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Abstract Oceanic islands host a high proportion of the world’s endemic species. Many such
species are at risk of extinction owing to habitat degradation and loss, biological invasions and
other threats, but little is known about the effects of climate change on island native biodi-
versity. The Azorean archipelago provides a unique opportunity to study species-climate-
change relationships. We used ensemble forecasting to evaluate the current and future distri-
bution of well-studied endemic and native bryophytes (19 species), endemic vascular plants
(59 species) and endemic arthropods (128 species), for two of the largest Azorean Islands,
Terceira and São Miguel. Using a Regional Climate Model (CIELO), and assuming the
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extreme scenario RCP8.5, we examined changes in the potential distributions of the species
and possible loss of climate space for them. Models projected that 23 species (11 %) could lose
all adequate climate on either one or both islands. Five additional species were projected to
lose ≥90 % of climate space. In total, 90 % of the species were projected to lose climate space:
79 % of bryophytes, 93 % of vascular plants and 91 % of arthropods. We also found for
vascular plants and arthropods a tendency for upward shift in altitude in their suitable climate
space, while for bryophytes the shift was towards the coastal areas. Our results have profound
implications for future conservation priorities on islands, such as for the redrawing of
conservation borders of current protected areas.

Keywords Climate change . Azores . Oceanic Islands . Ensemble modelling . Species
distribution

1 Introduction

Oceanic islands host a high proportion of the world’s endemic species, many of which are
threatened with extinction as a consequence of human intervention (Cardoso et al. 2010;
Triantis et al. 2010; Terzopoulou et al. 2015). Islands are thus places where the ‘biodiversity
crisis’ is ominous and requires most urgent action (e.g. Whittaker and Fernández-Palacios
2007). Species diversity in small islands is very vulnerable to climate change because of the
space limitation, along with the human pressure on the existing limited resources (Heller and
Zavaleta 2009; Maharaj and New 2013). In terms of large-scale climatic changes and the
comparably small spatial extent of islands, the opportunities for island species to shift their
ranges in climate-relevant latitudinal (or longitudinal) extents and to maintain population size
and genetic variability are restricted (Harter et al. 2015). Oceanic islands generally have lower
overall species numbers per unit area (Whittaker and Fernández-Palacios 2007) but show
higher percentages of endemism than mainland areas (Kier et al. 2009). Consequently, the
limited insular areas host a high fraction of global biodiversity (Kreft et al. 2008; Kier et al.
2009). Biodiversity has been identified as a key determinant for the quality and functioning of
ecosystems. Therefore, research efforts are necessary to set the scientific base for robust
assessments of ecological climate change impacts on islands (biodiversity hotspots) to enable
knowledge-based prioritisation of conservation and mitigation measures (Harter et al. 2015).

Reported threats to island biodiversity tend to ignore climate change effects, and their synergies
with other threatening factors (but see Hortal et al. 2005; Jiménez-Valverde et al. 2009). One
reason for this is that global circulation models (GCMs), the main tool for generating climate
change scenarios, cannot simulate the small scale topographic and coastal features of those islands,
which are nevertheless responsible for most of their observed microclimate variation. Current
GCMs typically have a horizontal resolution of 100–500 km. This type of scale is too large for
small islands and so it renders the task of applying climate change models difficult. The fitting of
regional climate Models (RCM’s) and further statistical (empirical or dynamical) downscaling
techniques are, therefore, required to produce more detailed and realistic representations of climate
features, including orographic precipitation and other sub-regional variations not captured by the
GCMs (Fowler et al. 2007; Spak et al. 2007). The CIELO (Clima Insular à Escala LOcal) model is
an example of a RCM that has already been used for modelling current species distributions in
islands (e.g. Hortal et al. 2005, 2010; Jiménez-Valverde et al. 2009; Aranda et al. 2011; Fattorini
et al. 2012). It has also been successful in studies of diversity patterns (e.g. Borges et al. 2006;
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Boieiro et al. 2013; Florencio et al. 2013) for arthropods, bryophytes and vascular plants in both
Azores and Madeira archipelagos.

The Azores archipelago, a set of nine medium-small islands in the North Atlantic Ocean,
has a few striking natural features (like laurisilva forest, hot springs, lagoons, volcanic peaks),
combining a high relative humid and temperate climate with volcanic shaped geomorphology,
which allowed the development of a characteristic diversity of species. The single greatest
estimated impact of global climate change for the Azores may be the change in annual
precipitation distribution, with wetter winters while the other seasons become drier (Santos
et al. 2004). This could have a significant impact on the islands’ water resources.

