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Ecological niche models (ENMs) are the primary tool used to describe and forecast the potential influence of climate 
change on biodiversity. However, ENMs do not directly account for important biological and landscape processes 
likely to affect range dynamics at a variety of spatial scales. Recent advances to link ENMs with population models 
have focused on the fundamental step of integrating dispersal and metapopulation dynamics into forecasts of species 
geographic ranges. Here we use a combination of novel analyses and a synthesis of findings from published plant and 
animal case studies to highlight three seldom recognised, yet important, advantages of linking ENMs with demographic 
modelling approaches: 1) they provide direct measures of extinction risk in addition to measures of vulnerability based 
on change in the potential range area or total habitat suitability. 2) They capture life-history traits that permit popula-
tion density to vary in different ways in response to key spatial drivers, conditioned by the processes of global change. 
3) They can be used to explore and rank the cost effectiveness of regional conservation alternatives and demographically 
oriented management interventions. Given these advantages, we argue that coupled methods should be used preferen-
tially where data permits and when conservation management decisions require intervention, prioritization, or direct 
estimates of extinction risk.

Changes in geographical distribution and abundance patterns 
have been observed in a variety of taxa under 20th century 
climate change (Parmesan 2006). Forecasts are that many 
more species will be affected in the near future (Pereira et al. 
2010) with impacts potentially transforming the structure of 
ecological communities (Hoegh-Guldberg et  al. 2007). To 
meet global and regional biodiversity conservation targets 
(Butchart et  al. 2010), we need an improved understand-
ing of the mechanistic underpinnings of range limits (Holt 
et al. 2005, Sexton et al. 2009) and model architectures to 
extend this new found knowledge (Schurr et al. 2012). This 
is because forecasts of future distributions of species using 
traditional correlative approaches may underestimate the cli-
matic tolerances of species, or fail to account for unforeseen 

evolutionary changes in populations and important species 
interactions (Norberg et al. 2012).

Forecasting species’ responses to rapid human-induced 
climate change requires both models designed to forecast 
changes in range edges (Huntley et al. 2010), and meth-
ods for simulating changes in occupancy and abundance 
within species ranges (Caughley et al. 1988). However, to 
date, forecasts of species range changes have been mainly 
modelled using correlative ecological niche models 
(ENMs), which explore the relationship between occu-
pancy or abundance data with environmental variables 
(Peterson et al. 2011). Although ENMs convey practical 
advantages over alternative, more mechanistic approaches 
(owing to simplicity and flexibility of data requirements), 
the importance of underlying assumptions and inher-
ent simplifications continue to be debated (Franklin 
2010, Huntley et  al. 2010, Kearney et  al. 2010, Araujo 
and Peterson 2012, Dormann et  al. 2012). Specifically, 
ENMs seek to characterize the sets of environmental 
conditions that are habitable for the species, but typi-
cally disregard species’ life-history traits that constrain 
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demographic responses to environmental factors as well 
as information on the spatial structure of suitable habitats 
that may constrain local population processes (Araújo and 
Rahbek 2006). Consequently, ENM predictions do not 
characterise demographic and ecological processes at the 
population level and therefore cannot be used for direct 
estimates of extinction risk or to explore range dynamics 
explicitly (Fordham et al. 2012b).

As detailed in some recent multi-species case studies 
(Keith et  al. 2008, Anderson et  al. 2009, Lawson et  al. 
2010, Aiello-Lammens et  al. 2011, Harris et  al. 2012, 
Regan et al. 2012, Swab et al. 2012), coupled ecological 
niche-population models (NPMs) that link habitat suit-
ability (ENM output) with demographic processes offer a 
potentially improved approach for estimating extinction 
risk and spatial distribution shifts under climate change 
because they account for important biological and land-
scape processes, and their interactions. Demographic 
models of population and metapopulation dynamics 
used in this ‘coupled’ statistical-demographic approach 
incorporate processes of survival, growth, reproduction 
and dispersal. Each of these processes may change sto-
chastically (e.g. owing to weather-related fluctuations) or 
deterministically (e.g. owing to temporal trends because 
of climate change) and may be reliant on the age, size 
and/or sex of the individuals and on the density of the 
population (Brook et  al. 2009). Moreover, dispersal is 
conditioned by the distribution of suitable patches (i.e. 
location, size, and shape), which can vary in time as a 
result of shifting habitat suitability. Although NPMs 
have tended to use complex metapopulation models, the 
framework could also be adapted to utilise much simpler 
stochastic patch occupancy models (Levins model and its 
variants; Hanski 1991).

