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Opinion
Glossary

Ancient DNA (aDNA): preserved genetic records recovered from ancient

materials including human and animal bones and teeth, plant remains, and

sediments.

Coalescence modelling: a retrospective approach to modelling DNA variation

in a population, whereby alleles of a gene shared by all members of a

population are traced back to a common ancestry in the context of population

demography.

Ecological niche model (ENM): use of statistical approaches to characterise the

set of environmental conditions that are habitable for a species and to make

inferences on range limits; also referred to ‘species distribution models’ or

‘bioclimatic envelope models’.

Effective population size (Ne): number of individuals in an idealised random

mating population that has a value of a population genetic quantity equal to

that of the actual population of interest. Typically substantially smaller than

census population size.

Evolutionary potential: ability of a population to evolve to cope with

environmental changes.

Fundamental niche: set of required environmental conditions to permit a

species to exist.

Genetic stochasticity: random genetic consequences of small populations,

including inbreeding, loss of genetic diversity, and mutational accumulation

that may cause extinction.

Inbreeding depression: mean reduction in a life history or other fitness trait

(often survival or reproduction) attributable to inbreeding.

Metapopulation: a group of spatially separated populations of the same

species, which interact at some level through individuals moving between

populations.

Multitemporal calibration: uses dated fossil material, matched to palaeocli-

matic simulations, to more fully model, using ENMs, the breadth of climatic

conditions in which a species can persist.

Niche population model (NPM): a method that dynamically couples stochastic

demographic models (in some cases also capturing biophysiological pro-

cesses) with ENMs to simulate spatial patterns of abundance and provide

direct estimates of extinction risk.

Phylogeography: the examination of the geographic distributions and diversity

of evolutionary lineages to understand evolutionary history of a taxon.

Process-based models: methods that incorporate the mechanistic links

between the functional traits of species and their environments explicitly in

predictions (of occurrence or abundance); also called mechanistic species
The spatiotemporal response of species to past global
change must be understood for adaptive management
and to make useful predictions. Characteristics of past
population dynamics are imprinted in genes, yet these
molecular ‘log books’ are just beginning to be used to
improve forecasts of biotic responses to climate change.
This is despite there now being robust quantitative
frameworks to incorporate such information. A tighter
integration of genetic data into models of species range
dynamics should lead to more robust and validated
predictions of the response of demographic and evolu-
tionary processes to large-scale environmental change.
The use of these multidisciplinary methods will help
conservation scientists to better connect theory to the
on-ground design and implementation of effective mea-
sures to protect biodiversity.

Context: using molecular ‘log books’ in climate change
research
Historical context is crucial for understanding patterns
and processes of biodiversity. Disregarding or misinter-
preting biotic responses to past environmental changes
could impede our understanding of future ecological dy-
namics under global change and make accurate predictions
and effective solutions difficult to formulate [1]. In many
cases, the population history of species past responses to
environmental changes are imprinted in their genes [2],
but these data have not been exploited effectively to
improve forecasts of species responses to climate change.
Here we argue for the better use of ancient, historical, and
contemporary genetic clues when constructing and vali-
dating models used to forecast climate change impacts on
biodiversity. We also advocate for research that moves
beyond using ecological niche models to improve inference
from phylogeography. We show that the methods and data
required for this new synthesis – weighted towards inte-
grating ancient and historical genetic data into models of
species range dynamics – are now within reach of most
researchers.
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Increased access to palaeoclimatic and palaeoecological
data and user-friendly ecological niche modelling software
has meant that it is now common practice to use geograph-
ical information on past species distributions to interpret
the spatial and temporal dimensions of genetic variation
[3]. Some of the potential advantages of this approach for
inferring species responses to climate change have already
distribution models.

Quaternary: a geological time period from �2.59 million years to the recent,

characterised by multiple glacial–interglacial events.

Realised niche: the set of environmental states in which a species is found at a

moment in time.

Sediment (ancient) DNA (sedaDNA): ancient plant and animal DNA extracted

directly from sediments.
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been canvassed [4–6]. However, the methods needed to use
genetic inferences to improve modelling of range dynamics
have been slow to develop [7], with most attention given to
conceptual frameworks [8]. The paucity of tools for such
quantitative integration has meant that the new spatial
modelling methods developed over the past few years [9,10]
have not exploited the potential of using genetic inferences
of historical demography to improve the tools for predicting
climate-driven impacts on species ranges and abundances.
The few models that have attempted to bridge this gap
imposed simplifying assumptions about population struc-
ture and environmental and demographic heterogeneity
[11,12].