Most studies of climate change impact on biodiversity have focused mainly on mammals,
birds, reptiles, amphibians and seed plants (e.g. Bellard et al. 2012; Pacifici et al. 2015). Some
studies focused or included invertebrates (e.g. Wilson et al. 2005; Jiménez-Valverde and Lobo
2007; Leroy et al. 2013; Martin et al. 2013; Moo-Llanes et al. 2013) and only a few have
studied bryophytes (e.g. Bates and Preston 2011; Sérgio et al. 2011). Bryophytes are a
potentially informative group to consider in climate change studies, since their physiology
and ecology are distinct from vascular plants (ability to withstand drought – poikilohidry –
while being dependent of environmental conditions due to the lack of a root system). We are
not aware of any studies that have used arthropods, bryophytes and vascular plants together,
and even separate there have been very few studies involving small islands. These groups are
important biodiversity and environmental quality indicators (e.g. Gaspar et al. 2011; Aranda
et al. 2014) because they reflect disturbances, human impacts, and environmental or global
changes to the environment, and are therefore an excellent choice for studying the effects of
climate change on biodiversity in small islands.

In this study we aim to quantify and analyse for the first time in a Macaronesian archipelago
the potential effects of climate change on shifts of suitable climate space of well-studied
indigenous species of three taxonomic groups—bryophytes, vascular plants and arthropods—
for the islands of Terceira and São Miguel in the Azores archipelago, using regional climatic
models, adapted to the topography and climate of the islands.

2 Materials and methods

2.1 Study area

The Azorean archipelago stretches out over 615 km in the North Atlantic Ocean (37–40 °N,
25–31 °W), 1584 km west of southern Europe and 2150 km east of the North American
continent (Online Resource 1). It comprises nine main islands of recent volcanic origin,
distributed in three groups: the western group of Corvo and Flores; the central group of
Faial, Pico, Graciosa, São Jorge, and Terceira; and the eastern group of São Miguel and Santa
Maria. Distribution data were collected from all the islands in the archipelago. The climatic
projections were applied to the islands of Terceira and São Miguel, two of the largest, better
studied, more populated, and economically, the most important islands of the archipelago.

2.2 Species data

Records of the species presence on islands were collected from a range of sources using
ATLANTIS 3.1. This is a database purposefully built for biodiversity data storage in islands

Climatic Change (2016) 138:603–615 605



(see Borges et al. 2010), including a thorough review of the literature and field work done in
the Azores (see http://www.atlantis.angra.uac.pt/atlantis). The database stores detailed
information about the taxonomy and the distribution of all species on the geographical areas
of interest. Data input is complex and implies validation by taxonomic experts. The biological
data is available at 500 m ×500 m cells. We assembled data from all the islands of the
archipelago in order to get the largest possible range of climatic conditions where the species
were shown to occur.

We analysed bryophytes (Divisions Bryophyta and Marchantiophyta), vascular plants
(Divisions Lycopodiophyta, Pteridophyta and Magnoliophyta) and arthropods (mostly from
the orders Araneae, Diptera, Lepidoptera, and Coleoptera) since their records were acquired
through extensive sampling. A total of 19 species of bryophytes, 59 species of vascular plants,
and 128 species of arthropods were used for the analysis (Online Resource 2). The chosen
species were indigenous (native and endemic) species. These were the most abundant species
on the islands, as only 1 % of all bryophyte, vascular plant and arthropod species in the
ATLANTIS data base had four or more occurrences (out of approximately 100,000 number of
records).

2.3 Climate data

To produce a downscaled climatology of the Azores region we used the CIELO Model
(Azevedo 1996; Azevedo et al. 1998, 1999) to obtain the climatic data. This model allowed
us to obtain a high number of climatic variables related with temperature, rainfall, relative
humidity and solar radiation. The CIELO model (Azevedo et al. 1998, 1999) is a simple layer
model, based on the transformations experienced by an air mass crossing over a mountain, and
simulates the evolution of an air parcel’s physical properties starting from the sea level up to
the mountain. This model has already been used to downscale climate change scenarios for the
twenty-first century over islands (e.g. in the Azores, Terceira and São Miguel Islands)
(Miranda et al. 2002; Santos et al. 2004). For this work, the CIELO model ran based on the
Representative Concentration Pathways (RCPs) scenarios from the fifth Assessment Report
(IPCC-AR5 2014). In this work we chose deliberately the Bworst case scenario^ RCP8.5 as a
precaution strategy based on the historical and still actual trend on the greenhouse emissions
which follows the scenario that leads to a radiative forcing of 8.5 W/m2 by the year 2100
(Peters et al. 2013; IPCC-AR5 2014 ). The spatial resolution of the climatic model is of
100 m × 100 m that comes from the Digital Elevation Model used as territory boundary, later
resampled at 500 × 500 m to match species data.