Current reviews of techniques for modelling species dis-
tributions under climate change have suggested that these 
coupled approaches (including techniques where ENM 
and demographic models are simultaneously fit to data; 
Pagel and Schurr 2012) provide an important advance over 
entirely correlative models, at least under non-equilibrium 
conditions (i.e. under climate change and commercial over 
exploitation), because they incorporate a greater level of eco-
logical realism by combining dispersal and metapopulation 
dynamics (Brook et al. 2009, Franklin 2010, Huntley et al. 
2010, Dormann et al. 2012, Schurr et al. 2012). Although 
ENMs can be strengthened by adding information on an 
organism’s physiological tolerance (Kearney et al. 2010), and 
through informed selection of environmental factors and 
spatial scales (Austin and Van Niel 2011), the addition of 
a demographic model is needed to: 1) account for impor-
tant metapopulation processes such as source-sink dynamics 
and density dependent growth and dispersal; 2) incorporate 
interacting effects of habitat fragmentation and demographic 
stochasticity, and 3) explicitly evaluate demographically  
oriented management interventions.

Simple applications that seek to integrate life-history 
traits (dispersal and persistence) into ENMs might pro-
vide important insights into ‘climate paths’ that range 
shifts might follow (Early and Sax 2011), and reduce 
uncertainty in estimates of range movement (Engler and  
Guisan 2009). However, NPMs (or similarly sophisticated 

methods) are needed to explore the influence of climate 
change on extinction risk and spatial patterns of abundance. 
The disadvantages of NPMs are that spatial abundance 
data from across the species’ range is needed to validate 
model structure and in some cases fit the model (Cabral 
and Schurr 2010), which are rarely available. Moreover, 
they are much more difficult to parameterise, potentially 
amplifying uncertainty in model predictions. Although 
Bayesian approaches (Pagel and Schurr 2012) could be 
used to inform parameterisation, independent evaluation 
of such models is extremely complex.

Here, we use new analysis and findings from published 
plant and animal case studies to better illustrate three key 
reasons for shifting emphasis towards NPMs in studies of 
climate change effects on species actual (instead of potential) 
distributions.

1) They provide direct measures of risks of popula-
tion declines and extinction (e.g. extinction risk, expected 
minimum abundance, time to extinction, and risk of quasi- 
extinction) in addition to measures of vulnerability based 
on climate-driven changes in geographical range area or the 
quality and quantity of suitable habitat.

2) They simulate spatially varying patterns in life-history 
traits, permitting population density to vary in different ways 
in response to key spatial drivers (e.g. habitat status, harvest 
pressure, species interactions) conditioned by climate change 
and other anthropogenic forcing (an important point also 
raised by Schurr et al. 2012).

3) They can be used to explore and rank the cost effective-
ness of regional conservation alternatives and demographically 
oriented management interventions (e.g. managed relocations, 
habitat restoration directed at improving vital rates, creation 
of protected zones) that might be available to mitigate the 
influence of climate change on a species. This is information 
urgently needed by policy makers and conservation practitio-
ners (Wintle et al. 2011). By contrast, ENMs can only inform 
questions of habitat management directed to area, connected-
ness and relative suitability (Araújo et al. 2011).

Method

Modelling technique

We have described the technique of coupling correla-
tive ENMs to demographic models in detail elsewhere  
(Keith et  al. 2008, Brook et  al. 2009, Fordham et  al. 
2012a). The procedure consists of creating a time series 
of ENMs, defining their output in terms of patches of 
suitable habitat and modelling populations of organisms 
occurring in those patch networks in a temporally chang-
ing landscape.

ENMs are first used to quantify the importance of envi-
ronmental conditions that define present-day patterns of 
occurrence (Peterson et  al. 2011). Environmental suitabil-
ity is then scaled (using spatial abundance data) to obtain 
an estimate of the carrying capacity of each subpopula-
tion. Carrying capacity forms the link between the spatial  
and demographic models, because the demographic rates 
at each time step are determined as functions of the current 
population size and carrying capacity (Akcakaya 2005). The 
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environmental predictive relationship is then forecast into the 
future using an annual time series of downscaled global cli-
mate model predictions (Fordham et al. 2011, 2012d); and 
land-use layers based on retrospective analysis of long-term 
data sets, LandSat imagery, and expert advice (Fordham and 
Brook 2010).

