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The year 2020 was supposed to be a ‘super year’ for biodiver-
sity conservation during which the parties to the Convention 
on Biological Diversity would agree on ambitious targets 

for the next decade1. However, the COVID-19 pandemic has both 
postponed the decade’s most important meeting in international 
biodiversity and caused unprecedented disruption to conserva-
tion activities2–4. Lockdowns dramatically interrupted on-site 
protected-area management activities in many countries3 and 
introduced uncertainty and economic difficulties to local commu-
nities5, including from reduced tourism revenue6. While early stud-
ies have shown that the pandemic increased fires in Colombia7 and 
decreased fires in the southeastern United States8, there has been 
no robust assessment of the impact of the pandemic on protected- 
area integrity.

One of the most important threats to biodiversity in much of the 
world is land-use change and habitat conversion to agriculture9,10. 
Effectively preventing this is an important objective of many pro-
tected areas11. Where habitat loss is associated with shifting agri-
culture, such as in much of Africa9,12, the prevalence of fires is 
commonly used as an indicator of land conversion13,14 and the per-
formance of conservation interventions15,16. Fires occur as a result of 
complex interactions between climatic and anthropogenic drivers13, 
making it essential to control for climatic drivers when exploring 
the impact of changes in direct anthropogenic drivers. Forecasting 
fire activity using seasonal climate variables is still in its infancy17,18, 
but precipitation is widely recognized as an important predictor19.

Madagascar is world renowned for its extraordinary biodiversity, 
but also for the exceptional pressures faced by that biodiversity20,21. 

Over the past decade, Madagascar has seen a rapid expansion of 
its reserve network22. However, there are concerns that the network 
is inadequately managed and that protected-area expansion efforts 
have paid insufficient attention to building local support and gover-
nance structures23,24.

Drawing on the excess mortality approach, which has become 
widely understood as a metric for quantifying the impacts of pan-
demics25, we explore whether the cessation of on-site protected-area 
management activities that followed the start of the COVID-19 
pandemic, and the subsequent extended period of closed borders 
and economic hardship, coincided with greater than expected fires 
in Madagascar’s protected areas. Using remotely sensed data on 
fire and precipitation, we first predict the number of fires for each 
month for each year between 2012 and 2020 on the basis of pre-
cipitation that month, precipitation in the previous month, accu-
mulated precipitation over the past 12 months and interactions 
with biome using a zero-inflated negative binomial model. We 
then look at the deviations between our predicted fires and those 
observed to estimate numbers of fires not predicted by weather 
conditions or forest type. Our analyses uncover an unprecedented 
increase in fires in Madagascar’s protected areas between March 
and July 2020 (the period when on-site activities were prevented) 
but also reveal that fires quickly dropped to those predicted by our 
model as management activities resumed. Taking advantage of the 
unique quasi-experimental setting provided by the first year of the 
COVID-19 pandemic, we are thus able to show strong evidence for 
the importance of well-managed protected areas for retaining the 
integrity of globally important areas for biodiversity conservation.
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There is little robust, quantitative information on the impacts of the COVID-19 pandemic on the extinction crisis. Focusing 
on Madagascar, one of the world’s most threatened biodiversity hotspots, we explore whether the cessation of on-site 
protected-area management activities due to the pandemic were associated with increased burning inside protected areas. We 
identify monthly excess fire anomalies by comparing observed fires with those predicted on the basis of historical and contem-
porary fire and weather data for all of Madagascar’s protected areas for every month 2012–2020. Through to 2019, excess fire 
anomalies in protected areas were few, short in duration and, in some years, coincident with social disruption linked to national 
elections. By contrast, in 2020, COVID-19 meant on-site management of Madagascar’s protected areas was suspended from 
March to July. This period was associated with 76–248% more fires than predicted, after which burning returned to normal. At 
a time when international biodiversity conservation faces unprecedented challenges, our results highlight the importance of 
on-site management for maintaining protected-area integrity.
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Seasonality of fires in Madagascar
Madagascar’s climate is highly seasonal (Fig. 1), which affects the 
agricultural cycle. Farmers burn vegetation to prepare for plant-
ing crops before the rains, to provide fresh forage for cattle and to 
control tree and shrub encroachment into pastures26. Such anthro-
pogenic factors interact with the changing combustibility of vegeta-
tion, producing a distinct seasonal pattern of fires in Madagascar’s 
protected areas with a peak in all biomes in October (Fig. 1a), at the 
end of the dry season (Fig. 1b). Fires begin earlier in desert and xeric 
scrubland protected areas (April onwards) and dry broadleaf forest 
protected areas (May onwards) compared with the moist broadleaf 
forest protected areas (August onwards) (Fig. 1a). Mean precipita-
tion is quite variable across years (for example, the beginning of 2020 
was drier than previous years (Fig. 1b and Supplementary Fig. 1),  
meaning a climate-adjusted model of predicted fires is needed to 
identify fire anomalies.