2.4 Bioclimatic modelling

Bioclimatic envelope models use associations between aspects of climate and species’ occur-
rences to estimate the conditions that are suitable to maintain viable populations. Once
bioclimatic envelopes are characterized, they can be applied to a variety of questions in
ecology, evolution, and conservation (Araújo and Peterson 2012). An ensemble of bioclimatic
envelope models (BEM) (Araújo and New 2007) were generated for each species considered
(14 models per species, to maximize the number of projections). The ensemble included
projections from the following methods: 1) Mahalanobis distance (Mahalanobis 1936); 2)
Euclidean distance; 3) Gower distance; 4) Ecological Niche Factor Analysis (Hirzel et al.
2002); 5) BIOCLIM (Kriticos et al. 2012); 6) Maximum Entropy (Phillips et al. 2006); 7)
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Genetic Algorithm for Rule Prediction (Stockwell and Peters 1999); 8) Generalised Linear
Models; 9) Generalised Additive Models; 10) Generalized Boosting Models; 11) Random
Forests (Breiman 2001); 12) Multiple Additive Regression Splines (Friedman 1991); 13)
Artificial Neural Networks; and 14) Flexible Discriminant Analysis (Hastie et al. 1994).

For each species, data were randomly divided into calibration and validation sets compris-
ing 80 and 20 % of the species’ range, respectively, and the procedure was repeated 10 times,
maintaining the observed prevalence of species in each partition (i.e. for presence/absence
methods the analyses were conducted using a random sample of 80 % of cells both inside and
outside species’ range). Thus, each calibration dataset was used to project species suitable
climate space, according to the 14 BEMmodels. We fitted the 14 BEM’s and projected species
suitable climate spaces for baseline and future climates. The computer software -
BioEnsembles - in which all these methods were implemented was used. This software was
designed to optimize and take advantage of high-speed parallel processing, both within (multi-
processors computers) and between (grid architecture) computers (Diniz-Filho et al. 2009).
The True Skill Statistics (TSS) (Allouche et al. 2006), varying between −1 and 1, was used as a
fit statistic. It was calculated for each model based on the confusion matrix expressing matches
and mismatches of observed and predicted occurrences in the validation data set. This matrix
was computed after using Receiver Operation Characteristic curves and the Area Under the
Curve to convert continuous predictions into presence-absence. Models with TSS smaller than
zero were discarded. Finally, this combination of models generates an ensemble-based fre-
quency of species climate space and species are considered to occur in a given cell if at least
50 % of the models predict its occurrence there (i.e. a majority consensus rule) (Araújo et al.
2005, 2006). The range of uncertainties obtained with the fourteen modelling techniques was
calculated and community patterns derived from the models were explored using geographical
information systems (GIS).

2.5 Assessing climate change impacts on species’ projected distributions

The maps of distribution obtained from the BIOENSEMBLES software were for two time
periods: 1961–1990 and 2080–2099. For each species these were analysed to ascertain of the
shifts in climate space. The grid maps were then overlaid using the DIVA-GIS software
(Hijmans et al. 2004), creating maps of cumulative number of species per cell, for each
taxonomic group and for each time period. The grids of all species were summed to yield a
‘total count’ grid for the time periods –within which the value of each cell represented the total
number of species for which climate was projected to be suitable within the island. A
difference map was created to determine the change in diversity per cell.

3 Results

A total of 206 species from the different taxonomic groups were analysed. Of these, 23 species
(11 %) were projected to completely lose climate space on either one or both of the islands
(Table 1) and five species are projected to lose ≥90 % of their climate space. In total 90 % of
the species decrease their climate space, including 79 % of bryophytes, 93 % of vascular
plants, and 91 % of arthropods. On the other hand, according to model projections, eight
species increased their climate space on one or both islands in over 40 % of the distribution
area (Table 2).
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For both islands there is a decrease in the number of species per cell from the 1961–90 to
the 2080–99 time period (Figs. 1 and 3). Across taxa, species richness increases as you go
upslope towards the centre of the islands (Figs. 1 and 3). The highest decrease occurs on the
coastal areas for vascular plants (Fig. 2) and arthropods (Fig. 3). An increase in number of
species per cell is much less common, though seen in a few cases on São Miguel (e.g., coastal
areas for bryophytes dark pink shading in Fig. 1).