Metapopulation structure (size and location of subpopu-
lations) is centred on spatial patterns of abundance defined 
through the ENM step, and connected via dispersal (the 
rates of which can be determined by distance, matrix qual-
ity, physical barriers, etc.). Each subpopulation is modelled 
with a demographic model that incorporates processes of 
survival, growth, reproduction and dispersal (Akçakaya 
2000). Each of these processes may change stochastically 
or deterministically and may be reliant on location in the 
range. Model outputs include estimates of population size, 
how these vary temporally and spatially for sub-populations, 
and direct estimates of extinction risk, such expected mini-
mum abundance (across the entire population) and quasi 
extinction risk.

Measures of population and range declines

There have been few efforts to link patterns of popula-
tion decline with changes in species distribution directly.  
This is probably because estimating population size across 
space is an exhaustive process. Fordham et  al. 2012b 
provided a rare attempt to examine this issue using 
Australian plants. Here we build on this research by com-
paring estimates of change in total population abundance 
with estimates of change in range area for three native 
Australian plants (Angophora hispida; Banksia baxteri; 
and Xanthorrhoea resinosa), two lagomorphs (Oryctolagus 
cuniculus, Lepus timidus) and a reptile (Tiliqua adelaiden-
sis). These plants and animals were chosen because they 
represent a range of plant and animal life-history types 
(Supplementary material Appendix 1) and because they 
had NPMs already built for them (Anderson et al. 2009, 
Fordham et al. 2012a, b, c).

We modelled species’ spatial abundance patterns and 
range limits as being driven by demographic processes, 
climate change and, for some species, catastrophic events 
(wildfires and droughts), and the interaction between these. 
With the exception of one species, the mountain hare  
L. timidus in Britain, range and total abundance was fore-
cast under a high-CO2 emissions future, as predicted under 
the WRE750 (Wigley et  al. 1996) and MiniCAM-Ref 
(Clarke et al. 2007) greenhouse gas emission scenarios. For 
L. timidus we assumed a higher level of CO2 mitigation (A2 
emission scenario; Nakicenovic and Swart 2000), owing to 
data availability (see Supplementary material Appendix 1 
for a detailed description of species specific models).

Modelling spatiotemporal variant vital rates

In Australia, the maximum finite rate of population increase 
(Rmax, erm) in an infamous Australian invasive species – the 
introduced European rabbit Oryctolagus cuniculus – is influ-
enced by climate and can be characterised according to  

bioclimatic region (Hone 1999). We compared results from 
coupled niche-population models that treated Rmax as spa-
tially invariant (constant) (Rmax  1.5; Fordham et al. 2012a) 
with models where Rmax was calculated as a spatially variable 
function of bioclimatic region (Rmax varying between 0.77 
and 2.06; Hone 1999). Anthropogenically driven changes 
in climate were simulated according to two greenhouse- 
gas-emission scenarios: a high-CO2 concentration stabilising 
scenario (WRE750) and an alternative scenario that assumes 
strong mitigation of CO2 (LEV1; Wigley et  al. 2009). 
Modelling focused on the northern Australian range bound-
ary north of 25.5° latitude (see Supplementary material 
Appendix 1 for further details).

Assessing regional conservation alternatives

Climate-driven changes will adversely impact the expected 
minimum total abundance of T. adelaidensis. Relocating ani-
mals from climatically unstable to climatically stable habi-
tats is critical for safeguarding lizard population persistence 
(i.e. their ability to exist; Fordham et al. 2012c). Here we 
build on previous research, by investigating whether intro-
ductions from an intensively managed ‘captive’ population 
with a carrying capacity of 2500 animals could avert the 
likelihood of extinction for T. adelaidensis this century. To 
simulate a more stable captive environment we modelled a 
50% reduction in environmental variability in fecundity and 
assumed that catastrophic events (wildfires and droughts) 
did not effect this population. Animals were introduced to 
five patches of suitable habitat every five years at a rate of 5% 
of the captive population per patch. Sites for introduction 
were chosen according to area (largest to smallest) in each 
five-year period. The five largest populations were nomi-
nated as potential release sites. Other criteria for determin-
ing introduction sites included: a carrying capacity greater 
than 1000; not having had animals released at the site for 
at least 15 yr; having animals released no more than once 
at a given site. Animals were not removed from the captive 
population if local abundance dropped below 500 animals. 
Likewise animals were not released if the introduction site 
abundance was greater than 500 animals. Introduced ani-
mals were modelled as having similar survival and reproduc-
tion rates to native animals (Santos et al. 2009).

