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The geographic distributions of many taxonomic groups remain mostly unknown, hindering attempts to investigate the
response of the majority of species on Earth to climate change using species distributions models (SDMs). Multi-species
models can incorporate data for rare or poorly-sampled species, but their application to forecasting climate change
impacts on biodiversity has been limited. Here we compare forecasts of changes in patterns of ant biodiversity in North
America derived from ensembles of single-species models to those from a multi-species modeling approach, Generalized
Dissimilarity Modeling (GDM). We found that both single- and multi-species models forecasted large changes in ant
community composition in relatively warm environments. GDM predicted higher turnover than SDMs and across a
larger contiguous area, including the southern third of North America and notably Central America, where the
proportion of ants with relatively small ranges is high and where data limitations are most likely to impede the application
of SDMs. Differences between approaches were also influenced by assumptions regarding dispersal, with forecasts being
more similar if no-dispersal was assumed. When full-dispersal was assumed, SDMs predicted higher turnover in southern
Canada than did GDM. Taken together, our results suggest that 1) warm rather than cold regions potentially could
experience the greatest changes in ant fauna under climate change and that 2) multi-species models may represent an
important complement to SDMs, particularly in analyses involving large numbers of rare or poorly-sampled species.
Comparisons of the ability of single- and multi-species models to predict observed changes in community composition
are needed in order to draw definitive conclusions regarding their application to investigating climate change impacts on
biodiversity.

Concern over global change and the potential for associated
species loss have increased the emphasis on understanding
the factors that influence patterns of biodiversity and on
forecasting how these patterns may change in the future
(Thomas et al. 2004, Araujo and Rahbek 2006, Fitzpatrick
et al. 2008). However, many regions and taxonomic groups
remain poorly sampled, hindering attempts to formulate
conservation strategies for all but a handful of species,
mostly vertebrates and temperate plants. Species-rich
taxonomic groups such as insects and other invertebrates
pose a particular challenge for conservation managers,
and as a result such groups remain poorly considered in
conservation planning even though they may constitute the
majority of eukaryotic species on Earth (Erwin 1982, Stork
1997, Dunn 2005, Hamilton et al. 2010).

In the absence of sufficient biological data, statistical
modeling is often used to relate occurrence data to

environmental factors that might limit individual species
distributions or explain overall patterns of biodiversity.
These approaches allow species distributions and/or emer-
gent patterns of biodiversity (e.g. species richness or
community types) to be mapped across regions of interest
(Guisan and Zimmermann 2000, Ferrier et al. 2002,
Ferrier and Guisan 2006). Once developed, the models
can also be used to assess threats to species persistence under
scenarios of environmental and/or climatic change using
forecasts from global circulation or land cover change
models (Yates et al. 2010).

An increasingly common approach used to forecast
changes in the distributions of individual species and to
assess extinction risks under climate change is the application
of species distribution models (SDMs, Guisan and Thuiller
2005). The popularity of SDMs can be attributed to the fact
that, unlike mechanistic niche models (Kearney and Porter
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2009), which can be developed for those few taxa for which
we have sufficient physiological understanding, they require
only data on species occurrence and associated environmen-
tal conditions and thus can be applied across multiple taxa,
regions, times, and spatial scales (Guisan and Thuiller 2005).
Despite their practical strengths, the availability of occur-
rence and environmental datasets often limit the application
of SDMs to relatively common or well-sampled species �
those species whose geographic ranges are large relative to the
density of field sampling. These species are often also those of
least conservation concern, both because they are widespread
and almost necessarily have broad environmental tolerances.
In cases where groups are poorly known, or for groups that
exhibit rapid spatial turnover relative to the grain of
sampling, many species will not be sampled at all or will be
represented by too few records to allow implementation of
SDMs (Ferrier and Guisan 2006). Second, in some instances
conservation managers may not be interested in the response
of or threat to any single species. Potentially of greater
importance is identifying where large numbers of species
are at risk (Myers et al. 2000) or determining how
species composition of a locale may change in the future.
Such inferences can be achieved by combining SDMs
for individual taxa to assess changes in species richness
(Fitzpatrick et al. 2008), composition (Leathwick et al.
1996), or functional types (Thuiller et al. 2006). But as the
number of species being modeled grows, it becomes
increasingly time consuming to analyze and interpret models
for each species. Additionally, it is unclear whether the
assembled SDMs reliably characterize emergent patterns of
biodiversity as SDMs rarely incorporate the influences of
species interactions, dispersal, or evolution (Guisan and
Thuiller 2005).