A more systematic integration of genetic data into
simulations of species past and future range dynamics
(Figure 1) is now possible. We propose five primary appli-
cations of genetics for improving forecast responses to
climate change and for gaining insight into drivers of past
range dynamics: (i) calibrating ecological niche models
using genetic estimates of past occurrence and abundance
(effective population size), matched to palaeoclimate simu-
lations, and then forecasting future responses; (ii) inte-
grating genetic estimates of movement and connectivity
into niche models; (iii) using molecular information to give
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Figure 1. Integrating genetic information into correlative and mechanistic models.

Three categories of genetic material (contemporary, historical, and ancient) can be

used to generate alternative information on processes and patterns that can be

merged with range dynamics models for climate change forecasts. Contemporary

and historical genetic material is commonly used to infer dispersal rates,

connectivity, source–sink dynamics, and amounts of inbreeding, using measures

of gene flow and variation. Genetic information on movement can be used in

correlative models to determine the biologically feasible study area and whether

species can track climate pathways. Genetic information on connectivity can be

used to inform the source–sink dynamics of demographic-based mechanistic

models (i.e., niche population models), whereas information on genetic variation

can be used to model inbreeding when subpopulations are small and habitat is

fragmented. Historical DNA and ancient DNA (aDNA) can be used to infer

genetically effective population sizes (Ne) along temporal and past spatial

gradients using palaeoclimate data, whereas sedimentary ancient DNA

(sedaDNA) can be used to identify occurrences along these gradients. Future

technical [65] and analytical [61] developments could enable historical DNA and

aDNA to provide information on genes under evolutionary adaptation. If alleles

that strongly determine important phenotypic variation can be identified with

confidence [55], this information could be incorporated into demographic-based

mechanistic models that include individual heterogeneity.
more robust estimates of demographic rates (inbreeding
depression, dispersal capacity, etc.) and metapopulation
structure (source–sink dynamics) in spatially explicit de-
mographic models; (iv) using genetic studies to infer evo-
lutionary and adaptive capacity (e.g., evolutionary changes
in traits, rates of introgression, etc.) that can be simulated
explicitly in individual-based and metapopulation models;
and (v) linking genetic data with climate simulations to
address whether data-intensive mechanistic models pro-
vide notably better forecasts of extinction risk than simple
correlative models. The latter application could also give
insight on whether the contrast between forecast high
rates of extinction under anthropogenic-driven climate
change [13] and apparently low extinction rates observed
in the fossil record during the glacial–interglacial cycles of
the Late Pleistocene [14] (with the exception of the mega-
fauna) is the result of correlative models overpredicting
biodiversity loss under climate change [15].

Forecasting range and extinction dynamics: current
limitations and recent advances
Changes in species distributions and abundances are prin-
cipally assessed using ecological niche models (ENMs),
process-based models, or niche population models (NPMs)
– see Glossary for definitions. Each approach has different
advantages and limitations [16]. Being simpler and less
data demanding, ENMs are easier to implement than
mechanistic approaches (which typically require detailed
demographic or physiological data), but have been criti-
cised for oversimplifying assumptions and being based on
largely phenomenological relationships. Process-based
models that link species physiological traits with environ-
mental conditions are more functionally realistic; however,
similar to ENMs, they rarely account for important eco-
logical processes – such as source–sink and density feed-
back dynamics – nor evolutionary processes (but see [17]),
and are limited to inferring future extinction risk based on
overlap between range areas over time, as well as crude
metrics of total habitat suitability [9]. By contrast, NPMs
account explicitly for metapopulation dynamics and key
biotic processes, including species interactions [18], but
have rarely been adapted to include evolutionary processes
or loss of genetic variation. These different limitations may
each cause biases or poor representation of uncertainties in
their predictions of species range and abundance [19].

Despite these constraints, recent conceptual and tech-
nical advances have increased our ability to couple species
spatial and genetic histories and, potentially, their future
[20]. For example, (i) improvements to the spatial and
temporal resolution of some general circulation models
has meant that downscaled palaeoclimate data (reaching
back to the Last Glacial Maximum 21 000 years ago) and
future projections are available at decadal to monthly time
scales [21,22]. Although there remains considerable differ-
ences across general circulation models [21], continuing
refinement of these should improve predictions of species
range movement and persistence through time. (ii) To
address potential bias in ENM forecasts caused by occur-
rence records failing to capture a species fundamental
ecological niche or adaptive capacity, multitemporal cali-
bration can be used to configure ENMs [23,24]. In these
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Box 1. Using ancient genetics to forecast future population trends across space

The fossil record, ancient DNA (aDNA), coalescence approaches, and

palaeoclimatic simulations all provide sources of evidence that, in

principle, can now be effectively integrated to both calibrate

ecological niche models based on past population dynamics under

climate change and to forecast effective population sizes (Ne) across

space under future climate change scenarios (see Figure 2 in main

text). Past population trends can be estimated by extracting aDNA

from dated fossil remains sampled across large regions and from

different time periods, amplifying and sequencing it, and applying

coalescence approaches. Various computational techniques such as

Bayesian skylines or serial coalescent simulations followed by

approximate Bayesian computation can trace back past population

trends of genetic diversity and Ne [28], and their likely abiotic and

biotic (e.g., human hunting) drivers [32]. Although previous studies

focusing on aDNA have used mitochondrial DNA, recent advances

allow the use of nuclear aDNA via single nucleotide polymorphisms

(SNPs). Access to thousands of nuclear SNPs improves the ability to

detect subtle bottlenecks and fast recoveries of populations [67].