We compared extinction risk according to three man-
agement strategies modelled under a no-climate-policy 
emissions future (MiniCAM-Ref ): 1) a climate adaptation 
strategy focused on reintroductions from a captive breeding 
population; 2) increasing carrying capacity through the cre-
ation of obligate habitat; and 3) no additional management 
(see Supplementary material Appendix 1 for specific model 
details).

Model simulations

All models were implemented in RAMAS GIS ver. 5 
(Akcakaya 2005) and simulations were based on 1000 sto-
chastic replicates and run over a 81yr period (i.e. 2000–2080). 
Depending on the case study, we estimated the following 
indices: 1) the smallest population size that is expected to 
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between trends in range and abundance, potentially using 
simulated data and observer models to mimic real species 
(Zurell et al. 2010).

Modelling spatiotemporal variant vital rates

Biogeographic theory indicates that a species’ local abun-
dance and physiological state (influencing survival and 
fecundity) is typically greatest within the core (often near the 
centre) of its geographical range and declines toward the edge 
(Brown et  al. 1995), where local extinctions are more fre-
quent (Araújo et al. 2002). This implies an ordered response 
to environmental conditions: extreme conditions are lethal, 
marginal conditions permit survival and often temporally 
variable use, while average or better conditions allow repro-
duction (Townsend et al. 2000). However, species’ densities 
rarely display central peaks and peripheral declines across 
geographic ranges (Sagarin et al. 2006, Yackulic et al. 2011) 
due to anthropogenic extinction forces (for example, habitat 
degradation, biocides and introduced species) that spatially 
propagate like contagions (Channell and Lomolino 2000), 
and non-linear population processes, including competitive 
exclusion, predation, non-equilibrial responses to distur-
bance regimes, Allee effects, and genetic swamping (Sexton 
et al. 2009). Consequently, core populations may even, coun-
ter intuitively, have a greater probability of extirpation than 
those at the edge of the range, particularly when populations 
are strongly influenced by anthropogenic extinction drivers 
(Channell and Lomolino 2000), including climate change.

Since complex causal agents can produce widely different 
spatial abundance patterns (Caughley et al. 1988), predictive 
models used to assess species’ responses to climate change 
must be able to simulate spatially variable patterns in key vital 
rates that determine local abundance (Schurr et  al. 2012). 
Indeed, NPMs accommodate variability in demographic 
rates across the species range, allowing them to change in 
different ways in response to key spatial drivers, conditioned 
by the processes of global change. Incorporating spatial (as 
well temporal) variability in life-history traits into NPMs 
can have a substantial influence on predicted responses to 
future environmental scenarios.

Results from our case study on rabbits in Australia 
(Methods) show that neglecting to recognize spatial patterns 
of variation in maximal growth rate at low population sizes 
runs the risk of underestimating expected minimum total 
abundance and overestimating change in mean total abun-
dance between 2020 and 2100, especially for high-emission 
climate-change scenarios (Table 1). Also, failing to treat 
Rmax as varying spatially influences the rate at which inva-
sive species are forecast to shift their distribution in response 
to climate change (Table 1). The extent of northern range 
contraction differed by approximately 80 km depending on 
whether Rmax was modelled as spatially variable or constant 
across populations. Interestingly, range contraction was faster 
for the variable Rmax scenario under a low-emission scenario 
(compared to a constant rate of Rmax), but slower for the 
emissions-intensive scenario. This reflects a greater number of 
habitat patches with below average Rmax being maintained by 
dispersal inputs for longer on the trailing range margin under 
the low-emission scenario, which act as demographic sinks. 

