fig. 1. Locations of the giant grasshopper

(Tropidacris cristata) occurrences used for

niche modelling.
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consensus among alternative forecasts rather than using particu-
lar test statistics to select a ‘best’ model.

We analyse the frequency with which T. cristata is predicted
in each cell across the whole set of models, called here EOF.
Thus, our final analyses are actually based on a total of 30 000
models (750 models in each of the 40 combinations of niche

model, AOGCM and emission scenario). Each of the 40 EOF
vectors was then overlaid and an unweighted consensus of the
frequencies was produced (seeMarmion et al., 2009).Weighting

the EOF vectors by the average TSS of models did not qualita-
tively affect our results (especially because poor models, with
low TSS statistics, were excluded before calculating EOFs). All

these analyses were carried out in the integrated BIOENSEMBLES

software (Diniz-Filho et al., 2009a; Rangel et al., 2009).
The relative importance of each of the sources of variation

studied here (i.e., methods for niche modelling, AOGCMs and

emission scenarios) on the EOF forT. cristatawas quantified by
using a three-way analysis of variance (ANOVA) without replica-
tion (Sokal &Rohlf, 1995), following the approach recently pro-

posed by Diniz-Filho et al. (2009a). The relative sum of squares
(SS) estimates the variance components, which is expressed as
the percentage of explanation of each of the three main sources

and their interaction. As these variance components were
obtained for each cell in the grid, it is possible tomapwhere each
source is more important. A principal component analysis

(PCA) of the EOF vectors (decomposing the pairwise correla-
tionmatrix between EOFmaps) was also used to evaluate which
levels within each source of uncertainty are more similar (see
Thuiller, 2004; Araújo et al., 2005, 2006).

Results

The consensus maps of the 20 EOF vectors obtained for the cur-
rent time (i.e., four current climates for each AOGCMmodelled

using five niche-modelling methods) match the occurrence
T. cristata throughout theNeotropics, fromNorthernArgentina
up to western coast of Mexico, but relatively high frequencies

(>0.5) appear mainly for Central South America (Fig. 2a). The
fit statistics of the models, for each AOGCMvary, but relatively
high TSS values around 0.7 were found, with values around

75% or higher of the presences being correctly identified by all
models.

When using the emission scenarios A1 and B1 to project each
model into future climatic conditions, the average EOF vector in
2080 did not change substantially the consensus map in terms of
general distributional limits (Fig. 2b). However, there are clear

changes of EOF patterns in 2080, characterised by a southeast
shift of the higher frequencies, from Central American towards
the southeast, and an increase in EOF in Central America and

northwestern Amazon. Gains in EOF, in other words, in the
suitability of climatic conditions for the species, appear in the
southeast coast of Brazil, southern Andes and western coast of

EOF
0 – 0.1
0.1 – 0.2
0.2 – 0.3
0.3 – 0.4
0.4 – 0.5
0.5 – 0.6
0.6 – 0.7
0.7 – 0.8
0.8 – 0.9
0.9 – 1 (a) (b)

Fig. 2. Estimated frequencies of occurrence

(EOF) for Tropidacris cristata in Neotrop-

ics, based on the consensus of 30 000 models

based on different niche-modelling meth-

ods, Atmosphere-Ocean Global Circulation

Models (AOGCMs) for current time (a) and

future climate change scenarios (b).

Δ EOF

–0.2 – –0.2

–0.2 – –0.1

–0.1 – 0

0 – 0.1

0.1 – 0.2

0.2 – 0.3

0.3 – 0.3

0.3 – 0.4

0.4 – 0.5

0.5– 0.6

Fig. 3. Difference (D) between estimated occurrence frequencies

(EOF) vectors between 2080 and 2000, with darker regions show-

ing gain (i.e., higher EOF in 2080 than in 2000) and brighter ones

indicating loss in EOF (i.e., lower EOF in 2080 than in 2000).
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Mexico, whereas reductions in EOF appear in the Central Ama-

zon (Fig. 3).
The three-way ANOVA applied to the EOF vectors in each cell

shows that the median of the variation in future projections are

due to differences in niche models is around 29%, but going as
high as 93% for some regions in southeastern coast of Brazil
and Patagonia (where the species is currently not found, so the

higher component appears just because a fewmodels predict the
species there with low EOF, whereas others give values close to
zero) (Table 1). The maps showing this SS (Fig. 4a) indicates
that the largest differences among methods appear in the Brazil-

ian southeast coast. The second most important source of varia-
tion is AOGCM (median of 28%, with values going up to 83%)
and the interaction between AOGCM and niche model, which

explains about 17% across cells. The map of the SS attributable
to AOGCM (Fig. 4b) shows a higher uncertainty in the north-
east coast of South America and in the Brazilian northeastern

region, in the dry Caatinga biome (Fig. 4b). Finally, the map of
the interaction between method and AOGCM shows a patch of

high uncertainty in the central part of Amazon, with a peak in
its eastern portion (Fig. 4c).