An alternative but relatively unexplored approach to
forecast potential impacts of climate change on biodiversity
involves modeling the emergent patterns of biodiversity
directly (Ferrier 2002) rather than combining individual
models for many species. In this approach, emphasis shifts
from discrete entities such as species ranges to collective
properties of biodiversity such as alpha diversity (the
number of species in a locale) or beta diversity (change in
species composition in space or time). Unlike species-level
modeling, for which species with too little data must be
excluded from further analysis for statistical reasons,
community-level modeling strategies can make use of all
available data across all species, regardless of the number of
records per species (Ferrier and Guisan 2006). Thus,
modeling the collective properties of biodiversity rather
than individual species ranges may confer benefits for
analyses involving very large numbers of species, particularly
when a majority of these species are rarely recorded, as is the
case for most taxa on Earth.

Beta diversity is a collective measure of biodiversity that
has received renewed attention (Tuomisto 2010a, b) as it has
a clear conceptual link to the reorganization of communities
under environmental change. For example, general turnover
metrics, such as percent turnover, are often computed to
quantify climate change impacts using stacks of single-
species SDMs (Thuiller et al. 2005, Broennimann et al.
2006, Lawler et al. 2009). Ferrier et al. (2002, 2007) recently
developed Generalized Dissimilarity Modeling (GDM) as a
means to characterize species turnover as a function of

environmental and geographic separation. Rather than
modeling individual species distributions, GDM models
compositional dissimilarity (i.e. spatial turnover of species
composition) between all possible pairs of locations as a
function of environmental differences between these loca-
tions. Potential strengths of the GDM approach, relative to
SDMs, in assessing spatial patterns of biodiversity and for
quantifying or forecasting biodiversity change (Ferrier and
Guisan 2006, Ferrier et al. 2007), include an ability to 1)
rapidly analyze datasets containing very large numbers of
species; 2) make use of data for all species in these datasets,
regardless of the number of records per species; and 3)
extrapolate patterns in compositional turnover beyond
sampled communities. An additional strength of the
GDM approach relative to other community-level modeling
approaches is the ability to accommodate both the curvi-
linear relationship between environmental (and/or geo-
graphic) separation and compositional dissimilarity
between sites, and the variation (non-stationarity) in the
rate of compositional turnover at different positions along
environmental gradients. Importantly, and unlike some
community-based modeling approaches, using GDM to
forecast impacts of climate change on biodiversity does not
assume that species will move together as fixed community
types. Rather, GDM assumes that emergent rates of spatial
turnover along environmental gradients under current
climatic conditions can act as a reliable surrogate for
temporal turnover given environmental change in time
(i.e. climatic change). GDM may represent an important
supplement to existing methods used to assess the impacts of
climate change on biodiversity, yet its use in this context
remains largely unexplored (Ferrier and Guisan 2006).

Here we use GDM to forecast impacts of climate change
on ants in North America, and we compare these forecasts
to those derived from ensemble forecasts derived from
single-species SDMs (Araujo and New 2007). Ants repre-
sent an ideal taxon for comparisons of SDMs and GDM as
ants, including those in North America, are represented by
both widespread and narrowly endemic species and well-
known and poorly-known species. As an example of the
former, the ant species Tapinoma sessile occurs in habitats
ranging from New England bogs to moist parts of south-
western deserts (Menke et al. 2010). As an example of the
latter, the species Ambylopone trigonignatha is known from
one specimen and one set of photographs of two indivi-
duals. As such, only a subset of species can currently be
modeled with SDMs, whereas the data for all species can be
considered in the fitting of models using GDM. Ants are
arguably one of the better-studied insect taxa with regard to
both basic biology and systematics (Hölldobler and Wilson
1990) and North America is one of the better-studied
regions. In addition, ants can represent the dominant
fraction of animal biomass in some habitats (Hölldobler
and Wilson 1990, Folgarait 1998), and mediate many
ecological processes and therefore the loss or addition of ant
taxa can potentially have large ecological consequences. In
short, as is the case for most groups of organisms on the
planet, there are data suitable for the development of
SDMs, but only for a subset of taxa. We ask 1) where do
SDMs and GDM forecast the greatest changes in ant
community composition? 2) Do these projected changes
differ in a meaningful way between SDMs and GDM; and
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3) if so, where and why? When considering community
composition, we consider both changes in the genera
present in a region and, for SDMs, changes in the
functional groups present (e.g. specialist mite feeders,
general omnivores, etc.) with the idea that the loss or
arrival of functional groups may have greater impacts than
changes in genera within functional groups, to the extent
there is redundancy (e.g. many omnivorous ant genera share
similar diets).

