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Abstract

Criticism has been levelled at climate-change-induced forecasts of species range

shifts that do not account explicitly for complex population dynamics. The relative

importance of such dynamics under climate change is, however, undetermined

because direct tests comparing the performance of demographic models vs. simpler

ecological niche models are still lacking owing to difficulties in evaluating forecasts

using real-world data. We provide the first comparison of the skill of coupled eco-

logical-niche-population models and ecological niche models in predicting docu-

mented shifts in the ranges of 20 British breeding bird species across a 40-year

period. Forecasts from models calibrated with data centred on 1970 were evaluated

using data centred on 2010. We found that more complex coupled ecological-niche-

population models (that account for dispersal and metapopulation dynamics) tend to

have higher predictive accuracy in forecasting species range shifts than structurally

simpler models that only account for variation in climate. However, these better

forecasts are achieved only if ecological responses to climate change are simulated

without static snapshots of historic land use, taken at a single point in time. In con-

trast, including both static land use and dynamic climate variables in simpler ecologi-

cal niche models improve forecasts of observed range shifts. Despite being less

skilful at predicting range changes at the grid-cell level, ecological niche models do

as well, or better, than more complex models at predicting the magnitude of relative

change in range size. Therefore, ecological niche models can provide a reasonable

first approximation of the magnitude of species’ potential range shifts, especially

when more detailed data are lacking on dispersal dynamics, demographic processes

underpinning population performance, and change in land cover.

K E YWORD S

climate change, hybrid ecological niche model, independent model validation, land use,

mechanistic model, metapopulation and dispersal dynamics, species distribution model,

transferability

1 | INTRODUCTION

There is unprecedented demand for forecasts of biodiversity change

owing to the multiple human-threatening processes affecting species

and ecosystems worldwide (Mouquet et al., 2015; Pereira et al.,

2010). The unparalleled access to large quantities of ecological data,

coupled with increasingly sophisticated statistical and modelling tools,

offers great promise for improving ecological forecasts. However,
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model usefulness is contingent on them being able to transfer predic-

tions in space and/or time (Stewart et al., 2015; Willis et al., 2007).

But how can one assess a model’s capacity to anticipate global change

impacts on species if climate change scenarios have not yet occurred?

Pragmatically, performance is usually assessed by testing the

model predictions against records from the regions or time periods

used to train the models (Ara�ujo & Rahbek, 2006). Previous studies

based on hindcasts (backwards projections) of past range shifts have

used a variety of time horizons and taxonomic groups, and their

results on model transferability are heterogeneous. For example, pre-

dictive ability across time was generally low in studies on cetaceans

(hindcasts for the 1970s; Lambert et al., 2014) and plants (late Pleis-

tocene; Maguire et al., 2016). In a study on birds, observed changes

in abundance were significantly positively correlated to the model

predictions in only 59% of cases (Ill�an et al., 2014)—little better than

an even bet. Even for models that were reasonably accurate in pre-

dicting range area for the training period, predictive skill tended to

deteriorate substantially when used to forecast range shifts (Araujo,

Pearson, Thuiller, & Erhard, 2005 [birds], Roberts & Hamann, 2012

[plants], Smith et al., 2013; [mammals]). Possible explanations for

poor model transferability include the appearance of non-analogue

climates (Pearson et al., 2006), the lack of conservatism in species

environmental tolerances (Pearman, Guisan, Broennimann, & Randin,

2008) and novel species interactions (Smith et al., 2013). Where

studies have found fair to good predictive accuracy over time, model

transferability typically varied across species (Pearman, Randin et al.,

2008), the level of management (Macias-Fauria & Willis, 2013) or

the degree of stability in species–environment correlations (Rubidge,

Monahan, Parra, Cameron, & Brashares, 2011).

Importantly, all of these studies have used comparisons of different

flavours of correlative ecological niche models (ENMs)—the most fre-

quent type of modelling approach used to predict species range shifts

(Araujo & Peterson, 2012). These models statistically correlate species

ranges (occurrence or abundance data at known locations) with infor-

mation on the environmental characteristics of those locations thought

to delimit the species’ tolerances for those environmental conditions

(Elith & Leathwick, 2009). Once fitted to historical or present-day data,

the models can be used to predict the species ranges across a land-

scape under future change. Ecological niche models have a set of

inherent limitations (Guisan & Thuiller, 2005), but are generally consid-

ered to deliver a useful approximation of suitable areas, contingent on

their appropriate use (Araujo & Peterson, 2012). However, one of the

major shortcomings of ENMs for climate change applications is that

they do not explicitly incorporate a species’ propensity to colonize

new locations, nor do they model the rate at which species will disap-

pear from old locations (Elith, Kearney, & Phillips, 2010).

It has been argued that a more detailed understanding of species

responses to environmental change, and an improvement in fore-

casts of species range shifts, requires more mechanistic models of

range dynamics (Fordham, Brook, Moritz, & Nogu�es-Bravo, 2014;

Singer et al., 2016). One approach is to combine species demogra-

phy with climate suitability (typically derived from ENMs) and disper-

sal across a landscape, to simulate population dynamics within an

integrative framework (Fordham, Akc�akaya, Ara�ujo, Keith, & Brook,

2013). These models are potentially more realistic and less prone to

bias than correlative ENMs alone (Zurell et al., 2016) because they

account for potentially important metapopulation processes, and

multiple human impacts (Ehrl�en & Morris, 2015; Fordham, Mellin

et al., 2013). Furthermore, they can directly measure extinction risk

(population declines and other measures of stochastic viability), as

well as change in habitat area, when assessing climate change

impacts on biodiversity (Fordham et al., 2012). Despite their

increased popularity, demographic models linked to ENMs require

more detailed field data for parameterization, and have never been

validated against real-world independent data. Such testing is critical

for determining whether the addition of key information on species’

vital rates (e.g. growth rate, density dependence) improves estimates

of range shifts and extinction risk under climate change scenarios.