Likewise, there is no longer a need to assume panmixia in

coalescence approaches [68], allowing separate estimates of Ne for

different populations. However, caution is needed when interpreting

these results because spatial heterogeneity can influence genetic

diversity and population differentiation [35]. Where there is evidence

that climate is likely to be the primary driver of past change in Ne (i.e.,

using approximate Bayesian computation methods), the geographical

distribution of those population trends can be matched to high

temporal resolution palaeoclimatic simulations (in millennial or

centennial time bins), and the statistical relationship between Ne

and climate can be modelled using a multitemporal calibration

framework. Instead of using presence–absence as the response

variable, we can use the value of effective population size, with

climatic parameters and other environmental layers being the

independent predictors. The statistical model describing the relation-

ship between Ne and climatic condition can then be used to project

future scenarios. By modelling Ne rather than presence–absence as

the response variable, the influence of climate change on population

dynamics and extinction vulnerability is captured more directly in

future projections. By modelling Ne across a long temporal frame-

work, uncertainty in predictions derived from (i) extrapolating to non-

analogue climates and (ii) overlooking non-climate factors in model

calibration will be reduced by better representing a broader range of

climatic conditions within the model.
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models, palaeoclimate simulations are matched to dated
fossil occurrence data to broaden the breadth of climatic
conditions that define a species potential niche, enhancing
predictions for non-analogue climates [25]. (iii) To avoid
biases in using range area type measures to draw broad
inferences about the population dynamics and ultimate
extinction risk of species [26], stochastic demographic
models are being coupled with ENMs to estimate extinc-
tion risk directly [9].

A fourth advance has been to integrate phylogeographi-
cal analyses with complementary information from range
dynamics models, to enhance evolutionary and ecological
insights. This should allow conservation priorities to be set
that not only conserve focal species but also historical
evolutionary processes to support biodiversity over the
long term [2]. A compelling and recently applied method
is to use ENM projections of habitat suitability across
space and time to inform spatially explicit demographic
models whose parameters are then used to generate coa-
lescent simulations [11,12]. This approach allows simulat-
ed genetic data for different habitat/demographic scenarios
to be compared to observed genetic variation, providing a
direct quantitative (rather than qualitative) method of
validation. At the same time, new analytical tools are
allowing for direct inference of historical range dynamics
from modern genomic data [27].

Ancient and historical DNA: modelling effective
population size and occurrence
Improvements in the bias reduction and precision of geo-
chronological dating of fossil material and the recovery of
ancient DNA (aDNA), matched with corresponding
advances in the spatiotemporal resolution of palaeoclimate
data (see above), are strengthening our understanding of
how species and populations responded to palaeoclimate
change [28,29]. On more recent time scales, analyses of
DNA extracted from natural history collections can reveal
climate-induced range shifts over the past few hundred
years [30]. Both ancient and historical DNA can be used to
infer effective population size (Ne) along temporal and past
438
spatial gradients, opening a direct window into prehistoric
population responses to climate change. Because Ne is
positively related to population size in many species
[31], we could gain a deeper understanding of the implica-
tions of past climate change on species population dynam-
ics by using estimates of Ne more directly in ENM
development (rather than simply using spatiotemporal
occurrence). This could be done by using DNA to elucidate
species niche requirements (Box 1 and Figure 2), via the
matching of information on past Ne with palaeoclimate
simulations, in an analogous way to how radiometrically
dated fossil material is being integrated into occurrence-
based palaeodistribution models [24]. As a precautionary
step, approximate Bayesian computation should be used
first when possible to confirm that climate was probably
the main driver of Ne dynamics rather than biotic processes
such as overexploitation [32].

Careful interpretation of past population trends using
DNA-based coalescence simulations [33,34] is needed
when using information on Ne in ENMs, because genetic
diversity can change as a result of admixture or spatial
restructuring, independent of any variation in demography
[35]. Furthermore, the relationship between Ne and true
population size can vary temporally; however, fossil abun-
dance can be used to validate [36] or calibrate this rela-
tionship. Palynological time series abundance data are
widely accessible for hundreds of plant taxa [37], but
animal fossils are far rarer and scattered. In the absence
of independent estimates of abundance from the fossil
record, Ne should be interpreted carefully or restricted
to multitemporal calibration of species occurrence–climate
relationships.