Our climate-based model accounting for lags in precipita-
tion and interactions with biomes (for details, see Methods and 
Supplementary Information) shows in general that an increase 
in precipitation in the same month is linked to a decrease in fires 
and confirms that the timing of burning differs between biomes 
(Supplementary Data 1). Accumulated rainfall over the past  
12 months is a significant, positive predictor of fires during the 
autumn months (August, September, November and December); 
(Supplementary Data 1). Overall, the model fit is reasonable, with 
observed fires falling within the 95% confidence intervals around 
predicted fires for 63 out of 95 months (Supplementary Fig. 2) 
and with model accuracy metrics (mean absolute error, root mean 
squared error (RMSE) and normalized RMSE) indicating that the 
model performed poorly only in August 2015 (apparently because 
of unusually high rainfall during the past 12 months in three pro-
tected areas; Supplementary Fig. 3).

Excess fires before pandemic
Two noticeable differences between observed fires and those predicted 
by our model occurred in October–November 2013 and September 
2018; both periods are associated with presidential elections (Fig. 2). 
The 2013 election (the first after the 2009 coup d’état) was particularly 
fiercely contested27, and our data show that this political unrest was 
associated with two consecutive months of excess burning. The find-
ing that political events may be correlated with increased deforesta-
tion has been observed in a recent study looking at election cycles and 
deforestation in Brazil28 and across 55 tropical forest nations29.

Burning during the pandemic
Madagascar responded rapidly to the threat of COVID-19 by 
closing its borders and instituting a series of lockdowns (Fig. 3). 
Travel around the country, including by ministry officials and 
protected-area managers, and field activities were substantially cur-
tailed from 20 March 2020 and started to recover only from July 
onwards (Fig. 3). This meant that most on-site management activi-
ties (including enforcement patrols, community engagement and 
livelihood support projects) were effectively stopped for a period of 
approximately four months. International tourism into Madagascar, 
which contributed nearly 7% of gross national product in 201930 and 
is an important source of revenue for Madagascar’s protected-area 
network31, reopened in autumn 2021.

Comparing observed fire frequency for 2020 in Madagascar’s 
protected areas with those predicted by our climate-adjusted model 
shows that the shutdown of conservation management activities 
from March to July was associated with an unprecedented five-month 
upsurge in fires inside Madagascar’s protected areas (Fig. 4).  
In August 2020 there were slightly fewer fires than predicted, but 
burning quickly returned to levels predicted by our model after 
this. Despite a fear that the September onset of the burning period 
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Fig. 1 | Yearly seasonal patterns in fire occurrence and precipitation in protected areas across the different biomes. a, Fire occurrence. b, Precipitation. 
The box plots (centre line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile range; points, outliers) show the variation for the 
years 2012–2019; diamonds show the values for 2020.
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in the eastern humid forests would lead to elevated fires in the 
autumn of 202032, this was not seen and burning inside protected 
areas remained at the levels predicted by climatic variables for the 
rest of 2020 (Fig. 4). The period of excess burning persisted for far 
longer (5 consecutive months compared with median of 1 month 
for 12 previous anomalies in 2012–2019) and was characterized by 
far greater increases in relative fire frequency, with 76–248% more 
fires than predicted by our model (March, 209 %; April, 223 %; May, 
78%; June, 248%; July, 76% compared with 32–134% across all pre-
vious excess months, 2012–2019).

Spatial patterns of burning
Most of the excess fires registered in 2020 were concentrated in 16 
protected areas in the west of Madagascar (Fig. 4). This pattern was 

not associated with any known management or governance factors, 
such as International Union for Conservation of Nature (IUCN) 
management category or management authority (Supplementary 
Fig. 4). There were no differences in performance between pro-
tected areas managed by the parastatal Madagascar National Parks 
and the more recently established protected areas managed under 
different types of collaborative agreements with local communities 
and non-governmental organizations (Supplementary Fig. 4).