For bryophytes, in São Miguel there is an increase of the number of species per cell in the
coastal area (Fig. 1). In this island, 54 % of the cells have a decrease between 10 to 30 % in
number of bryophyte species, while 11 % of the cells have no change, and 13 % see an
increase (Fig. 1). In Terceira Island, a comparable proportion (62 % of the cells) is predicted to
lose the same number of species (Fig. 1). Nevertheless, only 1 % of the cells will experience an
increase of the number of species, while 6 % should present no change, which means a larger

Table 1 Table of species whose suitable climate space diminishes over 90 % or disappear between the 1961–90
and 2080–99 time periods for the three taxonomic groups

Percentage of suitable climate space loss

Taxonomic group Species/Island Terceira São Miguel

Bryophytes Leucodon canariensis 0 100

Leucodon treleasei 100 100

Sphagnum nitidulum 90 0

Vascular plants Azorina vidalii 100 100

Daucus carota 12 96

Euphorbia azorica 100 100

Euphrasia grandiflora 100 0

Gaudinia coarctata 100 100

Myosotis maritima 100 0

Tolpis succulenta 100 100

Arthropods Aeolus melliculus moreleti 28 96

Agyneta rugosa 0 100

Aphaniosoma azoricum 100 89

Aphrosylus argyreatus 100 100

Azorastia minutissima 0 100

Coenosia testacea azorica 100 85

Conocephalus chavesi 100 88

Drouetius oceanicus oceanicus 100 0

Ensina azorica 21 100

Euconnus azoricus 100 0

Eudarcia atlantica 100 0

Graphania granti 98 59

Microcreagrella caeca caeca 100 100

Neomariania oecophorella 98 64

Orchestia chevreuxi 100 13

Philygria cedercreutzi 100 0

Sciapus glaucescens brioni 0 100

Sepsis nephodes 100 0
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number of cells will lose species, corresponding to 93 % of the island’s area versus 54 % in
São Miguel.

For vascular plants, the pattern of species diversity loss is clearer with a large number of
cells, 56 %, decreasing in number of species between 10 and 45 % for São Miguel and 73 %
for Terceira (Fig. 2). In both islands only 2 % of the cells are expected to show an
increase in the number of species, mostly in the central areas of the islands. For São
Miguel 4 % of the cells have no change in number of species, while for Terceira only 1 % of
cells have no change.

The arthropods show a clear decrease in the number of species per cell in the coastal area of
São Miguel. In this island 53 % of the cells are expected to decrease between 10 and 45 % in
number of species, while 34 % of the cells decrease in species between 0 and 10 %. There is an
increase of richness in 10 % of the cells of São Miguel. (Fig. 3). For Terceira Island the
diversity loss occurs mainly in the range of 10 to 20 % (in 37 % of the cells) and 20 to 45 % (in

Table 2 Table of species whose suitable climate space increases over 40 % from the 1961–90 to the 2080–99
time period for the three taxonomic groups

Percentage of suitable climate space gain

Taxonomic group Species Terceira S. Miguel

Bryophytes Trematodon perssoniorum 0 40

Vascular Plants Laurus azorica 46 8

Pericallis malvifolia 142 114

Arthropods Atlantocis gillerforsi 315 104

Jaera nordmanni 0 192

Polydesmus ribeiraensis 0 276

Scaptomyza impunctata 43 46

Simulium azorense 62 46

Fig. 1 Projected suitable climate space maps of bryophyte species for the period 1961–1990 and 2080–2099 and
the calculated differences for São Miguel and Terceira Islands. Each cell represents the total number of species in
that 500 m × 500 m cell. In the difference map each cell represents the difference in the number of species per cell
in percentage
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32 % of the cells) of species per cell (69 % of the cells in total), and mostly in the coastal area
(Fig. 3). An increase of species is expected only in 4 % of the cells (Fig. 3).

4 Discussion

In the case of the Azorean species studied, we showed that of the 206 investigated indigenous
species, 23 (11 %) might lose suitable climate in at least one of the islands within a relatively
short period of time (≈ 80 years), and many others might experience a reduction of
their suitable climate space. Actually, while some endemic beetle and spider species
are already considered extinct due to human activities on Azorean islands (Cardoso
et al. 2010; Terzopoulou et al. 2015), Triantis et al. (2010) have furthermore estimated
that more than half of the extant native forest-dependent arthropod endemic species
might eventually be driven to extinction due to major past and current land-use changes,
fragmentation and forest loss. Climate change might act synergistically with other
threats with the effect of speeding the extinction debt predicted by Triantis et al. (2010), as
suggested by Malcolm et al. (2006) analysing endemic species in hotspots of biodiversity
throughout the world.