Methods

Biological data

We focus on native ant genera occurring within continental
North America north of the Colombia�Panama border and
excluding Greenland using a database of North American
ant species derived from specimens in museums, published
systematic revisions of taxa, specimens in AntWeb (<www.
antweb.org>) and other records. We augmented these data
with an additional 23 618 records from the personal
collection of J. Longino. We obtained occurrence data
(presence-only) for 104 genera and 1696 species, removing
any species or genera not native to North America. Because
the spatial accuracy of the occurrence records was variable,
we aggregated the data to a cell size of 10 arc-minutes (ca
20�20 km), resulting in 6733 locations with ant occur-
rence data (Fig. 1, data to be made available as online
supplement). Given that ant species are continuing to be
named in North America and the distribution of named ant
species is sometimes only provisionally known (e.g. as in the
case of A. trigonignatha), we focused our analyses at the level
of the genus. We assigned genera to functional groups
following Weiser and Kaspari (2006), supplementing when
necessary based on recent literature studies (Davidson et al.
2003) and studies from the primary literature (Supplemen-
tary material Appendix 1).

Environmental predictors

Numerous studies suggest both patterns of ant species
richness and geographic ranges of individual species are
related to climate and in particular temperature, precipita-
tion, and humidity (Davidson 1977, Bestelmeyer 2000,
Kaspari et al. 2000, 2004, Retana and Cerdá 2000, Sanders
et al. 2003, 2007, Dunn et al. 2009). Precisely which
aspects of climate (minimums, maximums, averages, or
seasonality) influence individual distributions of ants rather
than richness patterns per se have been less well explored.
We thus initially considered a comprehensive set of 24
bioclimatic variables representing average conditions for the
years 1950�2000 and used variable selection techniques
(described below) to reduce this set to a few meaningful
predictors. This full set was comprised of 19 predictors
from the WorldClim database (<www.worldclim.org>,
Hijmans et al. 2005) describing minimum, maximum,
and seasonality in temperature and precipitation and four
additional variables that we developed and that capture
interactions between precipitation and temperature, includ-
ing absolute minimum temperature, annual water balance,
summer water balance, and water balance seasonality (see
Svenning and Skov 2004 for details). Although remotely-
sensed measures of available energy, such as net primary
productivity and normalized difference vegetation index,
may also be important determinants of biogeographical
patterns of ant distributions, such variables are not available
for the future. Thus, we instead used actual evapotranspira-
tion (AET) as a measure of available energy computed using
Turc’s formula (cited in Kluge et al. 2006). We developed
the same suite of 24 variables representing potential future
climatic conditions in year 2050 as may develop under the
assumptions of the HadCM3 general circulation model and
the SRES A2a emission scenario, also from WorldClim.
The HadCM3 general circulation model under the SRES
A2a emission scenario forecasts at least 28C warming across
much of North America by 2050 with greater forecasted
warming in the Arctic (�58C) and in western and central
North America (�3.58C). Arid regions in southwestern
North America are forecasted to receive 50% more annual
precipitation, whereas regions south of and including the
Yucatan Peninsula are forecast to experience a decrease in
annual precipitation of nearly 50%. We chose this scenario
of future climate as it predicts relatively rapid increases in
atmospheric carbon dioxide that are in line with current
global trends (Canadell et al. 2007) and recognize that other
models yield predictions that differ in their specifics of
forecasted climate change. However, it is beyond the scope
of the study to consider multiple scenarios of future climate.
All climate variables were manipulated in ArcGIS 9.3 (ESRI
2009) such that they were spatially congruent and had a
common resolution of 10 arc-minutes (ca 20�20 km),
which matched the occurrence data.

Generalized dissimilarity modeling

GDM is a nonlinear, multivariate extension of Mantel
correlation analysis (Manly 1998) for analyzing and predict-
ing patterns of compositional dissimilarity (quantified with a
presence-absence version of version of the Bray�CurtisFigure 1. Locations with occurrence (presence-only) data for ants.
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dissimilarity index) in relation to environmental gradients. It
links sampled biological data with study-area wide environ-
mental data using non-linear functions that can be used to
rapidly predict spatial patterns in the composition of
biodiversity across large regions and to estimate changes in
these patterns under environmental change. Specifically,
GDM uses GLMs (Generalized Linear Models) to model
observed Bray�Curtis dissimilarity, dij between pairs of
locations i and j as a function of n environmental variables,
x1 to xn, using an exponential link function of the form

�ln(1�dij)�ao�
Xn

p�1

jf p(xpi)�f p(xpj)j (1)

where

dij�1�
2A

2A � B � C
(2)

and where A is the number of genera common to both sites i
and j; B is the number of genera present only at site i; and C is
the number of genera present only at site j. The functions fp
transform the environmental variables to obtain the best fit of
the observed dissimilarities, which in turn can be used to
predict differences in community composition in space and
time. To implement GDM, we used software available from
<www.biomaps.net.au/gdm> (ver. 1.1) in R 2.10.0 (R
Development Core Team 2009). See Ferrier et al. (2007) for
further details and applications.