As niche models and AOGCMs account for most of the vari-
ability in the ensemble of model projections, we reduced the
dimensionality of the EOF vectors using a PCA based on A1

scenario only, to make the visualisation of the similarity among
the maps easier. The first principal component accounted for
63% of the correlation among maps whereas the second one

reported 9%. The loadings of the PCA on these two axes
(Fig. 5) show that all niche models tend to show a similar pat-
tern, but MAXENT based on the ECHAM AOGCM tend to

give a slightly different result, as well as GARP and EUCL
based on CCSM3. Some of the niche models (MAXENT and
Euclidean distances) are more variable than others when based
on different AOGCMs, which explains the relatively high inter-

action term in the ANOVA. Thus, predictions based on average
EOF vectors for T. cristata are similar, even though they may
differ for more regional analyses and interact in complex ways

with climaticmodels used.

Discussion

Geographic range and shifts in climatically suitable areas
for Tropidacris cristata

Changes in geographical ranges or suitable climatic areas for
species under climate change detected by species distribution

and niche modelling have been predicted for several groups of
organisms, including several species of insects. They are actually
one of the most important contributions of macroecology to the

evaluation of climatic change impacts (Kerr et al., 2007). How-
ever, these analyses usually focus on changes in range limits and
overall distributional patterns and are usually performed for

temperate northern hemisphere, where changes are more
pronounced due to steepest climatic gradients (but see Bush &
Hooghiemstra, 2005). Here, our analyses with a broadly distrib-

Table 1. Median proportions of the total sum of squares from

the three-way anova performed for each grid cell covering the

Neotropics, evaluating the relative contributions of method for

niche models, Atmospheric-Ocean Global Circulation Models

(AOGCM) and emission scenarios to the variability in

forecasting EOF of Tropidacris cristata. Minimum and maximum

values in the maps are also given (see also Fig. 4).

Source

SS (%)

median Min–max

Niche model 29.1 2.0–93.3

AOGCM 28.5 0.4–82.6

Scenario 2.3 0.0–44.7

Niche model · AOGCM 17.7 2.7–56.0

Niche model · scenario 1.0 0.0–13.0

AOGCM · scenario 4.2 0.0–34.7

Third-order interaction 2.9 0.0–14.7

0 – 0.1
0.1 – 0.2
0.2 – 0.3
0.3 – 0.4
0.3 – 0.5
0.5 – 0.6
0.6 – 0.7
0.7 – 0.8
0.8 – 0.9
0.9 – 1

(a) (b) (c)

Fig. 4. Maps of variance component (relative sum of squares) for the effect of niche-modelling methods (a), Atmosphere-Ocean Global

Circulation Models (AOGCMs) (b) and the interaction between both sources of uncertainty (c).
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utedNeotropical species of grasshopper allow a clearer interpre-

tation of the effects of climate change in the tropics, not only in
terms of limits, but mainly in terms of shifts in suitable climatic
areas for the species.

The current geographic range of T. cristata is well modelled
based on the four climatic variables, according to the TSS
evaluation statistics, and as suggested by the occurrence data
that limits it from northern Argentina up to southern Mexico

(but niche models expand slightly northward, up to California).
The maps produced reflect the broad range of occurrences and
the general description of species distribution by Carbonell

(1986). In the models for the current time, the maximumEOF is
found in central Brazil, in the ecotone between Cerrado and
Amazon. Carbonell (1986) pointed out that T. cristata is found

in moist forests, and the absence of the species in the Caatinga
ecoregion is probably certain, and that species must occur only
in ‘islands’ of dense vegetation inside the driest part of the Brazil-
ian Cerrado. EOF captured only partially this pattern, probably

because of the coarse resolution of our spatial units and the lack
ofmore detailed data on vegetation cover (which is important to
characterise small patches of humid vegetation in the relative

dry region ofCerrado in central Brazil). This scale issue is impor-
tant and further work is necessary to throw light on how to
combine broad-scale macroecological studies on suitability

patterns with more refined analyses at local and regional scales.

Even so, it is interesting to note that the other widespread species
of the genus,T. collaris, does occurs in these driest habitats.

The comparison between current and projected ranges (2080)
indicated minor changes in the distributional limits of the spe-
cies, which is expected for large-ranged species whose niche is

defined by very broad bioclimatic envelopes. Cutting the EOF
under a majority consensus rule (of 50%), the range will be
reduced from 12.7 (�0.3) millions of km2 to 9.8 (�4.1) millions

of km2 in 2080 (averaging the EOFs for current and future cli-
mates), a difference that represents an average reduction of ca.
22%.Notice that there is a higher variance in the number of cells

with EOF higher than 0.5 in 2080, so that changes actually go
from 70% of losses to 60% gains, for different niche-modelling
methods and AOGCMs. However, EOF per se changes sub-
stantially between 2000 and 2080. The environmental suitability

decreases across the entire range and the location of the maxi-
mum EOF is shifted from central Brazil towards the Brazilian
southeastern coast (Fig. 2).