Here, we predict historical range shifts in response to past climate

change using coupled demographic ENMs, and assess model perfor-

mance using observed changes in species’ ranges. In addition, we test if

the performance of these complex models is superior to simpler correl-

ative ENMs. To realize this aim, we made use of a unique dataset: a

breeding bird population census of 20 species in the United Kingdom

(UK) in 1970 and 2010. Because the 2010 dataset has only recently

become available, results from previous model-validation studies have

been based on observed range movements over 20 years (1970–1990)

rather than 40 years period (e.g., Araujo et al., 2005; Pearce-Higgins,

Eglington, Martay, & Chamberlain, 2015; Rapacciuolo et al., 2012).

We trained models of different complexity, using the species’

occurrence in the 1970s, species’ dispersal constraints and demo-

graphic parameters estimated from time series abundance data cen-

tred on 1970. We used these models to forecast species ranges in

2010, where we had (independent) test distribution data. In total, we

fitted eight model types (Figure 1) that represented a gradient from

simpler correlative ENMs, to dispersal-linked ENMs, through to com-

plex spatially explicit population models. Our general aim was to

examine whether theoretically more realistic models (by virtue of

accounting for a greater level of ecological processes) would deliver

improved approximations of observed species range shifts. More

specifically, we (i) compared models with and without the inclusion of

land use and demographic processes (i.e., population growth and colo-

nization and extinction dynamics), (ii) evaluated models with different

dispersal hypotheses (no dispersal, a distance-decay dispersal func-

tion, unlimited dispersal) and (iii) examined which models are more

likely to result in “false-negative” or “false-positive” errors. Our results

improve knowledge of whether simpler models are more transferable.

2 | MATERIALS AND METHODS

2.1 | Data

2.1.1 | Bird occurrence, climate and land use data

British birds are one of the most extensively surveyed faunas in the

world (Baillie et al., 2014). We compiled occurrence data for 20
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British bird species using the Breeding Atlas 10 km grid-cell data for

two time periods: 1968–1972 (t1), 2007–2011 (t2). Species were

chosen on the basis that (i) there were sufficient data available to

parameterize demographic models; and (ii) they were not seasonal

migrants or shore birds because of difficulties in defining explicit

areas of occupancy for these groups (Bradshaw et al., 2014). We

also excluded species with fewer than 20 occurrence records in the

first recording period because of problems related to modelling data

with small sample sizes (Stockwell & Peterson, 2002). There is a risk

of biases in extrapolations associated with incomplete characteriza-

tions of climatic niches (Pearson, Dawson, & Liu, 2004), potentially

inflating forecast risks from climate change (Ara�ujo, Alagador,

Cabeza, Nogu�es-Bravo, & Thuiller, 2011). To avoid this problem, data

for birds for the baseline period (1968–1972) from the British Bird

Atlas were amalgamated with European wide distributions at 50 km

grid-cell resolution from a digitized version of the Atlas of European

Breeding Birds (Hagemeijer & Blair, 1997). Ecological niche models

were thus initially trained with British and European wide distribu-

tions data, and then projected in Britain alone (Pearson et al., 2004).

Annual mean values (1970–2000) for mean minimum tempera-

ture in February (°C), mean maximum temperature in July (°C) and

mean total annual precipitation (millimetres) were derived from the

Climate Research Unit (CRU) monthly climate data (New et al.,

2000). The data provide monthly values for 1901–2000 in a 100 (ca.

16 9 16 km grid) resolution that overlapped with the terrestrial area

of Europe, including England, Wales and Scotland. The baseline cli-

mate record was extended to 2010 using the ALARM business-as-

might-be-usual (BAMBU) storyline (Fronzek, Carter, & Jylh€a, 2012).

These combined data provided a homogenous 40-year annual-step

climate data series. The difference between ALARM storylines was

negligible for the UK in 2010 (see Fig. S1); and are similar to more

recent CRU TS 3.2 data (<�0.5°C for temperature variables and

<�0.25 mm/day for annual precipitation; Harris, Jones, Osborn, &

Lister, 2014). Our choice of climate variables reflects those known

to impose constraints on bird ranges as a result of widely shared

physiological limitations (Crick, 2004; Lennon, Greenwood, & Turner,

2000), having been used in several modelling studies of birds in the

UK (Araujo et al., 2005; Bradshaw et al., 2014; Pearson et al., 2004).

All climate data were projected onto the British Breeding Bird Atlas

occurrence 10 km-grid and the European Breeding Birds Atlas

50 km-grid using cubic spline interpolation.

We generated species-specific land-cover suitability maps using

CORINE vector datasets for 1990, 2000 and 2006. We obtained

these maps after (i) classifying land-cover classes as suitable or

unsuitable at a 25 m grid-cell resolution; and (ii) calculating the pro-

portion of suitable land-cover within a 10 km grid cell. We used five

land use categories (wet habitats, crop, pastures, forests and shrub

lands), corresponding to the main habitats used by the birds in our

study. The output was grid-cell habitat suitability values varying con-

tinuously between 0 and 1, representing the proportion of suitable

habitat per grid cell (i.e. 0 = no suitable habitat; 1 = entire grid cell

consisted of suitable habitat). Habitat classifications were based on

information from the British Bird Atlas (Baillie et al., 2014) and

expert advice. Spatial variation in land-cover suitability was similar

between the three available time periods (Table S1). Therefore, to

avoid the risk of uncertainty propagating through to results due to

classification errors in the temporal sequence of land use layers

(Mouquet et al., 2015), and because we did not have land use data

for the initial 20 years of the simulation, we treated land-cover suit-

ability (centred on 1990, the midpoint of the simulation) as a static

variable in the models focused on the mid-point of the study period.

For species-specific maps of land use suitability, see Fig. S2 and

Table S1.