We converted the presence-only ant distribution data
into a binary (0/1) sites-by-genera matrix, in which each
‘site’ consists of a ca 20�20 km grid cell where at least one
ant genus had been collected. This matrix was used to derive
the Bray�Curtis measure (equivalent to 1-Sørenson’s index,
Sørensen 1948) of inter-site dissimilarity as the response
variable for the GDM. Our site-by-genera matrix assumes
that if a genus had not been collected in a grid cell it could
be considered absent at that location. This is not true in
many instances. Therefore we took three measures to
account for potential biases introduced by the use of
presence-only data and by differences in collection effort
between locations. First, we used the ‘standard’ weighting
function within GDM. Standard weighting weights sites
proportionally to the number of species or genera observed
at that site, such that sites with few genera carried less
weight, and therefore less influence, in model fitting than
sites with larger numbers of genera. This approach is likely
the safest option to use if sampling effort is known to have
varied substantially between sites, but it has the disadvan-
tage of downweighting marginal (e.g. very cold) but
potentially widespread conditions. We also ran models
without weighting and found results were highly similar
to those obtained using standard weighting. Second, to
account for the inflation of observed dissimilarities due to
the use of presence-only data, we excluded the intercept
term fitted in the GDM model when making forecasts,
which ensures that two sites that do not differ in
environmental variables (i.e. environmental distance be-
tween sites is zero) will have a predicted dissimilarity of zero
and that dissimilarities between all remaining pairs of sites
will be scaled accordingly (Allnutt et al. 2008). Third, sites
with low generic richness because of incomplete sampling
can appear to be completely dissimilar to one another.

Therefore, to account for the potential influence of
incomplete sampling, we excluded sites where fewer than
five genera had been recorded. For the predictor variable,
we constructed a corresponding sites-by-environment ma-
trix using the variables described below. Using these two
matrices we developed two GDM models, one using only
genera with enough data for SDMs (66, see below) and
another using all 104 genera in the database. Comparisons
with the SDMs are made using the GDM with 66 genera.

Rather than blindly use all 24 available environmental
variables to develop models, we used two procedures to
perform variable reduction. First, we reduced the full set by
selecting eight climate variables that minimized collinearity
(rB0.7), keeping those variables of correlated pairs
that were in our opinion most biologically meaningful.
These eight included annual mean temperature, mean
diurnal range, isothermality, maximum temperature of the
warmest month, annual precipitation, precipitation season-
ality, precipitation of the driest quarter, and summer water
balance. These eight variables were also used to model the
distributions of ant genera using SDMs. Second, for the
GDM models, we further reduced this set of eight using a
custom backward-elimination variable selection routine
written in the statistical program R v2.10.0 (R Develop-
ment Core Team 2009). At each step in the routine, a
GDM model was fit using the available n predictors (where
n�8 at the beginning of the routine). The predictor
associated with the smallest amount of compositional
change, as determined by summing the coefficients of the
I-splines (Ferrier et al. 2007) when all other variables were
held constant, was removed and a second GDM model was
then fit using this reduced set of n�1 predictors. The
significance of removing the variable from the model was
evaluated by calculating the difference in deviance between
two models with and without the variable. The observed
difference in deviance was then compared to a null
distribution of differences in deviance obtained by fitting
the two models using 500 random permutations of the
order of the sites in the response (compositional dissim-
ilarity) matrix. If no significant difference was found in the
deviance between the two models, then the variable that was
removed was not a significant predictor of compositional
dissimilarity and could be eliminated from the model.
Variable elimination continued until the difference in
deviance between the two models became significant, thus
indicating that no more variables could be eliminated
without reducing model quality. This procedure resulted in
a final model containing five variables: annual mean
temperature, mean diurnal range, isothermality, maximum
temperature of the warmest month, and summer water
balance.

Our use of GDM to assess potential climate change
impacts proceeded in two steps. First, we used GDM to
relate compositional dissimilarity between all pairs of sites
(i.e. all grid cells where ant genera were recorded) to their
current environmental separation. This step provided
functions that describe how ant community composition
changes as a function of environmental separation and in
this case, environmental separation occurs because sites are
separated in space. Next, we used this model to predict how
ant community composition would change in time given
the amount of environmental separation between current
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climate and climate in year 2050 at each location. In this
case, environmental separation occurs not in space but in
time because the climate at each location changes from t1 to
t2. The implicit assumption when GDM is used in this
context is that the amount of compositional change
modeled between two locations separated in current
environmental space can be used to approximate how
much a single location will differ in composition given an
amount of environmental change in time.