The clearest impact occurs in the northern Amazon region,
where a strong reduction in EOF is expected under climate
change, although it is important to consider that EOF in current

climate was low anyway. Because of the broad range size of
T. cristata, its bioclimatic envelope is also wide and it encom-
passes the future climatic conditions in the Amazon. However,
future conditions there are far from the species’ optimum in the

current time, which can explain the reduced EOF for 2080 and
the associated low delta in respect to current one. Indeed, the
delta EOF is mainly explained by shifts in two out of the four

environmental variables used for the analyses. Amultiple ordin-
ary least squares (OLS) regression revealed that delta EOF is
well explained by the four environmental variables between

current climate and climate modelled for 2080 (R2 = 0.483),
with higher standardised coefficients for maximum temperature
and average precipitation. The estimated values of this multiple

regression model captures well the higher (negative) delta EOF
in the Amazon, which will indeed become hotter and drier
according to themodels used here.
Thus, it is interesting to note that although AOGCMs

predict larger changes in climate (mainly temperature) in
temperate regions of the northern hemisphere, perhaps the
severest impact on biodiversity will occur in the tropics (see

also Colwell et al., 2008). As pointed out by Bush and Hoog-
hiemstra (2005), ‘…because moist tropical systems hold such
huge diversity, and because the vast majority of species are

thought to have restricted niches…, the potential exists for
small climate perturbations to have a profound effect’.
Although, T. cristata has a large geographic distribution, our
analyses support this assertion, but it is important to stress

that this does not appear in a simple evaluation of range lim-
its, but instead in the reduction of the average environmental
suitability across species range.

Ensemble forecast and sources of uncertainty

Both current and future EOFs discussed here are based on an
ensemble forecasting approach that combines several niche

models, AOGCMs and emission scenarios to provide a conser-

Fig. 5. Principal component loadings on the first two axes (PC1

and PC2) from the correlation among the maps for A1 scenario

built using all niche-modelling methods and Atmosphere-Ocean

Global Circulation Models (AOGCMs). The first and the second

principal components accounted for 63% and 9.3% of the varia-

tion among maps, respectively. The niche-modelling methods are

BIOCLIM (BIOC), Euclidean distances (EUC), Mahalanobis dis-

tances (MAH), Genetic Algorithm for Rule Set Production

(GARP) and Maxent (MX), whereas the AOGCMs are num-

bered sequentially as CCSM3 (1), CSIRO (2), HADCM3 (3) and

ECHAM (4). Only the emission scenario A1 was considered here

because differences between A1 and A2 scenarios account for

<3% of the variation among maps.
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vative picture of the future range of T. cristata (see Marmion
et al., 2009). However, our analyses, beyond providing a simple

consensus map, also allow quantifying andmapping the sources
of uncertainty associated to such approach.
The most important source of uncertainty in establishing cli-

matically suitable areas is the niche model used, but this is fol-
lowed by relatively large effects of AOGCM and the interaction
between niche model and AOGCM. The PCA revealed that the

EOF vectors are similar in general and do not reveal clear con-
trasts between simple ‘bioclimatic envelope models’ (such as
BIOCLIM or Euclidian and Mahalanobis) and the more com-

plex computer-intensive and optimisation models (i.e., MAX-
ENT and GARP). Although further analyses using other niche
modelsmay revealmore consistent patterns comparing these dif-
ferent ‘model subclasses’, it is important to note that when gen-

erating EOF predictions based on a large number of different
subsamples of dataset and variable combination, TSS was used
to eliminate models with bad fit. As a consequence, under the

reasoning of Araújo and New (2007), combining predictions
from different models (and other sources of uncertainty, such as
AOGCMs) can provide, in principle, a more conservative esti-

mate of species’ distribution or response to climate change, even
when mixing different niche models. At the same time, evaluat-
ing how these models vary in geographical space may be helpful
to understand the origins of uncertainty and the properties of

differentmodels.
The shift observed in EOF maps between 2000 and 2080

shows two clear patterns: an increase in EOF in the southeastern

coast of Brazil and a decrease in EOF in the Amazon. The first
one is associated with niche model uncertainty. On the other
hand, the reduction in EOF in the central Amazon seems to be

more consensual across niche models (low variance components
– see Fig. 3) and is more clearly related to a reduction in precipi-
tation and increase in temperature in the region. Even so, the rel-