2.2 | Modelling

Using ecological niche models as the simplest modelling unit, we

generated seven alternative model types with differing levels of

complexity (Figure 1). These models fell into three families (de-

scribed in more detail below): simple Ecological Niche Models

F IGURE 1 Hierarchy of eight models used to predict species’ ranges for British Breeding birds in 2010 using 1970 training data. (i)
Bioensembles was used to generate ecological niche models (ENM) with or without a land-use, assuming either unlimited or no dispersal, (ii)
RAMAS was used to mechanistically simulate annual dispersal over the 40-year period using species-specific dispersal constraints (Dispersal),
(iii) RAMAS was used to simulate metapopulations as well as dispersal dynamics (Metapop). See Methods for further details [Colour figure can
be viewed at wileyonlinelibrary.com]

FORDHAM ET AL. | 1359



(ENMs); dispersal-linked niche models (Dispersal) and niche-popula-

tion models (Metapop). More, specifically, these models were (i)

ENMs affected by climate change and assuming unlimited dispersal

(thereafter referred to as ENM_UD), (ii) ENMs affected by climate

change and land use and assuming unlimited dispersal (ENM_UD_LU),

(iii) ENMs affected by climate change and assuming no dispersal

(ENM_ND), (iv) ENMs affected by climate change and land use and

assuming no dispersal (ENM_ND_LU), (v) ENMs affected by climate

change and species’ specific dispersal constraints (DISPERSAL), (vi)

ENM affected by climate change, land use and species’ specific dis-

persal constraints (DISPERSAL_LU), (vii) ENMs affected by climate

change and species’ specific extinction and colonization dynamics

(METAPOP) and (viii) ENMs affected by climate change, land use and

species’ specific extinction and colonization dynamics (METAPO-

P_LU).

2.2.1 | Ecological niche models

We used 12 different ecological niche modelling techniques fitted

with climate and land use predictors, using BIOENSEMBLES (Diniz-

Filho et al., 2009). An ensemble of ENMs was generated for each

one of the 20 species considered. Ensemble forecasting approaches

account for inter-model variation in predictions (Ara�ujo & New,

2007), and there is empirical evidence that consensus predictions

derived from multiple models within ensembles can improve projec-

tions of individual models in contexts of transferability under climate

change (Araujo et al., 2005). We fitted ensembles of forecasts using

the following techniques: BioClim; Euclidian Distance (EUC); Gower

Distance (GOW); Mahalanobis Distance (MAH); Generalized Linear

Models (GLM); Generalized Additive Models (GAM); Random Forests

(RF); Genetic Algorithm for Rule-set Production (GARP); Ecological

Niche Factor Analysis (ENFA); MaxEnt, Neural Networks (NN) and

Multivariate Adaptive Regression Splines (MARs). BIOCLIM, MAH,

EUC and GOW were fitted to species occurrence records (presence

only), whereas MaxEnt, ENFA and GARP use background informa-

tion, describing a random sample of non-occurrences from the region

of interest. GLM, GAM, RF, NN and MARs were parameterized

assuming that absences represent true absence of the species. By

varying the assumptions regarding absence data, we captured the

variability in projections accrued from such assumption in the

models.

Models were calibrated using European-wide occurrence data for

t1 matched to average climate data for 1968–1972. Models were

trained using 80% random sample of the initial data and tested

against the remaining 20% of data (Fielding & Haworth, 1995). Accu-

racy of predicted distributions in the training set was measured for

every model using the area under the curve (AUC) of the receiver

operation characteristic (ROC) and the true skill statistic (TSS) (Liu,

Berry, Dawson, & Pearson, 2005). Models with low performance

(TSS < 0.3) were discarded from the ensemble (Garcia, Burgess,

Cabeza, Rahbek, & Ara�ujo, 2012). The remaining ENMs were used to

predict probability of occurrence or climate suitability and presence

and absence at annual time-steps from 1970 to 2010. Modelled

probabilities or climate suitabilities were transformed into predictions

of presence and absence of species in the grid cells, using thresholds

defined by AUC for presence–absence models and fixed cut-offs for

presence only models. Consensus about the predicted distribution of

the species was obtained by recording the areas where at least 40%

of the models agreed that the species would occur there (Ara�ujo

et al., 2011).

In total, we generated four different types of ENMs (see above

and Figure 1). The “unlimited dispersal” scenario (ENM_UD) assumes

that the species can completely migrate to future suitable areas (in

2010), that no individuals remain in unsuitable grid cells, and that all

suitable areas are occupied. In other words, species are presumed to

be constantly in equilibrium with climate (Araujo & Peterson, 2012).

The “no dispersal” scenario (ENM_ND) assumes that the species can-

not migrate beyond its observed range for the training period

(1970). Therefore, only grid cells that were suitable in 1970 and

2010 were assumed to be occupiable between these time periods.

The ENMs with climate, land use and unlimited dispersal (ENM_LU)

were generated by classifying grid cells as unsuitable if land use suit-

ability was below a minimum area threshold (even if the ENM classi-

fied those grid cells as climatically suitable) of 0.0025 (i.e. a grid cell

needed 250 9 250 m of suitable habitat to be considered habitable)

needed to sustain a breeding pair of birds. This is likely to be a con-

servative threshold for some bird species in our analysis. The ENMs

with climate, land use and no dispersal (ENM_LU_ND) used ENM_LU

predictions but assumed that only grid cells that were occupied in

both 1970 and 2010 were occupiable between these time periods.