However, during the period when management activities were on 
hold (March to July 2020), it is generally too wet for protected areas 
in the moist forest biome to burn (Fig. 1)33–35, which may explain 
why the excess fires were concentrated in the west, where forests are 
more vulnerable at this time of year. Analysing the spatial distribu-
tion of fire anomalies in previous years (Supplementary Figs. 5–11)  
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Fig. 2 | The occurrence of months with excess fires in protected areas presented as the percentage change between the total number of observed and 
predicted fires across all protected areas modelled for each month for the period 2012–2020. Shaded areas around the lines correspond to the 95% 
confidence intervals. The size of the circles is relative to the number of excess fires in those months with significantly more fires than predicted on the basis 
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series of lockdowns from 20 March 2020 onwards. MNP, Madagascar National Parks. For sources, see Supplementary Information.
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confirms that excess burning occurring earlier in the year is clus-
tered in the west (Supplementary Figs. 5a, 8a–c, 10a, 11a,b), 
whereas anomalies later in the year are spread across the country 
(Supplementary Figs. 5b, 6c, 9a, 10b,c), supporting the conclusion 
that the time of the year the pandemic hit, rather than any specific 
type of protected-area governance, explains the spatial patterns in 
excess burning.

Discussion
Focusing on one of the world’s most megadiverse countries, we 
show that the COVID-19 pandemic was linked to a reduction in 
protected-area integrity. The overlap between excess fires and 
the suspension of on-site management activities suggests a causal 
mechanism whereby fire prevention inside protected areas depends 
on such active engagement. However, increased pressures, driven by 
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people clearing more land in anticipation of lost non-agricultural 
incomes, may also have played a role. Soon after on-site manage-
ment resumed, burning inside Madagascar’s protected areas quickly 
reverted to levels predicted by our model. This is despite the econ-
omy of Madagascar not yet opening up and continued economic 
hardship36, including a drought-induced famine in the south37. Our 
findings, therefore, provide strong empirical evidence supporting 
previous correlational studies showing that active protected-area 
management can buffer against population declines38–40 and provid-
ing evidence that this also applies for land-use change pressures for 
which the evidence base has been inconclusive41–43.

Like any analyses relying on remotely sensed data and build-
ing counterfactual scenarios, there are important caveats to 
our work. It is important to remember that the Visible Infrared 
Imaging Radiometer Suite (VIIRS) thermal anomalies serve only 
as a proxy for fire incidence, and ground validation was not pos-
sible due to the pandemic. However, previous studies have shown 
that the VIIRS product provides more coherent fire mapping com-
pared with Moderate Resolution Imaging Spectroradiometer 1 km 
fire data and that the nominal confidence fire detections showed 
average commission error of 1.2%44. VIIRS is documented as hav-
ing good capacity to detect real fires44, and temporal patterns con-
verge with on-the-ground observations8. VIIRS is also commonly 
used for practical fire management45,46. Despite the high perfor-
mance of the VIIRS data, we caution that our fire incidence data 
may underestimate the true number of fires as agricultural fires in 
sub-Saharan Africa are often small47. We chose to study fire because 
remote-sensing data allow us to quantify changes in this threat at 
fine spatial and temporal scales; however, this tells us nothing about 
the dynamics of other potentially important threats such as hunting, 
grazing or extraction of wild harvested products3. Our analyses also 
do not account for COVID-19-induced burning outside protected 
areas, and, thus, we cannot say how well the protected areas miti-
gated potentially increased pressures compared with unprotected 
land. Finally, modelling what would have happened in the absence 
of the COVID-19 pandemic is challenging as such a counterfactual 
is inherently unknowable. Our predictive model considers only cli-
matic drivers, for which we have relatively good annual data; how-
ever, the fire frequency in any given year will have been influenced 
by a complex mix of social and economic drivers.

The longer-term effects of COVID-19 on international conserva-
tion remain to be seen. The four-times delayed meeting to agree to 
the global post-2020 biodiversity framework1 is due to be held in the 
third quarter of 2022. However, this will be happening in the con-
text of continued economic uncertainty in many parts of the world48, 
probably affecting international support for conservation. The pro-
longed effects of the pandemic on tourism and on economies more 
broadly will harm local livelihoods and place additional pressures on 
protected areas. It is important to keep monitoring the situation to 
evaluate long-term impacts of COVID-19 and to assess how the pro-
longed lack of tourism revenues may be affecting protected-area per-
formance. Our work has practical implications in that it can inform 
policymakers and park agencies about the importance of finding cre-
ative ways of keeping on-site protected-area management going in 
times of turmoil. Our results clearly demonstrate the dramatic impact 
that management interruptions can have and indicate that it may be 
important for politicians to consider protected-area management an 
essential service that needs to continue through times of lockdowns 
and travel restrictions. In Madagascar, some protected-area authori-
ties started to increase collaboration with local communities to keep 
on-site activities running49—an approach that might enhance con-
servation outcomes in the long term50 and beyond the pandemic.