atively high eigenvalue of the first principal component, which
explains more than 60% of the variance among niche models,
reveals that all models tend to agree about these patterns,
although the detailed ‘shape’ of increasing EOF along the south-

eastern coast of South America varies a bit between them. In
general, models based on the ECHAMAOGCMproduce more
restricted increases in EOF in this region, for all niche-modelling

methods.
On the other hand, the highest uncertainty from AOGCMs

in the northeast coast of South America and in the northeast-

ern of Brazil (in the dry Caatinga ecoregion), as well as the
highest interaction between niche-modelling method and
AOGCM in the central Amazon, are probably associated with
uncertainties in forecasting precipitation patterns (see Berthelot

et al., 2005). This is a well known pattern among AOGCMs,
and, on average, it is indeed expected that climate change
will affect Amazon by reducing precipitation in the region (see

Salazar et al., 2007).

Concluding remarks

Although our analyses are restricted to a single species, it pro-

vides new conceptual and methodological insights for under-

standing the role of climate change in the tropics. Conceptually,
themost important novelty presented here is the change of focus

from occurrence only (distributional limits) to environmental
suitability as given by EOF. Indeed, although range limits of
T. cristata remains approximately constant, there are large

changes in EOF that indicate that the Amazon will become
more unsuitable for this species. Methodologically, the variance
partition andmapping approach shows that the areas of highest

suitability in 2080 are associated with the highest uncertainty
attributable to the use of different niche models, whereas areas
of decreasing EOF are associated with uncertainties related to

the use of different AOGCMs.We expect that the application of
ensemble forecasting and variance partition approach encour-
ages more studies about the origins of uncertainty in species
distributionmodelling.
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Elith, J. & Graham, C.H. (2009) Do they? How do they? Why do

they differ? On finding reasons for differing performances of

species distribution models. Ecography, 32, 66–77.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S.,

Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Leh-

mann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G.,

Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peter-

son, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R.,

Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmer-

mann, N.E. (2006) Novel methods improve prediction of species’

distributions from occurrence data. Ecography, 29, 129–151.

Farber, O. & Kadmon, R. (2003) Assessment of alternative

approaches for bioclimatic modeling with special emphasis on

the Mahalanobis distance. Ecological Modelling, 160, 115–130.

Fielding, A.H. & Bell, J.F. (1997) A review of methods for the

assessment of prediction errors in conservation pres-

ence ⁄ absence models. Environmental Conservation, 24, 38–49.

Giovanelli, J.G.R., Haddad, C.F.B. & Alexandrino, J. (2008) Pre-

dicting the potential distribution of the alien invasive American

bullfrog (Lithobates catesbeianus) in Brazil. Biological

Invasions, 10, 585–590.

Kearney, M., Phillips, B.L., Tracy, C.R., Christian, K.A., Betts,

G. & Porter, W.P. (2008) Modeling species distributions with-

out using species distributions: the cane toad in Australia under

current and future climates. Ecography, 31, 423–434.

Kerr, J.T., Kharouba, H.M. & Currie, D.J. (2007) The macroeco-

logical contribution to global change solutions. Science, 316,

1581–1584.

Kidd, D.M. & Ritchie, M.G. (2006) Phylogeographic information

systems: putting the geography into phylogeography. Journal of

Biogeography, 33, 1851–1865.

Liu, C., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005)

Selecting thresholds of occurrence in the prediction of species

distributions. Ecography, 28, 385–393.

Lobo, J.M., Jimenez-Valverde, A. & Real, R. (2008) AUC: a mis-

leading measure of the performance of predictive distribution

models. Global Ecology and Biogeography, 17, 145–151.

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. &

Thuiller, W. (2009) Evaluation of consensus methods in predic-

tive species distribution modeling. Diversity and Distributions,

15, 59–69.

Martinez-Meyer, E., Peterson, A.T. & Hargrove, W.W. (2004)

Ecological niches as stable distributional constraints on mam-

mal species, with implications for Pleistocene extinctions and

climate change projections for biodiversity. Global Ecology and

Biogeography, 13, 305–314.

Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B.,

Mitchell, J.F.B., Stouffer, R.J. & Taylor, K.E. (2007) The

WCRP CMIP3 multi-model dataset: a new era in climate

change research. Bulletin of the American Meteorological Soci-

ety, 88, 1383–1394.

Meynard, C.N. & Quinn, J.F. (2007) Predicting species distribu-

tions: a critical comparison of the most common statistical

models using artificial species. Journal of Biogeography, 34,

1455–1469.

Nogués-Bravo, D. (2009) Predicting the past distribution of spe-

cies climatic niches. Global Ecology and Biogeography, 18, 521–

531.

Nogués-Bravo, D., Rodriguez, J., Hortal, J., Batra, P. & Araújo,
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