2.2.2 | Dispersal models

Projections by ENMs of future grid cells suitable for colonization

were linked to a stochastic dispersal model, using a cellular/lattice

spatial structure consisting of 2,665 grid cells (10 9 10 km longi-

tude/latitude grid-cell resolution). Cells were classed as either suit-

able or not suitable at each time step. Natal dispersal was modelled

using published estimates from Paradis, Baillie, Sutherland, and Gre-

gory (1998). More specifically, we used species’ specific dispersal

kernels to model the probability of dispersal between grid cells of

suitable habitat during each time step as an exponential function:

P = a.exp(D1/b), where D is the distance between grid-cell centroids,

a is the proportion of individuals that disperse in all radial directions,

b is the mean dispersal distance of the species (Akcakaya & Root,

2005). When D exceeds a specified maximum distance (Dmax) that a

species is expected to be able to disperse P is set to zero. See

Table S2 for species-specific dispersal parameters. We modelled a

high level of stochasticity in dispersal rates (co-efficient of varia-

tion = 1; Paradis et al., 1998) and assumed that colonized cells stabi-

lize at a species-specific maximum density (set at maximum K

between 1970 and 2010; see below) within a 3-year period using an

exponential population growth function. The approach we used is

similar to MigClim (Engler, Hordijk, & Guisan, 2012), in that the mod-

el’s basic unit is a cell that is occupiable or not, dispersal is defined

by a dispersal kernel and propagule pressure is a function of the
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time since colonization. It differs from MigClim in that it models the

probability of the proportion of individuals that move between cells,

not the probability of a dispersal event. This has both advantages

and limitations (Engler & Guisan, 2009); however, we chose this

method because outputs are directly comparable to those from the

coupled niche-population models described below. The dispersal-

only models were implemented in RAMAS METAPOP (Akcakaya & Root,

2005). The model was initialized using the approach described for

coupled niche-population models (see below), allowing us to directly

compare model output with and without stochastic population

growth and its interaction with dispersal.

2.2.3 | Coupled niche-population models

Ecological niche models with climate and with and without land use

were coupled with a stochastic population model that captures

extinction as well as colonization dynamics (Metapop) by simulating

landscape-level population processes and dispersal with source and

sink dynamics (Fordham, Akc�akaya, Ara�ujo et al., 2013). The demo-

graphic models for British birds used an identical cellular/lattice spa-

tial structure to the dispersal-only models and were implemented in

RAMAS METAPOP. Each grid cell was modelled with a scalar-type

stochastic model, which simulates the finite rate of population

increase “R,” its variance and the population carrying capacity (Dun-

ham, Akcakaya, & Bridges, 2006). The carrying capacity of birds in

each grid cell for simulations with land use was calculated as:

K ¼ thr ðmaximumabundance � land cover�
climate suitability;minimumabundanceÞ

where maximum abundance was the highest density of birds

expected in a 10 km grid cell when land cover = 1 and climate = 1.

If abundance at any time was less than a minimum abundance, then a

threshold function (thr) set abundance to zero, simulating a simple

Allee effect. Land cover was the proportion of the grid cell that is

potentially habitable based on land use type. Climate suitability was

the output of the ecological niche model (with no threshold for

prevalence), scaled between 0 and 1. The minimum abundance value

was set iteratively by maximizing the kappa score (Monserud & Lee-

mans, 1992) between simulated and observed range in t1 (i.e., 1970)

using 10-fold cross validation for minimum abundance values ranging

from 1 to 1,000 females per 10 9 10 km grid cell.

The carrying capacity of birds in each grid cell for simulations

without land use was calculated as:

K ¼ thr ðmaximumabundance � climate suitability � max land cover;

minimumabundanceÞ

, where max land cover is the maximum area of suitable land use in any

given 10 9 10 km grid cell divided by the area of that cell. This scaling

parameter prevents superabundant populations that can arise as a

result of the relatively coarse spatial resolution of the model (10 km

grids) (Fordham, Akcakaya, Brook et al., 2013). The minimum abun-

dance value was set using an identical technique to K with land use.

Climate suitability was the same for K with and without land use.

We used long-term population dynamics time-series data to cal-

culate finite rates of population increase and their variance (Brook &

Bradshaw, 2006). The minimum length of these time series was

12 year-to-year transitions with a mean duration of 27 year-to-year

transitions. The time series overlapped closely with the study period

(mean focal year = 1965), which is close to the year used to cali-

brate the ENMs (1970), and, therefore, reasonable as the basis to

estimate demographic parameters in the Metapop models. Estimates

of maximum finite rate of population increase (Rmax) and standard

deviation around the intrinsic rate of population growth were calcu-

lated following Brook and Bradshaw (2006) and are reported in

Table S2. The standard deviation value was used to model popula-

tion fluctuations driven by environmental stochasticity (Fordham,

Akcakaya, Brook et al., 2013). We used multi-model inference (Burn-

ham & Anderson, 2002) to assign strengths of evidence for two pop-

ulation dynamics models commonly used to describe

phenomenological time-series data: a density-independent model

(random walk) and a density-dependent model (Ricker-logistic popu-

lation growth). On this basis, each species was assigned either a den-

sity-independent or density-dependent model of population growth

(Table S2). Density dependence was modelled using the “scramble

competition” function in RAMAS, whereby as population abundance

in a grid cell increases, the amount of resources per individual

decreases, as dictated by K. Density independence was modelled

independent of K, by allowing K to affect grid-cell abundance only

when climate and/or land use suitability = 0. The proportion of dis-

persers moving between grid cells of suitable habitat during each

time step was modelled using a species-specific dispersal kernel and

a CV = 1 (see Dispersal-only Model). Stochasticity in dispersal was

driven by temporal variability in population growth rate as well as

variability in the natal dispersal kernel.

Initial abundance in the first time step (t) was firstly modelled as

being equal to 80% of K. A burn-in period of 10 years (1,000 itera-

tions) was used to generate a stable initial equilibrium abundance

and patch (occupied grid cell) structure under the assumption of con-

stant 1970 climate conditions (Fordham et al., 2012). All simulations

were based on 1,000 stochastic replicates and run over a 41-year

period (i.e. 1970–2010).