Interestingly, a few species are predicted to increase their distribution significantly, e.g. the
beetle Atlantocis gillerforsi (with a threefold increase – Table 2). The predicted climatic
changes, regardless of land use, seem to provide a climatic niche that is more adequate for
the survival and spread of this species. However, all of the studied species need to be further
investigated to ascertain what their role in the ecosystem is, how they interact with
other indigenous or exotic species, and how this will in turn affect their future
distribution. Moreover, the changes expected on the forest cover may have unknown
negative cascading effects on diversity, the so-called Bcumulative biodiversity lags-framework^
sensu Essl et al. (2015).

Fig. 2 Projected suitable climate space maps of vascular plant species for the period 1961–1990 and 2080–2099
and the calculated differences for São Miguel and Terceira Islands. Each cell represents the total number of
species in that 500 m × 500 m cell. In the difference map each cell represents the difference in the number of
species per cell in percentage
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For oceanic/volcanic islands, due to the small area available, especially in higher altitudes,
distribution shifting is expected to occur only in terms of altitudinal gradients. For the three
taxonomic groups studied, the tendency was to shift towards the higher-elevation centre of the
islands (Figs. 1 and 3). However there are differences between taxonomic groups. The
arthropods and vascular plants for example differ from each other most markedly in the
coastal areas, where the reduction of number of species per cell is clear (Figs. 2 and 3) with
the projections for the future period indicating that the species range will shift towards the
higher altitudes. However, bryophytes show a different pattern where the species range tend to
shift towards the coastal areas (Fig. 1), in São Miguel, areas where habitat suitability may be
quite scarce. Alatalo et al. (2014) found that some species of bryophytes survive climate
change warming simulations which can account for this different projected response from the
bryophyte group. However, Azorean bryophytes are located mainly in the evergreen
(sub)tropical laurel forests (Gabriel and Bates 2005; Gabriel et al. 2011) and this implies that
changes in the tree cover will have major impacts on bryophyte communities. This shows that
there is still much to be done in terms of applied studies of the consequences of climate change
to the different inter-specific interactions within ecosystems.

This study indicates that there are shifts of biodiversity under climate change. This should
be considered in future conservation management. The projected shifts in biodiversity hotspots
are a challenge for static conservation areas. In this regard, overlapping hotspots under current
and expected future conditions highlight priority areas for robust conservation management
Furthermore, addressing a wide range of species groups is important for conservation man-
agement to identify biota particularly at risk from climate change (Thom et al. 2016). This
multi-species and multi-taxa approach provides more information about the impacts of climate
change and allows an understanding of how the different groups that co-exist in the natural
ecosystems of oceanic islands will have different responses to the incoming climatic changes.
Not knowing what species contribute to what ecosystem services means that the full conse-
quences of species extinctions may be extremely hard to predict (Cardoso et al. 2011).

Fig. 3 Projected suitable climate space maps of arthropod species for the period 1961–1990 and 2080–2099 and
the calculated differences for São Miguel and Terceira Islands. Each cell represents the total number of species in
that 500 m × 500 m cell. In the difference map each cell represents the difference in the number of species per cell
in percentage
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In Azores, landscapes outside of protected areas are often hostile to the survival of species
due to human infrastructure, fragmentation of habitats by way of intensive cattle agriculture,
and associated stressors (Cardoso et al. 2009; Florencio et al. 2013). Such fragmentation can
directly limit species migration and gene flow (Heller and Zavaleta 2009). There might be
many cases where the future climatic conditions will be suitable for species to survive, but
these will not be able to do so due to conflicts with human activities, particularly agriculture
and forestry activities. The case of the bryophytes where we see a projected increase of
diversity in the coastal area of São Miguel is a clear example of how this can in the future
be a problem for conservation purposes, as the coastal areas of islands are usually densely
populated. Current protected areas in the Azores are located mostly inland, where the predicted
climate space suitability is generally higher. However, boundaries of these protected areas may
be altered, and/or improved when considering these results. Further studies into prioritization of
protected areas based on future suitable climate space are needed (Ferreira et al. in prep).

Ours is one of the first studies investigating climate change effects on island biodiversity,
using three different taxonomic groups. Climate change was projected to have important
impacts with species losing their entire suitable climate space in almost one eighth of the
cases. This study is an important step towards application of regional models to specific
situations like the unique case of oceanic islands. This has important implications for conser-
vation purposes, where a holistic approach using multi-species and multi-taxa analysis along
with adapted regional climate models should be the future direction of studies that can be used
to support protected areas decisions.
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