Ant distribution models

We modeled individual distributions of each ant genus
using the BIOMOD framework (Thuiller et al. 2009).
BIOMOD contains nine algorithms for modeling species
distributions and allows for the combination of multiple
models (different algorithms, initial conditions, etc.) into
a single ensemble, thereby reducing the influence of
algorithm- and data-specific uncertainty and often produ-
cing a more robust model than can be achieved by any
single method (Araújo et al. 2005, Araujo and New 2007,
Marmion et al. 2009). For this study we used all nine
algorithms within BIOMOD, which include artificial
neural networks, classification trees, generalized additive
models, generalized boosted regression tree models, general-
ized linear models, multivariate adaptive regression splines,
mixture discriminate analysis, random forests, and surface
range envelopes. See Thuiller et al. 2009 for details.

BIOMOD requires information on both presence and
absence of modeled entities. Such data are unavailable for
most species and regions (Graham et al. 2004), including
those in our study. To circumvent this problem, we created
artificial absence data (often called background or pseudo-
absence data) using three approaches. These included 1)
assuming, as we did for GDM, that a genus was absent at
any location in the occurrence dataset where it had not been
collected, 2) using a method proposed by Phillips et al.
(2009) in which all collection locations in the occurrence
dataset are used as absences, even locations where a given
genus has been collected, and 3) selecting 500, 1000, or
10 000 random points from the entire study area, with an
equal weight of presences vs background data. Of these
three approaches, models fitted with 10 000 random points
selected from the entire study area and with an equal weight
of presence vs background data produced models with the
best predictive accuracy, as measured statistically and by
visual inspection. To avoid potential problems relating to
small sample sizes, we developed models only for genera
that had at least 20 spatially unique distribution records.
Thirty-eight genera did not meet this criterion, leaving 66
genera.

Within BIOMOD, distribution data for each genus were
partitioned randomly 10 times into calibration (70%) and
evaluation (30%) datasets, and models were run on each of
the 10 resulting datasets. Model accuracy was calculated
using the True Skill Statistic (TSS, Allouche et al. 2006).
The TSS, an established approach for assessing the accuracy
of weather forecasts, compares the number of correct
forecasts, minus those attributable to random guessing, to
that of a hypothetical set of perfect forecasts. For a 2��
�2 confusion matrix, TSS is defined as TSS�sensitivity�

specificity�1. It takes into account both omission and
commission errors and success as a result of random
guessing, and ranges from �1 to �1, where �1 indicates
perfect agreement and values of zero or less indicate a
performance no better than random. The TSS has recently
been shown to be superior to kappa; notably, by not being
affected by species prevalence (Allouche et al. 2006). The
probability of occurrence was converted into binary
presence/absence using the threshold maximizing TSS.
The multiple models for each ant genus resulting from
different algorithms and random splits of the occurrence
data into training and test data were combined into a single
ensemble using weighted averaging. The contribution of a
model to the ensemble was based on its TSS score and the
relative weight of the contribution was calculated using a
decay of 1.6 (the default weighting in BIOMOD, Thuiller
et al. 2009).

To calculate the Bray�Curtis dissimilarity between
current and future distributions of ant genera from the
SDMs, the single binary ensemble range prediction for each
genus under current climate were stacked to produce a sites-
by-genera matrix representing predicted ant community
composition. This process was repeated for projected future
distributions resulting in a sites-by-genera matrix for ant
community composition under future climate. These two
matrices were then used to calculate dissimilarity between
present and future using the same formulation of the
presence-absence version of the Bray�Curtis dissimilarity
index used by GDM (eq. 2), but in this case A equaled the
number of genera present at a site at both times i and j; B
equaled the number of genera present only at time i; and C
equaled the number of genera present only at time j. We
performed these calculations assuming two extremes of
dispersal; either individuals are able to disperse to all
locations that become suitable (full-dispersal) or individuals
cannot disperse at all and only lose range as climate changes
(no-dispersal). Note that GDM assumes that forecasted
changes in composition will occur regardless of the distance
species would have to migrate in order to realize these
forecasts, which is, in essence, to assume full dispersal.

To calculate changes in functional groups, we deter-
mined for each pixel in the study area whether it was
forecasted to gain a functional type that was not present
under current climate and whether it was forecasted to lose
a functional type in the future such that it would no longer
be represented by any genera in that location. Although
some pixels may be forecasted to experience changes in
composition of genera, such changes may not necessarily
result in changes in the functional types present since
multiple genera were assigned to the same functional type.
We did not determine whether changes in functional
groups were the result of shifts in the distribution of
multiple genera or a single genus despite the fact that
changes in multiple genera are likely to have greater
consequences. We only report results for those functional
groups that exhibited losses or gains.