2.2.4 | Independent model testing

We compared observations and predictions for all 20 species using

the three types of models with varying levels of realism and com-

plexity (ENM, Dispersal, Metapop). Specifically, we compared

observed and predicted spatial patterns of species ranges for t2, and

changes in range size between t1 and t2. This allowed us to identify

models that give similar spatial projections and make generalizations

across species regarding which model types best describe observed

range dynamics (Garcia et al., 2012). Change in range area between

t1 and t2 was calculated as the difference between the number of

10 km grid cells gained by the species (i.e. sites where the species

was present in t2 but absent in t1) and the number of sites lost (i.e.

sites where the species was absent in t2 but present in t1) relative to
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the total number of sites occupied in t1 and t2 (i.e. the stable range)

(Delean, Bull, Brook, Heard, & Fordham, 2013).

We used the TSS to compare predicted with observed patterns of

presences and absences in 2010 for each species. This metric has been

shown to be a simple and intuitive measure for discerning the accuracy

of predictions when they are expressed as presence–absence maps

(Allouche, Tsoar, & Kadmon, 2006). Because choice of evaluation met-

ric can influence estimates of predictive accuracy (Allouche et al.,

2006), we also show results for area under the Receiver Operating

Characteristic curve (AUC) (Swets, 1988). We used Generalized Linear

Models (GLM, Gaussian-identity distribution-link) to explore the rela-

tive importance of different predictor variables on overall prediction

accuracy (TSS and AUC), omission (falsely predicted absences) and

commission errors (falsely predicted presences) that is, based on

results from 20 species 9 8 different model configurations (n = 160).

The predictor variables were “species,” “model type,” “land use” and “dis-

persal type.” In each case, we inspected model residuals for normality

and then chose an exponential transformation for TSS and omission

error; and a log transformation for commission error. These transfor-

mations achieved normality for the response variable. We compared

these models to a null model, which assumes a single rate across “spe-

cies,” “model type,” “land use” and “dispersal type.” For each GLM, we

calculated the log-likelihood (LL), percentage of deviance explained,

change in AIC compared to the best-ranked model (DAIC), model

weights (xAIC). To avoid over parameterizing GLMs, we tested single

term models for omission and commission errors and models with sim-

ple two-way interaction terms (model type: land use; dispersal type: land

use) for predictive accuracy.

3 | RESULTS

3.1 | Predicting changes in patterns of occurrence

Projections of geographic patterns of range contraction and expan-

sion varied considerably across models and species (Fig. S3), as illus-

trated in detail for two selected species (Figures 2 and 3). We show

that both the choice of dispersal type (no dispersal, unlimited disper-

sal, dispersal function) and how to model land use (and their interac-

tion) influenced model skill in predicting observed patterns of

occurrence in 2010 (Figures 4 and S4).

A multi-termed model with explanatory variables dispersal and land

use (and their interaction) had the largest effect on predictive accuracy

based on TSS (TSS ~ dispersal: land use; xi = 0.78), explaining 22% of

the variance when compared to the null model (Table 1). There was

also some support for the next two best-ranked models that modelled

TSS as a function of species (TSS ~ species; xi = 0.13, DAICc = 3.58,

DEV = 36%); and as a function of type of model, land use and their

interaction (TSS ~ model: land use; xi = 0.01, DAICc = 0.01,

DEV = 24%). Likewise, the choice of method of dispersal, and whether

to consider land use, had the largest influence on AUC predictive accu-

racy (AUC ~ dispersal: land use; xi = 0.89), explaining 24% of structural

deviance (Table 1). Including land use in ENM models tended to

improve predictions of occurrence patterns in 2010 (Figures 4 and 5).

In strong contrast, including land use in DISPERSAL and METAPOP

models tended to provide less accurate predictions of occurrence pat-

terns (Figures 4 and 5). In general, DISPERSAL and METAPOP models

were most skilful in predicting changes in occurrence patterns, but

only if land use was not considered in the model.

3.2 | Predicting changes in range area

Models tended to do a fair-to-good job at predicting observed propor-

tional changes in range area, regardless of model type (Figure 6). The

difference from observed values was low (<10%) for ≥50% of the birds

modelled (with and without land-use) using ENMs (n = 10–11), ≥45%

of birds modeled using DISPERSAL models (n = 9–11) and ≥30% of

birds modeled using METAPOP models (n = 6–9). The median differ-

ence between observed and predicted change in range area was

8.6%–9.8% for ENMs, 10.1%–11.2% for DISPERSAL and 9.9%–16.3%

for METAPOP. Although skill in predicting changes in range area for a

given modelling approach varied across species (Figure 6), all models

did poorly at predicting observed range increases and decreases for

some species. For example, no models were able to accurately predict

the large range expansion undergone by Alectoris rufa or the large con-

traction experienced by Perdix perdix (Figure 6). There were only three

species (Carduelis cannabina, Corvus corone and Pyrrhula pyrrhula) for

which all eight models predicted <�10% difference between observed

and predicted net losses or gains of habitat (Figure 6). None of these

species were in the upper or lower quartiles for observed range move-

ment (i.e. they did not undergo relatively large levels of range expan-

sion or contraction during the observation period). On average,

models consistently predicted the correct direction of observed

change (i.e., expansion or contraction) in range shifts in about 50% of

cases (Fig. S5), ranging from 25%–35% (ENM_ND_LU and ENM_ND)

to 60%–70% (METAPOP_LU, METAPOP) depending on the type of

model (10 � 1.03 species, mean � SE).

In general, more complex models without land use tended to

better predict range size in 2010 (Table S3). The median difference

between observed and predicted range size in 2010 was �9% for

METAPOP, �10% for DISPERSAL, �13% for ENM_ND, �22% for

ENM_UD. Accounting for land use greatly improved predictions of

2010 range size for ENM_UD_LU (�13%), but reduced predictive

accuracy for DISPERSAL and METAPOP models (�20% and 23%,

respectively). Masking unsuitable land-use types had no noticeable

effect on predictions of 2010 range size for ENM_ND_LU (�13%).