occur between 2020 and 2080 (expected minimum abun-
dance; McCarthy and Thompson 2001), which is a continu-
ous metric reflecting risks of both declines and extinction 
risk. 2) Proportional changes in mean annual total popula-
tion abundance between 2020 and 2080. 3) Mean annual 
total population abundance and metapopulation occupancy 
between 2020 and 2080. 4) Range movement between 2020 
and 2080 based on a weighted mean of the latitudes of the 
most northern 10% of the metapopulation. Weights were 
the average local population abundance of each patch in each 
year, and latitude was taken from the geographic centre of the 
patch (Anderson et al. 2009). 5) Annual change in range area 
calculated using correlative ENM maps of habitat suitability, 
with a threshold applied to distinguish between potentially 
occupied and unoccupied sites (Buisson et al. 2010).

Results and discussion

Measures of population and range declines

ENM techniques have advanced considerably in recent 
years (Elith et al. 2006, Thuiller et al. 2009), yet their use in 
assessing anthropogenic disturbances remains constrained to 
proxies rather than direct estimates of extinction risk. Range-
area-type-measures, such as forecast shifts in geographic  
range area and habitat quality (using ENMs to derive habi-
tat-suitability indices) continue to be used to draw inferences 
about the extinction risk of species (Thomas et  al. 2004, 
Schwartz et  al. 2006). This can be problematic, because it 
assumes a linear relationship between range area and total 
population abundance (Akçakaya et  al. 2006). However, 
theory suggests it is unlikely that the abundance of indi-
vidual species will decline at the same rate as its distribution 
since species are rarely evenly distributed throughout their 
range (Lawton 1993, Gaston et al. 2000).

Our results confirm that the relationships between rate 
of change in geographic range area (approximated using cor-
relative ENMs) and total population abundance (evaluated 
using NPMs) are rarely linear (Fig. 1), the exceptions being: 
X. resinosa (Fig. 1c) and possibly L. timidus (Fig. 1f ). The 
former is a long-lived plant distributed across a wide range 
in eastern Australia, with a slow generational response to 
climate-induced habitat change (Fordham et al. 2012b), and 
the latter is a more geographically constrained lagomorph in 
Britain with a relatively stable range (Anderson et al. 2009). 
Longevity and rate of habitat change are two functions that 
are likely to have a strong influence on the range area–abun-
dance relationship because short-lived organisms respond 
more rapidly to environmental changes (Morris et al. 2008).

Figure 1 highlights that: 1) it is not clear, a priori, in what 
situations a linear range area–abundance relationship will 
hold; and 2) there is obviously a need to consider direct mea-
sures of extinction risk (population declines and other mea-
sures of stochastic viability), as well as measures of change 
in geographic range, when assessing climate change impacts 
on biodiversity. Furthermore, in the NPMs, total population 
abundance may be forecast to increase despite a decline in 
range area (e.g. Fig. 1d); or vice versa (e.g. Fig. 1a). These 
outcomes are not detectable by standard ENMs. Clearly, fur-
ther research is needed to better understand the relationships 
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biodiversity conservation. It is important, however, to note 
that the methods by which environmental conditions influ-
ence demographic rates are complex, being influenced by 
evolutionary processes, such as local adaptation and pheno-
typic plasticity, as well as ecological limitations.

Assessing regional conservation alternatives

NPMs, with structures that characterise the uncertainties 
underlying biological mechanisms driving species distribu-
tion and population persistence, can be used by conserva-
tion practitioners to develop strategic responses to multiple 
(often reinforcing or synergistic) drivers of global change 
(Fordham and Brook 2010). For instance, a richer vari-
ety of management scenarios can be modelled and their  

Under the high emission scenario these patches of habitat for 
invasive rabbits are lost quickly, minimizing their impact on 
metapopulation processes at the northern range margin.