Results

The predictive accuracies of the genus-level SDMs (True
Skill Statistic values from the BIOMOD ensembles) were
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consistently high and ranged from 0.990 to 0.999 (mean
for all genera�0.997, Supplementary material Appendix
1). The GDM model accounted for 40.9% of the deviance
in observed turnover of ant genera. The largest amount of
turnover was observed along the gradient of mean annual

temperature, followed by summer water balance (maximum
height of curves in Fig. 2). In general, turnover was most
rapid (slope of curves in Fig. 2) in hot environments,
whereas colder environments exhibited relatively less com-
positional change per unit environmental distance.
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Figure 2. Fitted functions of observed turnover in composition of ant genera for a Generalized Dissimilarity Model using five
environmental variables. The maximum height reached by each function provides an indication of the total amount of compositional
turnover associated with that variable, holding all other variables constant. The slope of each function provides an indication of the rate of
compositional turnover and how this rate varies along the gradient.
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The r2 value between GDM and the no-dispersal
scenario from BIOMOD was more than three times that
between the full-dispersal scenario and GDM (0.54 vs 0.17
respectively, Fig. 3). Compositional change forecasted using
BIOMOD and assuming no-dispersal more closely
matched the GDM forecasts than did those assuming full-
dispersal (Fig. 3, 4), mainly because the assumption of no-
dispersal prevented northward range shifts in many genera
across large regions of northern North America, where
GDM predicted little change in composition (Fig. 4).
GDM tended to forecast greater amounts of compositional
change and over a more contiguous area than did
BIOMOD, including the south central United States
(US), the Sierra Nevada of the western US, and most of
Central America (Fig. 4). In Central America, ant generic
richness is highest in the study region (Fig. 5a) and ranges

are small (at least within the domain considered, some
‘small-ranged’ genera in our study domain actually have
large ranges in the Neotropics) relative to grain size of the
analysis. In contrast, when full dispersal was assumed,
BIOMOD predicted greater amounts of compositional
change than GDM in a narrow band across southern
Canada (Fig. 4a), where SDMS projected northward range
shifts of multiple genera and where current richness is low
(Fig. 5b). Although BIOMOD and GDM tended to differ
in the magnitude of forecasted change, both models
highlighted northern Mexico and the Central Valley of
California as regions having the greatest potential impacts
and the intermountain West and the northeastern US as
having the lowest forecasted changes. When all 104 genera
were used in the GDM model (Fig. 4d), the results were
similar to those of the GDM incorporating only those 66
genera with enough data for SDMs, but with generally
higher forecasted turnover and particularly so in the
Yucatan Peninsula and in Central America.

In terms of losses and gains of functional types
determined from genus-level SDMs, southeastern Canada
was forecasted to experience the most gains in functional
types (Fig. 6). In contrast, loss of functional types was
limited mainly to the southern half of the domain, though
generalities were more difficult to draw for losses as
compared to gains. In general, a greater portion of North
America was predicted to lose rather than gain functional
types, and gains would be realized only when assuming full-
dispersal.

Discussion

What do two independent modeling approaches suggest
regarding changes in patterns of ant biodiversity in North
America under climate change? When considered qualita-
tively and at the broadest spatial extents, several notable
similarities and differences between the forecasts of the two
models emerge. Both SDMs and GDM suggest that
turnover of ant genera may be high in relatively warm
and dry environments such as those found in the south
central US, California, and northern Mexico and relatively
low in cold and wet regions elsewhere. Notable differences
are that GDM also forecasts relatively large changes in ant
community composition for the tropical portion of the
study region and SDMs forecast greatest turnover in
southeastern Canada, but only when full-dispersal is
assumed. When the models agree, they suggest that warm
rather than cold regions potentially could experience the
greatest changes in ant fauna under climate change with
corresponding alterations to ecosystem function to the
extent that ants mediate such processes.

Although the models reach broadly similar conclusion
regarding compositional change for some regions, the types
of conclusions drawn from each approach differ. GDM says
something about the drivers of compositional change,
whereas SDMs say something about the nature, and thus
the consequences, of those changes. For example, the region
with the highest agreement between the models is relatively
warm. The GDM model suggests that hot environments
exhibit a large amount of turnover in ant genera per unit
environmental distance (Fig. 2). Thus, relatively small

Figure 3. The relationship between forecasted compositional
dissimilarity calculated from stacking 66 individual ant genus
models from BIOMOD assuming either (a) no-dispersal (�’s) or
(b) full-dispersal (hollow circles) versus forecasted compositional
dissimilarity from a GDM. Each point represents a grid cell in
North America. The dashed lines are best-fit regressions. The solid
black lines are unity.
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temperature increases in this region are expected to result in
relatively large faunal changes. In contrast, SDMs can
readily highlight which genera (and their associated func-
tional roles) are expected to move and where. In our case,
SDMs suggest that the southern half of North America may
tend to experience a net loss in ant genera (Fig. 5), but some
areas may gain functional roles (Fig. 6). In other words, the
two approaches can be complimentary in terms of what
they tell us. It is also important to consider the nature of the
Bray�Curtis measure, which can reflect changes in the ant
community due to gains or loses of genera as well as
composition change with no net change generic richness.
For SDMs, it is possible to decipher which of these types of
changes the Bray�Curtis measure reflects and for the most
part dissimilarity appears to be a result of gains and losses of
genera rather than genus-for-genus compositional change
(Fig. 4 a, b, Fig. 5). GDM does not readily provide similar
insight because it models compositional change directly
rather than genus-specific changes.