3.3 | Commission and omission errors

There was greatest AIC support for modelling commission errors (fal-

sely predicted presences) as a function of “model type” (xi = 0.63,

DEV = 25.3%). There was slightly less support for the alternative

hypothesis that “dispersal type” affects commission errors (xi = 0.37,

DAICc = 1.1, DEV = 23.8%). There was much less support for mod-

elling commission errors as either a function of “land use,” or “spe-

cies” (xi = 0, DAICc = 34.7, DEV = 4.8%; xi = 0, DAICc = 41.8,

DEV = 23.4%), compared to “model type.” Using ENMs to predict
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occurrence patterns in 2010 generally resulted in larger commission

errors (Fig. S6), in particular when land use was not used to mask

out unsuitable areas for occupancy because of non-climatic factors.

The explanatory variable “land use” had the largest effect on

omission errors (falsely predicted absences), explaining 22.5% of

model structural deviance (xi = 0.68). Including land use resulted in

higher omission errors. There was much less support for modelling

omission errors as a function of “model type,” “dispersal” and “species”

(xi = 0, DAICc = 15.1, DEV = 17.1%, xi = 0, DAICc = 17.4,

DEV = 14.7%, xi = 0, DAICc = 38.8, DEV = 24.1%). Including land

use in model predictions resulted in greater omission errors (Fig. S6).

4 | DISCUSSION

Using independent validation data over a 40-year period, we found

support for the view that more realistic and complex coupled niche-

population models are likely to have higher predictive accuracy in

forecasting species range shifts than structurally simpler models that

only account for variation in climate (Ehrl�en & Morris, 2015; Fordham,

Mellin et al., 2013). However, these better predictions of observed

presence–absence patterns were only achieved when the effects of a

single static snapshot of land use (focused on the midpoint of the sim-

ulation) on dispersal and other demographic processes were not con-

sidered in model simulations. In strong contrast, a mixture of static

land use and dynamic climate variables improved ecological niche

model forecasts of observed range shifts. These results reinforce the

need for using statistically independent data to validate model outputs

prior to making firm conclusions about the relative value of alternative

modelling options (Ara�ujo & Rahbek, 2006).

4.1 | Comparison of models with and without land
use

Approaches for combining dynamic and static environmental vari-

ables in range dynamics models for forecasting range shifts under

ENM_ND ENM_UD

Dispersal Metapop

ENM_ND_LU ENM_UD_LU Dispersal_LU Metapop_LU

Range dynamics 1970 – 2010
Never occupied
Stable

Contraction
Expansion

Observed change

F IGURE 2 Forecasts of range
expansion vary between models. An
example of where more complex models
without land use are best at projecting
range expansion. Maps are shown for
observed and predicted range change
between 1970 and 2010 for Accipter nisus.
ENM_ND = climate with no dispersal;
ENM_ND_LU = climate with no dispersal
and land use; ENM_UD = climate with full
dispersal; ENM_UD_LU = climate with full
dispersal and land use; Dispersal = climate
with a dispersal function;
Dispersal_LU = climate with a dispersal
function and land use; Metapop = climate
with a dispersal function and population
model; Metapop_LU = climate with a
dispersal function and population model
and land use. True Skill Score values for
predictions of range change between 1970
and 2010 for A. nisus are shown in
Figure 5
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climate projections remain poorly understood (Stanton, Pearson,

Horning, Ersts, & Res�it Akc�akaya, 2012). Using maps of land use in

1990 to mask out areas that are unsuitable because of non-climatic

factors in 2010, tended to improve predictions of observed range

shifts from ecological niche models, by reducing false-positive pre-

dictions (commission errors; Fig. S6), with two rare exceptions. For

Cygnos olor and Gallinula chloropus, the addition of land use in eco-

logical niche models largely reduced predictive performance (Fig-

ure 5). It might be that our classification of unsuitable habitat for

these two species was incorrect and they were more flexible in their

habitat requirements than assumed or that land use preferences

changed markedly for these two species between 1990 and 2010.

Alternatively, they might today be “committed” to extirpation in

these areas with unsuitable land use, and these delayed local extinc-

tion events have not yet been realized (Fordham, Akcakaya et al.,

2016; Fordham, Brook et al., 2016).

In strong contrast, masking out areas that are unsuitable for

occupancy because of non-climatic factors in models with species’

specific dispersal constraints (DISPERSAL_LU) and extinction and col-

onization dynamics (METAPOP_LU) resulted in a decrease in predic-

tive accuracy, brought about by higher false-negative predictions

(Omission errors; Fig. S6). This is because these more mechanistic

approaches model dispersal and metapopulation processes as

dynamic functions of land use (as well as climate suitability) continu-

ously (usually at annual time steps) for the entire simulation period.

Using a static snapshot of land use, focused on the midpoint of the

simulation, the interactions between land use and ecological pro-

cesses were simulated under the unlikely assumption that land use

in the UK did not change between 1970 and 2010, and that the

snapshot is a reliable projection of land use 20 years before and

after 1990. Since land use and land cover in the UK has changed

over short timescales since 1970 (Rounsevell & Reay, 2009), mis-

matches between simulated and actual land use prior to 1990 are

likely to have resulted in the propagation of incorrect trajectories of

species range movement early in the simulations, leading to inaccu-

rate maps of presences and absences in 2010.