Population abundance is forecast to increase either sub-
stantially or marginally under the emissions-intensive sce-
nario, depending on whether or not the relationship between 
Rmax and climate change is modelled explicitly. We predict  
a similar, but less pronounced, relationship for the low- 
emission scenario. This is because a greater number of habitat 
patches with below average Rmax are forecast for the future. 
Thus, modelling patterns of variation in Rmax (and poten-
tially other vital rates) has important implications for tools 
for informing pest and conservation management. In the 
case of O. cuniculus, failing to do so could result in mis-
leading model results, leading to policy decisions that pro-
vide financial burden to agriculture and negatively influence  

Figure 1. Change in total population abundance and range area between 2020 and 2100 for the Australian plants Angophora hispida (a), 
Banksia baxteri (b), and Xanthorrhoea resinosa (c), the European rabbit in Australia, Oryctolagus cuniculus (d) and a native lizard, Tiliqua 
adelaidensis (e) according to a future typified by high-CO2 emissions. Trajectories for the mountain hare Lepus timidus in Britain (f ) assume 
a lower level of CO2 mitigation. Note that Rmax for O. cuniculus (and other species) is assumed to be spatially invariant. The model results 
are the average of 1000 stochastic simulations using the spatially explicit demographic model RAMAS Metapop.
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a potential conservation measure. Fire regime changes 
have large effects on demographic processes (such as seed  
production and germination) that are not, and cannot, be 
predicted by ENMs alone.

Our third case study (Methods) shows that reintroduc-
tions are the best management approach for mitigating the 
influence of anticipated climate change on the long-term 
persistence of T. adelaidensis (Fig. 2). Stopping reintroduc-
tion after 2070, in conjunction with an increased rate of hab-
itat loss, resulted in substantial population decline (Fig. 2c). 
Similarly, NPMs were used to conclude that managed reloca-
tions provide an appropriate climate adaptation strategy for 
a rare fire-dependent plant (Regan et  al. 2012). While the 
underlying correlative ENM can be used to guide manage-
ment intervention (by detecting sites for translocations and 
increasing carrying capacity), an approach based on ENM 
alone does not allow for the potential efficacy of management 
responses to be evaluated. This requires an NPM approach.

Sensitivity analysis for population viability analysis 
is often used to compare the relative worth of different 
management actions (and levels of intervention), directly 
informing conservation decision-making (Kuemmerle 
et al. 2011). Furthermore, a capacity to assess conservation 
alternatives enables NPMs to be couched in an economic 
optimization framework, whereby the cost effectiveness of 
climate change investments in biodiversity can be mea-
sured according to economic constraints. For example, 
potential management strategies to reduce forecast extinc-
tion risk amongst plants in the South African fynbos were 
ranked according to unit cost by integrating NPM predic-
tions into an economic decision framework, allowing the 
optimal investment strategy to be identified for different 
fixed budgets (Wintle et al. 2011).

efficacy assessed, compared to correlative ENMs, including: 
1) translocating animals from captive bred populations to 
climatically favourable areas of their historical range (i.e. 
managed relocation) and/or regions where vital demo-
graphic rates are high, ensuring establishment; 2) increasing 
the carrying capacity of occupied areas; and 3) dampening 
negative anthropogenic influences (e.g. harvesting or preda-
tion by alien species) in areas of the range where vital rates 
are most sensitive. For example, NPMs for a set of South 
African plants (Keith et al. 2008) showed that the viability 
of these species is most sensitive to climate change through 
changes in fire regimes, suggesting fire management as 

Table 1. Change in the range and abundance of the introduced 
European rabbit Oryctolagus cuniculus along the northern extent of 
its distribution in Australia between 2020 and 2100 according to 
two climate change scenarios.

Emission  
scenario Rmax EMA

Change  
N (%)

Range  
movement (km)

High constant 568958  90 286
High variable 866497  6 203
Low constant 581694  35 76
Low variable 1034755  25 159

Maximum annual finite rate of population increase was modelled as 
spatially invariant (constant) or as a function of bioclimatic region 
(variable). Climate change was modelled according to two green-
house gas emission scenarios: high-CO2 concentration stabilising 
scenario (High) and an alternative scenario that assumes strong mit-
igation (Low). We report expected minimum abundance (EMA) and 
change in mean abundance (N) between 2020 and 2100 and move-
ment of the northern range margin (most northern 10%-centroid of 
the metapopulation) in southerly direction. The model results are 
the average of 1000 stochastic simulations using RAMAS Metapop. 
Modelling focused on the northern Australian range boundary north 
of 25.5° latitude.