Methods
Overview. We built models (using fire and climatic data from 2012–2020) to 
predict the monthly fires in Madagascar’s protected areas. We compared the 

observed number of fires in a given protected area in a given month to identify 
fire anomalies (where observed and predicted fires did not align) and used this 
to explore the temporal and spatial distribution of excess fires. Spatial analyses 
were done using ArcGIS v.10.851 and Python v.3.8.552, and all statistical analyses 
were performed using the software R v.4.0.253. Package ggplot254 was used for 
visualizations.

Datasets used. Protected-area boundaries were identified using spatial information 
from the World Database of Protected Areas55. The June 2020 release was 
compared with the list of protected areas by the Malagasy protected areas platform 
Forum Lafa and identified in ref. 56; those occurring in both were kept, and clear 
overlaps were removed, resulting in 114 protected areas being included in the 
analyses (Supplementary Table 2).

Data on biomes were sourced from the RESOLVE ecoregions project57, and 
we used the higher-level classification identifying the following main biomes for 
Madagascar: tropical and subtropical moist broadleaf forests (comprising humid 
and subhumid forests), tropical and subtropical dry broadleaf forests (comprising 
dry deciduous forest) and deserts and xeric shrublands (comprising the spiny 
thickets and the succulent woodlands; Fig. 4). Protected areas were assigned to one 
biome on the basis of highest spatial overlap (Supplementary Table 2).

We used the VIIRS 375 m active fire product from the joint National 
Aeronautics and Space Administration (NASA)/National Oceanic and 
Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership 
and NOAA-20 satellites58 as this product provides near real-time open-access 
data on thermal anomalies and active fires at a finer spatial resolution than other 
satellite-based fire products44. The 375 m data complement moderate-resolution 
imaging spectroradiometer fire detection and the previous VIIRS product at 
resolution 750 m (ref. 44). Previous studies have shown that these coarser-resolution 
products tend to miss smaller fires47,59. At the moment, the VIIRS 375 m data are 
the finest-resolution publicly available data; we note its use for near real-time 
fire management alerts45,60. We sourced the full data for Madagascar from the 
first observation (20 January 2012) until 31 December 2020. Note that the data 
are almost immediately released as a near real-time version and later undergo 
post-processing, meaning that in our dataset, downloaded 29 January 2021, the 
data consisted of the final full product from 20 January 2012 to 31 May 2020 and 
the near real-time release for 1 June 2020 to 31 December 2021. The confidence 
values are set to low, nominal and high by the data provider60. According to the 
data provider, low-confidence daytime fire pixels are typically associated with areas 
of sun glint and lower relative temperature anomaly (<15 K) in the mid-infrared 
channel I4. Nominal confidence pixels are those free of potential sun glint 
contamination during the day and marked by strong (>15 K) temperature anomaly 
in either day or night-time data. High-confidence fire pixels are associated with day 
or night-time saturated pixels. We included only the nominal and high-confidence 
pixels and omitted the low-confidence observations (13.88% of all pixels), possibly 
omitting some smaller fires, to make sure our predictions are conservative. 
This might have increased the zero observations in our dataset, something 
we consequently dealt with using a zero-inflated negative binomial approach, 
specifically incorporating the uncertainty behind zero observations (see details in 
the following). The resulting data were overlayed with the protected-area polygons 
and after that summed to number of observed fires per month per protected area 
for all the years (2012–2020). We excluded January 2012 due to its incomplete 
nature (only 11 days of data).

Monthly precipitation data were sourced from the Global Precipitation 
Measurement mission61 (for years 2016–2020) and its predecessor the Tropical 
Rainfall Measuring Mission62 (for years 2011–2015) at spatial resolution 10 km. 
Mean precipitation per protected area per month for 2011–2020 was calculated  
as the average of the precipitation data cells that intersected the protected area 
(zonal mean).

Explanatory variables in the fire prediction model. In the tropics and subtropics, 
the total number of fires reflects a complex interaction between climate and 
human activities63, with precipitation being an exceptionally important driver 
of inter-annual and seasonal variability in burned area19. Thus, controlling for 
precipitation variability is critical for assessing trends in fire activity. Higher 
precipitation before the onset of the main fire season may increase fire activity in 
arid regions because greater moisture availability enhances biomass production 
and this vegetation can then burn, whereas higher levels of precipitation during 
the fire season may suppress fires due to the increased moisture13. In general, 
precipitation is negatively correlated with burned area in the short term in humid 
savannahs and tropical forests but positively correlated in the long term in more 
xeric savannahs and grasslands19.