Although the models agree in some instances about
where changes in ant composition may be greatest, there are
also notable exceptions to this pattern that highlight

the differences between the two modeling approaches. In
the southern half of North America, GDM tended to
forecast higher turnover than did SDMs, especially when
GDM incorporated all 104 genera rather than only the 66
for which there were enough data for SDMs (Fig. 4).
Elsewhere in the study region, notably southern Canada,
SDMs tended to predict greater turnover than GDM. Here,
generic richness is relatively low (Fig. 5a), and genera are
relatively widespread. Thus, overall patterns of biodiversity
are driven by wide-ranging genera that can be modeled
using SDMs. In the southern half of North America and in
Central America in particular, the converse is true; most
genera have small ranges, at least within the domain we
considered, and as a consequence turnover in space is high
relative to the grain of the analysis � the conditions under
which the strengths of GDM are likely to be most apparent.

A biogeographical perspective provides further insight as
some of the compositional changes forecasted by the models
appear to coincide not simply with species range boundaries
but also more generally with two of the major biogeogra-
phical transitions in the Americas. For example, we see high
turnover in northern Mexico that appears to coincide with

Figure 4. Compositional dissimilarity forecasted between present and 2050 for 66 individual ant genus models using BIOMOD and
assuming either (a) full-dispersal or (b) no-dispersal, (c) GDM with the same 66 genera, and (d) GDM with all 104 genera for which
distribution data were available. Panels (e) and (f) show the difference (BIOMOD � GDM) between the forecasts from GDM (66 genera
model) and BIOMOD assuming full and no-dispersal respectively. Greens/purples indicate where forecasted dissimilarity from
BIOMOD was less/greater than that from GDM.
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the movement of neotropical species northward into
temperate regions (and with this shift, consequent increases
in the area covered by ‘tropical’ functional groups, such as
leaf-cutters) as well as the loss of some temperate species.
The climate associated with this transition is relatively warm
and dry and therefore the forecasted changes in community
composition in these relatively warm areas by GDM
partially may be an artifact of ant biogeography rather
than ant ecology per se. By the same token, large differences
exist between the Nearctic ant fauna and what might be
called the Nearctic boreal fauna. It is along the biogeo-
graphic transition between these faunas that SDMs forecast
high compositional dissimilarity in the north. The existing
biogeographic history that underlies these two transitions is,

in other words, rearing up in the context of future
predictions.

Our results suggest that GDM possesses an advantage
over SDMs particularly at the edge of domains or in areas
where knowledge of distributions is limited beyond some
geographic point. In our case, SDMs can model both losses
and gains of genera only in North America north of
Mexico, as it is in this region where compositional change
will be manifested by those genera occurring within the
domain (excluding human-mediated invasions from distant
regions). In contrast, Central America is at the southern
edge of the study region. Because the ranges of most genera
are predicted to shift northward, in Central America SDMs
can essentially only model losses of genera (e.g. Fig. 5b, c)
and not the arrival of species from South America. So
almost inevitably SDMs forecast less compositional turn-
over in this region than might otherwise be expected. GDM
does not rely on species distributions directly, but rather on
patterns of compositional turnover in space. Thus GDM is
less limited to sampled environments and therefore can
extrapolate beyond the domain under consideration. This is
not to say that GDM does such extrapolation perfectly,
especially in cases when the relationship between diversity
and some environmental variable differs from that which
occur in the existing domain. But that it does it at all may
prove an advantage not only in instances where domain
boundaries are arbitrary rather than ecological, but also
when non-analog environments predominate forecasted
environmental changes and where SDMs may be limited
(Williams and Jackson 2007, Fitzpatrick and Hargrove
2009).

Some of the differences between the SDMs and GDM
arose from assumptions regarding dispersal, and these
differences tended to be geographically structured. When
full-dispersal was assumed for the SDMs, many species were
forecasted to shift their ranges northward, resulting in an
increase in species richness in Canada (Fig. 5b) and greater
predicted turnover in this region than that forecasted by
GDM (Fig. 4). When no-dispersal was assumed these gains
in species richness disappeared and the forecasted change
between SDMs and GDM became more similar (Fig. 4f).
This result is surprising given that GDM forecasts assume
something akin to full-dispersal. That the SDM and GDM
forecasts differ most under full- rather than no-dispersal
may be an artifact and may reflect a combination of sparse
sampling and low generic richness in Canada (Fig. 1, 5a)
which result in correspondingly less influence in a GDM.
The use of presence-only data and the impacts of sampling
bias generally in the development of GDMs warrants
further investigation.