Figure 2. Population size and patch occupancy for pygmy bluetongue lizards Tiliqua adelaidensis between 2020 and 2080 according to a 
no-climate-policy emissions future without management intervention (a, d), with increasing the carrying capacity of all patches in all years 
2020–2070 by 20% (through the creation of artificial burrows) (b, e), and by translocating captive-bred animals to five patches of habitat 
every five years at a rate of 5% of the breeding population per patch between 2020 and 2070 (c, f ). Broken lines show  one standard 
deviation around the mean. Species–habitat model results were used to rank suitable relocation sites according to the forecast habitat area. 
The model results are the average of 1000 stochastic simulations using RAMAS Metapop.
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lags, and interacting effects of habitat fragmentation and 
demographic stochasticity (Dullinger et al. 2012, Fordham 
et  al. 2012b). Predictions from ENMs provide a surrogate 
for species’ carrying capacity (VanDerWal et al. 2009) which 
can then be used in NPMs. However, if biophysical responses 
between key demographic rates and spatiotemporally variant 
environmental drivers can be established explicitly, NPMs 
could, in theory, be generated without the correlative ENM 
component. For example forest landscape models, such as 
TreeMig, provide estimates of species biomass and patch 
structure from endogenous dynamics conditioned by exog-
enous drivers studies (Lischke et al. 2006). By removing the 
ENM component, uncertainties in ENM projections arising 
from statistical modelling technique and point location data 
(Peterson et al. 2011) are avoided. Nevertheless, more real-
istic results will only be produced if the functions linking 
survival and fecundity to environmental conditions are esti-
mated from field data, thus incorporating the effect of species 
interactions in mediating these biophysical responses.

The usefulness of a given modelling approach is specific 
to the research question being asked (Dormann et al. 2012) 
and/or the species being modelled. For example, ENMs 
can be used to address the extinction of endangered species 
by identifying potentially suitable habitats for translocation 
(Fordham et al. 2012c). However, if the issue is to estimate 
future extinction risk for species in the face of changing cli-
mates, NPMs are need. This is because ENMs only estimate 
the empirical relationships between species’ present-day dis-
tribution and environmental variables, and use the inferred 
relationships to identify potential distributional areas of the 
species under future climate scenarios (Araujo and Peterson 
2012). Likewise, simple dispersal models (Engler et al. 2012) 
can reduce uncertainties in projections of species distributions 
under climate change scenarios (Engler and Guisan 2009), 
but they ignore the important effect of population size and 
trend in determining the actual number of emigrants and the 
probability of successful colonization of unoccupied patches. 
For situations that allow more incorporation of field data or 
life-history information, Bayesian ‘range dynamics models’ 
with priors derived from related species are a promising devel-
opment that could help improve our theoretical understand-
ing of range dynamics for species’ with simple demographic 
characteristics (Schurr et al. 2012).

A strong driving motivation behind the development of 
NPMs has been to provide general guidelines for assessing 
the IUCN Red-List status of species potentially at risk (based 
on aggregations of many individual case studies), to better 
reflect the interactions of climate change with other threats 
such as habitat destruction, overexploitation and invasive 
species (Brook et  al. 2009). NPMs are also strongly suited 
to management applications that seek to evaluate alterna-
tive management options under climate change, in terms 
of how effectively each one reduces extinction risks. Recent 
uses include developing optimal climate adaptation strategies 
focused on managed relocations (Fordham et al. 2012c, Regan 
et al. 2012), habitat restoration (Harris et al. 2012), responses 
to sea-level rise (Aiello-Lammens et al. 2011) and minimizing 
catastrophic events (Keith et  al. 2008, Wintle et  al. 2011). 
NPMs are also very useful for exploring the metapopulation 
processes underlying edge-of-the range shifts (Anderson et al. 
2009) and within range spatial abundance patterns.

Model verification and validation

Since NPMs require a strong understanding of the popula-
tion dynamics of the focal species as well as distributional 
data, uncertainty in estimates of important demographic 
parameters could potentially amplify model uncertainty in 
forecast species range movements under climate change. 
To address this issue, we recommend always undertaking a 
global sensitivity analysis to determine the relative influence 
of spatial and non-spatial parameters on model predictions. 
Latin-hypercube-sampling methods (Iman et al. 1981) can be 
used to ensure that sampled values cover the entire parameter 
space (Fordham et al. 2012c, Harris et al. 2012). Parameters 
identified as having a strong influence on forecast spatial dis-
tribution and total abundance (and underlying uncertainties 
in their estimate) can be used to evaluate whether the inclu-
sion of a demographic component in the modelling process 
strengthens model predictions. If demographic parameters 
with high levels of uncertainty are primarily driving model 
predictions, it may be more parsimonious to opt for an ENM 
only approach (because model limitations will be more trans-
parent) or to explore Bayesian approaches.