ENM_ND ENM_UD

Dispersal Metapop

ENM_ND_LU ENM_UD_LU Dispersal_LU Metapop_LU

Range dynamics 1970 – 2010
Never occupied
Stable

Contraction
Expansion

Observed change

F IGURE 3 Forecasts of range
contractions vary between models. An
example of where more complex models
without land use are best at projecting
range contraction. Maps are shown for
observed and predicted range change
between 1970 and 2010 for Parus
montanus. ENM_ND = climate with no
dispersal; ENM_ND_LU = climate with no
dispersal and land use; ENM_UD = climate
with full dispersal; ENM_UD_LU = climate
with full dispersal and land use;
Dispersal = climate with a dispersal
function; Dispersal_LU = climate with a
dispersal function and land use;
Metapop = climate with a dispersal
function and population model;
Metapop_LU = climate with a dispersal
function and population model and land
use. True Skill Score values for predictions
of range change between 1970 and 2010
for P. montanus are shown in Figure 5
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Although land use has been assumed to be important in models

of range dynamics (Trivi~no, Thuiller, Cabeza, Hickler, & Ara�ujo, 2011)

and its capacity to improve range predictions has been tested previ-

ously using virtual species ranges (Stanton et al., 2012), our new

analysis provides an important test of these findings using a real-

world independent validation dataset. We show that the common

practice of using static land use predictors in coupled niche-popula-

tion models to continuously mask out areas from forecasts that are

unsuitable because of non-climate factors (e.g. Fordham, Akcakaya,

Brook et al., 2013; Harris et al., 2012) should be abandoned if there

is a high probability that land use will change over the simulation

period. However, applying restrictive masks to ecological niche

model predictions of habitat suitability will improve forecasts if land

use closely resembles the future landscape. This is because the end

point is what matters for the predictive accuracy of statistical-based

models, not the conditions leading up to this end point (i.e. the road

travelled). Models fitted with land use tended to have higher omis-

sion rates then models without land use regardless of model

complexity.

4.2 | Comparison of models with different dispersal
hypotheses

In our models, we used a gradient of different dispersal hypotheses

from unlimited to no dispersal and, unsurprisingly, the more restric-

tive assumptions (no dispersal or a dispersal function) generated pre-

dictions of smaller range sizes than unlimited dispersal. Different

model types with different dispersal hypotheses explained >20% of

the variance in the predictive accuracy (TSS, AUC), when choice of

whether or not to model land use was also considered. Models with

species’ specific dispersal constraints and no land use tended to pro-

vide the most accurate presence/absence maps in 2010. This result

supports the view that models, which explicitly simulate dispersal,

should provide improved predictions of range shifts (Bocedi et al.,

2014), but only when there are reliable enough projections of land

use change to effectively simulate the dynamic interaction between

land use and dispersal. Not constraining dispersal in ecological niche
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F IGURE 4 Independent tests of model predictions for 20 species
of British birds, showing the influence of model and land use.
Observed and predicted spatial patterns of species ranges are
compared using True Skill Score (TSS) for three families of models:
simple ecological niche models (ENMs), dispersal-linked niche models
(Dispersal) and niche-population models (Metapop); each plotted
with and without land-use (LU). Results for ENMs are shown
assuming no dispersal (ND) and unlimited dispersal (UD) [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Generalized linear model
results for True Skill Score (TSS) and area
under the Receiver Operating
Characteristic curve (AUC)

Metric GLM LL k AICc ΔAICc xi DEV

TSS dispersal:land use �190.59 6 395.73 0.00 0.78 22.45

species �175.64 20 399.32 3.58 0.13 35.68

model:land use �190.50 8 399.96 4.22 0.09 22.55

dispersal �203.99 3 416.14 20.41 0.00 8.32

model �203.98 4 418.21 22.48 0.00 8.34

Land use �209.82 2 425.72 29.99 0.00 1.39

null �210.94 1 425.91 30.18 0.00 0.00

AUC dispersal:land use 151.46 6 �288.38 0.00 0.89 23.81

model:land use 151.61 8 �284.27 4.11 0.01 23.96

species 160.68 20 �273.32 15.06 0.00 32.11

dispersal 130.04 3 �268.63 19.75 0.00 10.28

model 138.39 4 �266.52 21.86 0.00 10.29

null 129.70 1 �255.37 33.01 0.00 0.00

Land use 130.04 2 �254.02 34.37 0.00 0.43

LL, Log likelihood; k, number of parameters; AICc, Akaike’s information criterion corrected; ΔAICc, dif-

ference in AIC between the model with the lowest AIC; xi, AICc weights; DEV, percentage deviance

explained.

GLM predictors were species being modelled (n = 20), model (ENM_ND, ENM_UD, DISPERSAL, META-

POP), dispersal (no dispersal, unlimited dispersal, dispersal function) and land use (present or absent in

the model).
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models (ENM_UD) always resulted in lower TSS values than ecologi-

cal niche models that assumed no dispersal at all (ENM_ND). This

result provides a cautionary note for the common practice of using

ecological niche models with an unlimited dispersal simplification to

forecast species range movement under climate change, and differs

from conclusions based on model convergence (Engler et al., 2009),

as opposed to our independent model validation.

4.3 | Complex vs. simple models

Simpler models might theoretically be expected to outperform more

complex demographic models because they are arguably more

transferable, due to their generality (Bell & Schlaepfer, 2016; Ran-

din et al., 2006). Although more complex (and potentially more eco-

logically realistic) models that included dispersal and other

demographic processes as explicit parameters tended to improve

predictions of recent range changes for our sample of British

breeding birds, large levels of variation in predictive performance

(TSS and AUC) were found among species. For example, the sim-

plest model for A. rufa—fitted with only climate variables and

assuming unlimited dispersal—had as high, or higher, TSS than any

of the alternative models that accounted for land use, dispersal or

demography (Figure 5). In contrast, species like Accipiter nisus were

better modelled by the most complex METAPOP and DISPERSAL

models without land use (Figure 2). Similar results were found in a

recent study that systematically examined model performance

against complexity for families of ecological niche models (Garc�ıa-

Callejas & Ara�ujo, 2016), whereby properties of species ranges

strongly influenced model performance (even more than model

complexity).