In addition to modeling the response of genera to
climate change we also coded genera by their functional
roles and in doing so inferred an aspect of the function of
ants and how it may change. Modeling the consequences of
changes in animal assemblages is complicated by several
factors. Perhaps the most interesting of these complications
is the two-headed nature of ecological consequences. Many
ant genera have relatively unique diets or life histories that
predispose them to having disproportionately large impacts
when they arrive at new sites or disappear from currently
occupied sites. Army ants, for example, prey on ant brood
and their absence is likely to have large and ramifying effects

Figure 5. (a) Ant generic richness obtained by stacking individual
BIOMOD predictions for each of 66 ant genera under current
climate and forecasted change in richness obtained by stacking
individual BIOMOD forecasts for year 2050 and assuming either
(b) full- or (c) no-dispersal.
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on the populations of co-occurring ants, but also other taxa
such as social wasps (Franks 1982, Kaspari and O’Donnell
2003). Thus, the addition or loss of ant genera has the
potential to have large and cascading consequences (Holway
et al. 2002). At the same time, however, the specialized
nature of some life histories of ants may mean that some
species and genera may not track climate per se, but instead
will track climate only to the extent that climate influences
the resources upon which they depend. To the extent that
this is true, responses of particular ant taxa may have
significant time lags. Nonetheless, the movement of several
prominent ant functional groups is noteworthy. For
example, granivores, such as those species found in the
genus Pogonomyrmex, are predicted to move northward in
eastern North America, with potential consequences for
seed dispersal.

Taken together, our results beg the question: which
method is the better approach to forecasting likely levels
of compositional change in response to climate change �
GDM or SDMs? Clearly the answer to this question
depends on context. In analyses involving very large
numbers of species, where individual responses of species
cannot be modeled due to rarity or insufficient sampling
or are otherwise not of interest, GDM has clear benefits

to SDMs. We also found evidence that the ability of GDM
to extrapolate beyond observed communities can lead to
different conclusions than those based on SDMs. However,
GDM is largely mute on the potential consequences of
forecasted changes. Here, SDMs might provide more
insight, but only for relatively common and widespread
species. Finally, it bears mentioning the computation
benefits in using GDM. Once the data were properly
formatted, which requires similar amounts of time for
GDM and SDMs, GDM took on the order of seconds to
produce results. In contrast, our SDMs, which were
admittedly rather computationally intense as compared to
some other methods, took on the order of days.

Nonetheless, it remains unclear as to whether GDM or
SDMs will provide more reliable results about future
changes in biodiversity. Most likely, neither is quite right.
Of the few other studies that have compared single-species
to community-level models, community-level approaches
exhibited model performances that were better (Elith et al.
2006), worse (Baselga and Araujo 2009) or similar to
(Leathwick et al. 2006) that of single-species models.
Baselga and Araujo (2009) found that individual-based
Generalized Linear Models (GLMs) tended to more
accurately predict observed distributions (as measured using
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Figure 6. Losses and gains in ant functional groups. Note that these assume full-dispersal and that there would be no gains in functional
groups if no-dispersal was assumed as genera can only lose range under this scenario. Only those functional groups that exhibited losses or
gains are shown.
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the kappa statistic) than did canonical quadratic ordination
(CQO), a multi-species model, but the magnitude of these
differences was not reported. Although Leathwick et al.
(2006) found little difference between Generalized Additive
Models and Multivariate Adaptive Regression Splines
(MARS), they noted strong performance of MARS for
species of low prevalence, reinforcing the benefits of multi-
species models found in this study. In all cases, model
performance under current climate is not an indication of
how well the models will fare under extrapolation to future
climates. To compare the ability of single- and multi-species
models to extrapolate would require evaluations against
observed changes in community composition through time,
such as those available from long-term observational
databases or from fossils, pollen or otherwise. An explora-
tion of the ability of different SDMs and community-level
models to make projections into different regions and
times, as well as the incorporation of population and
community dynamics into models, will likely lead to the
most useful improvements to current methods (Botkin et al.
2007). Nevertheless, our results do suggest that current
climatic change has the potential to influence the distribu-
tion of ant biodiversity in North America, and possibly any
ecological processes many of those species mediate. Models
agree that changes in ant community composition may be
particularly significant in relatively warm environments,
where large transitions in the genera and functional types
present may occur.
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