To control for the effect of precipitation on fire occurrence and thus establish 
a robust counterfactual of expected fires against which to compare observed fires, 
we built monthly models predicting the number of fires inside protected areas on 
the basis of a set of precipitation variables. We expected precipitation to interact 
with biome and so included biome as an interaction term. To account for the 
possible difference in long- versus short-term effects of precipitation, we explored 
including a number of time lags but were also concerned to avoid over-fitting. 
Thus, we calculated accumulated precipitation over the past 12 months on the 
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basis of summing the precipitation during the past 12 months. Our final model 
included accumulated precipitation together with the precipitation in the month 
in question, plus precipitation during the past month, plus their interactions with 
biome (factor). Explanatory variables were standardised using the R function ‘scale’ 
on all precipitation variables in the dataset by dividing the (centred) columns of 
each factor by their standard deviations. Standardized variables were evaluated for 
collinearity by visual inspection of the data and by calculating Pearson’s correlation 
coefficients.

Predicting fires and identifying fire anomalies. To establish the null model for 
expected occurrence of fires given the levels of precipitation and in the absence 
of COVID-19 and other changes in human activities, we built monthly models 
explaining the sum of fires inside protected areas from 2012 to 2020 on the basis 
of fires in other years and precipitation variables. The fire occurrence data are 
count data, and since we had many protected areas with not a single fire in a given 
month, our data were also zero inflated. To account for this, we explored the use 
of zero-inflated Poisson and zero-inflated negative binomial (ZINB) regression 
models using the R package pscl64. Using a likelihood ratio test, we found that 
ZINB outperformed zero-inflated Poisson (Supplementary Information) for our 
data due to overdispersion in the non-zero count data65 and therefore proceeded 
with ZINB. Previous studies have also found that ZINB models are well suited for 
modelling fire incidence66,67.

The number of fires was thus modelled using a ZINB modelling approach65. 
The probability density function for the response variable yi (i = 1, …, n) denoting 
the fire count is

P (yi = j) =















πi + (1 − πi)
(

k
μi+k

)k
if j = 0

(1 − πi)
Γ(k+yi)

Γ(yi+1)Γ(k)

(

1 −

k
μi+k

)yi ( k
μi+k

)k
if j > 0

(1)

where πi denotes the probability of having a zero count, μi is the mean, k is the 
dispersion parameter and Γ is the gamma function65,68. The mean μi was modelled 
using the log link function and predictor variables. The zero counts were 
modelled assuming equal probability for each zero count. The fire count predictor 
variables were monthly precipitation, precipitation from previous month and 
accumulated precipitation during the past 12 months, which all had an interaction 
with the biome type. The log-transformed size of protected areas was used as an 
offset variable.

We fitted the model for each month for each year (2012–2019) using data from 
the corresponding month during all other years in the data series. Further model 
selection was not done as we were not interested in finding out which specific 
explanatory variables best explained fires, but rather in excluding the potential 
effect of any of them. Model validation was done using residual diagnostics 
following the procedures described in ref. 69. Using the fitted model, we predicted 
the expected fires on the basis of model parameters and precipitation values for the 
month and year in question. For example, fires in April 2016 were predicted using 
the model fitted on the basis of April 2012, 2013, 2014, 2015, 2017, 2018 and 2019. 
Excess fires were defined as the difference between observed and predicted fires. 
For 2020, we repeated the same procedure and fitted the model for each month 
using the 2012–2019 data and then predicting 2020 fires on the basis of the 2020 
covariate values. We assessed model forecasting accuracy using two commonly 
used measures, the mean absolute error and the RMSE70. However, as these are 
both absolute measures, we also report the normalized RMSE, which divides the 
RMSE by the range (maximum – minimum) and thus allows for comparisons 
across the months and years70.

Effect size measures and confidence intervals. We summed predicted and 
observed fires across the 114 protected areas for each month of each year and 
created 95% confidence intervals around the predictions by bootstrapping71. We 
resampled the predicted values for each month of each year 10,000 times using 
package boot in R72. We used the normal 95% confidence intervals to determine for 
which months there were statistically significantly more fires than predicted by our 
model. For these months, we identified individual protected areas with excess fires 
as those with more fires than the 95% confidence interval around the mean for all 
protected areas in that month.

For the 2020 anomaly, for each protected area, we calculated excess fires per 
square kilometre by summing excess fires for March, April, May, June and July 
2020 and dividing by the size of the protected area (km2). We tested whether 
the excess fires per square kilometre differed by IUCN management category or 
management authority using the nonparametric Kruskal–Wallis one-way analysis 
of variance test due to the non-normality of the data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available via Zenodo: https://doi.
org/10.5281/zenodo.6366888.
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