The critical question is whether it is possible to classify (and pre-

dict) the circumstances in which different species are best predicted

by different models. This is still an open question, but our results

suggest that good estimates of dispersal dynamics and close approxi-

mations between future land use and species’ occurrence will

improve forecasts of species distributions. When there is scarce

knowledge on a species dispersal dynamics, but their relationship

between land use and occupancy is well understood for the model

calibration period, and this relationship is unlikely to change greatly

in space in the future, forecasts of species distributions will be maxi-

mized using simple ecological niche models with static land use

masks. Conversely, if species’ dispersal dynamics are well docu-

mented, but the effect of land use on spatial colonization patterns is

unlikely to be static, forecasts of species’ distributions will be maxi-

mized using a DISPERSAL model without land use. If robust esti-

mates of population growth as well as dispersal constraints are

F IGURE 5 True Skill Score (TSS) for models independently validated using observed data on occurrence in 2010. Expanders represent the
upper quartile for observed range movement (>9% increase in range area between 1970 and 2010). Contractors represent the lower quartile
(>13% decrease in range area between 1970 and 2010). ENM_ND = climate with no dispersal; ENM_ND_LU = climate with no dispersal and
land use; ENM_UD = climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; Dispersal = climate with a dispersal
function; Dispersal_LU = climate with a dispersal function and land use; Metapop = climate with a dispersal function and population model;
Metapop_LU = climate with a dispersal function and population model and land use [Colour figure can be viewed at wileyonlinelibrary.com]
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available, and the model is to be used to estimate extinction risk as

well as range movement, a METAPOP model should be used since

the relationship between change in range area and extinction risk is

often weak (Fordham et al., 2012). The METAPOP model should be

simulated with land use, only if land use is not expected to vary, or

if spatiotemporal change in land use can be accurately projected.

Furthermore, by modelling spatiotemporal abundance, coupled

niche-population models not only allow extinction risk to be directly

quantified, but the cost-effectiveness of regional conservation alter-

natives and demographically oriented management interventions to

be tested (Fordham, Akc�akaya, Ara�ujo et al., 2013).

Our research shows that for many species of British breeding

birds, ecological niche models can provide a good approximation

of the magnitude (but not necessarily the direction) of climate-dri-

ven changes in geographic extent. Therefore, if the objective of

the study is to identify species that are likely to experience large

range contractions and expansions in the future (regardless of

where these play out in space and time), simple ecological niche

models can routinely provide as good if not better predictions

then more complex models. Similarly, Rapacciuolo et al. (2012)

used temporally independent records to show that ecological niche

models did well at predicting observed changes in total range area

despite failing to predict correctly specific range changes at the

grid-cell level.

4.4 | Previous findings and limitations

Previous studies have advocated the use of more complex range

dynamics models that overcome some of the limitations of correlative

ecological niche models by integrating demographic and physiological

responses so that range shifts emerge from the interplay of relevant

abiotic and biotic processes (Singer et al., 2016). The use of more

complex models to explore how changes in large-scale abundance dis-

tributions arise is leading to a more mechanistic understanding of the

underlying processes of range dynamics (Lurgi, Brook, Saltr�e, & Ford-

ham, 2015). Although the methodological frameworks of dynamic

range models have been developed, empirical tests and applications

of these models are rare because demographic data and time series

of local abundances remain scarce (Urban et al., 2016).

Accordingly, Zurell et al. (2016) recently compared model types

using simulated data. They concluded that under present-day climatic

conditions, complex demographic models are only marginally better

than simple correlative models. However, in rapidly changing climates,

complex range dynamic models that account for dispersal and/or

demography, are likely to provide better forecasts. When community

processes were included in simulated benchmarking data, and models

were tested under conditions that better approximate real-world con-

ditions, DISPERSAL type-models often proved most reliable. In our

study, biotic interactions were not directly considered in model

F IGURE 6 Absolute differences in observed and predicted percentage change in range area between 1970 and 2010 (%). Expanders
represent the upper quartile for observed range movement (>9% increase in range area between 1970 and 2010). Contractors represent the
lower quartile (>13% decrease in range area between 1970 and 2010). ENM_ND = climate with no dispersal; ENM_ND_LU = climate with no
dispersal and land use; ENM_UD = climate with full dispersal; ENM_UD_LU = climate with full dispersal and land use; Dispersal = climate with
a dispersal function; Dispersal_LU = climate with a dispersal function and land use; Metapop = climate with a dispersal function and population
model; Metapop_LU = climate with a dispersal function and population model and land use [Colour figure can be viewed at
wileyonlinelibrary.com]
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forecasts, yet real-world benchmarking data also revealed good evi-

dence for using more complex models to predict where occupancy sta-

tus changed due to observed climate change. Our study inevitably

focused on low levels of observed climate change in the UK over the

last 40 years, which are small compared to what is forecast for the

future (Fordham, Akcakaya et al., 2016; Fordham, Brook et al., 2016).

Therefore, caution must be shown when using our results to make

generalizations regarding how well models of species range dynamics

will do at predicting range movement for the twenty-first century and

beyond because the ability of a model to predict (limited) 20th century

climate-driven range movement does not necessarily equate to better

predictions in response to forecast (larger) climate exposure (Fordham,

Akcakaya et al., 2016; Fordham, Brook et al., 2016; Rapacciuolo et al.,

2012). Nevertheless, the in silico findings by Zurell et al. (2016) that

models with dispersal and/or demography provide better predictions

as climate change intensifies, gives us some confidence that our results

will hold true, even under more extreme climate change.

The most complex models in our study were scalar-based demog-

raphy models, which can be useful for ecological assessments but can

overestimate risk of extinction (Dunham et al., 2006). Further analysis

should focus on testing more complex demographic models (e.g.

stage/age structured demographic models (Caswell, 2001); Bayesian

models of source-sink dynamics (Schurr et al., 2012)) and improving

model parameterization using Approximate Bayesian Computing

(ABC) techniques to calibrate metapopulation models (Rougier et al.,

2015). These techniques offer the prospect of accumulative fine tun-

ing of model parameters via the iterative re-casting of updated infor-

mation in the prior distribution (van der Vaart, Beaumont, Johnston, &

Sibly, 2015; Wells et al., 2015). We suspect that our most complex

(METAPOP) models would have provided even better predictions of

species range dynamics if they captured life-history traits that permit

population density to vary in different ways in response to key local

spatial drivers (Cserg}o et al., 2017), including dynamic land use change

and recent conservation intervention.
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