Although the importance of life-history traits on forecasts 
of species’ range and abundance is often assumed on a priori 
grounds (Fordham et al. 2012b), external validation is still 
required to definitively know whether the inclusion of popu-
lation dynamics information using NPMs helps improve the 
predictions of climate change effects on biodiversity. We sug-
gest that this could be done by using historical distributions 
of well-studied taxa and comparing the ability of standard 
ENMs and NPMs to predict historical changes in range area 
and spatial pattern. The efficacy of ENMs have already been 
examined using this sort of approach (Araujo et  al. 2005, 
Green et  al. 2008, Macias-Fauria and Willis 2012). An 
alternative approach is space-for-time substitution, whereby 
models are developed in one region and projections are 
tested against data from another region (Randin et al. 2006, 
Segurado et  al. 2006). Again, examples of such validation 
strategy can only be found for ENM.

Synthesis and conclusion

There are now a variety of approaches that incorporate demo-
graphic information into ENM output. The coupling of both 
approaches can be done either as a two-step process (Methods) 
or simultaneously (Pagel and Schurr 2012), with varying levels 
of complexity, ranging from simple dispersion models (Engler 
et  al. 2009) to more complex models that include spatio-
temporal demographic and physiological details (Anderson 
et al. 2009, Fordham et al. 2012a, Schurr et al. 2012) and, in 
some cases, one-way species interactions (Harris et al. 2012). 
Existing commercial (RAMAS GIS; Akcakaya 2005) and 
open source software (Nenzén et al. 2012) allows such type of 
analysis to be undertaken with relative simplicity.

There are also mechanistic biophysical models that either 
do not require any information about a species’ distribution, 
or use this information for parameter calibration (Kearney  
and Porter 2009). Yet, a demographic model is needed to 
properly account for important metapopulation processes 
such as source-sink and density-feedback dynamics, extinction  
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under twenty-first-century climate change. – Nat. Clim. 
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potential limitations on species range shifts. – Ecol. Lett. 14: 
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distributions from occurrence data. – Ecography 29: 129–151.

Engler, R. and Guisan, A. 2009. MigClim: predicting plant distri-
bution and dispersal in a changing climate. – Divers. Distrib. 
15: 590–601.

Engler, R. et al. 2009. Predicting future distributions of mountain 
plants under climate change: does dispersal capacity matter? 
– Ecography 32: 34–45.

Engler, R. et al. 2012. The MIGCLIM R package – seamless inte-
gration of dispersal constraints into projections of species  
distribution models. – Ecography 35: 872–878.

Fordham, D. A. and Brook, B. W. 2010. Why tropical island 
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The drawbacks are that NPMs: 1) are more data intensive, 
requiring a robust understanding of the population dynamics 
of the focal species (as well as distributional data) for effective 
parameterization, so they will not be possible for the majority 
of the world’s species; 2) are constrained, at least partially, by 
the predictive strengths of the underlying suitability model; 
and 3) generate predictions that will only be better than those 
from correlative ENMs if the demographic (or physiological) 
component of the model appropriately captures the ecology 
of the species. Thus, correlative ENMs, which are much sim-
pler to parameterize and computationally less intensive than 
coupled approaches, might be better suited to some circum-
stances (see also Araujo and Peterson 2012).

Previously, descriptions of the merits of linking ENMs 
with population modelling have focused on the fundamen-
tal step of integrating dispersal and metapopulation dynamics 
into forecasts of species geographic range (Brook et al. 2009, 
Franklin 2010, Huntley et al. 2010). Here, we highlight three 
additional advantages of coupled ecological niche population 
models. We argue that these coupled methods should be used 
preferentially by conservationists and resource managers, where 
data availability permits, and conservation decisions require 
intervention, prioritization, or direct estimates of extinction 
risk. Moreover, a targeted approach, focused on case studies 
with extensive cross-system and cross-taxa contrast, should be 
used to develop general guidelines that better describe traits 
and conditions that make some species more vulnerable to cli-
mate change than others, and to identify management actions 
that best mitigate the influence of global warming.
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