Uncertainty in estimates of Nemust also be factored into
Ne–ENM projections. This could be done by calibrating
ENMs separately with the upper and lower confidence
limits for Ne, providing a projection range to span the likely
relationship between Ne and climate. Because trends in Ne

are calculated as the mean of thousands of independent
sampled estimates, consensus methods can also be used
to avoid underestimating uncertainty in the relationship
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Figure 2. Illustration of the integration of ancient DNA (aDNA), palaeoclimatic simulations, and estimated genetically effective population sizes (Ne) through time in an

environmental niche model framework, which can be used to forecast population responses to future climate change. (A) Localities with aDNA data (red spheres) and

palaeoclimatic simulations from general circulation models can be organised in an explicitly spatial framework using a geographical information system. (B) aDNA can be

used to infer Ne through time, matched to palaeoclimatic conditions for multiple populations. (C) By pooling climatic conditions and Ne across time and space, a climatic

niche based on the variation of Ne across spatiotemporal climatic gradients can be inferred. This climatic niche can be statistically quantified using several mathematical

algorithms (e.g., regression-based functions). Orange colours show different Ne values across climatic space. (D) Finally, the model-based characterisation of the

environmental climatic niche can be transferred back into a geographical space for future climate change scenarios. Orange colours show the variability of projected

abundances across geographical space.
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between climate and Ne [28]. Both approaches are analogous
to how uncertainty in climate futures is being integrated
into adaptation assessments [38].

In the absence of fossil material, sedimentary ancient
DNA (sedaDNA) can be used to identify species presence,
mainly in regions with soil permafrost conditions [39].
Although sedaDNA may be of limited use in reconstructing
past population dynamics, it can provide important tem-
poral markers of species occurrence–climate relationships
that are not well captured by the fossil record for a wide
variety of taxa that existed in suitable regions [39]. These
data can be used to map the past distribution of species,
and when implemented in a multitemporal calibration
framework, sedaDNA could provide an effective way to
improve model performance and generality.

Contemporary DNA: gene flow and genetic variation
Improving the representativeness and realism of ENMs

using gene flow

Genetic tools are commonly used to quantify dispersal rates
and distances based on gene flow [40]. These estimates of
past dispersal success could be used to determine the poten-
tial for a species to track future climate pathways, providing
more realistic estimates of range shifts and identification of
refugia. Species-specific dispersal constraints (i.e., fixed
dispersal distance and least cost pathways) are now
commonly integrated into projections of ENMs under envi-
ronmental change and/or landscape fragmentation scenari-
os, reducing uncertainty in projections of species
distributions [41]. However, acquiring field-based species-
level long-distance dispersal information (e.g., via tagging,
radio-tracking, or seed traps) is difficult and expensive.
Therefore phylogenetic relatedness or morphology similari-
ty to species with direct dispersal estimates is often used to
extrapolate dispersal information across species [42]. Esti-
mates of movement using gene flow data provide an under-
utilised alternative for incorporating dispersal information,
at the level of the metapopulation, into ENMs. Furthermore,
estimates of movement and connectivity, based on gene flow,
could also be used to delimit biologically feasible study areas
for calibrating presence-only ENMs, thereby ensuring that
the background (or pseudo-absence) localities for model
parameterisation is constrained to the conditions likely to
have been experienced by the species, but not necessarily
occupied [43]. Because the spatial extent from which pseu-
do-absence data are drawn can influence the accuracy of
439
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ENM predictions [44], using genetically inferred dispersal
rates to inform the selection of pseudo-absence localities
would constrain an important source of bias in ENM
forecasts. The range of uncertainty in dispersal estimates
could be used to bracket the likely spatial extent from which
pseudo-absence data are taken, thereby avoiding the use of
arbitrary threshold rules when determining model sensitiv-
ity to pseudo-absence data [44].

Simulating source–sink dynamics and inbreeding

depression in mechanistic models

Metapopulation theory asserts that emigration will be
higher for source populations and lower for sink popula-
tions, largely reflecting differences in intrinsic population
growth rates and local density. Sink populations persist
because of immigration, having in some cases a detrimen-
tal and others a stabilising effect on metapopulation per-
sistence [45]. Genetic data have been used to identify
source and sink populations by estimating migration rates
using coalescent approaches or assignment tests [46]. Cou-
pling gene flow estimates with direct measures of move-
ment provides multiple lines of evidence on the complex
role of dispersal in natural populations [47]. However, the
idea of using genetic estimates of connectivity to provide
independent validation or calibration (by modifying immi-
gration and emigration rates) of source–sink dynamics in
climate–demographic modelling approaches remains
largely unexplored. This is despite accommodating frame-
works having been developed [48] and climate change
forecasts of extinction risk and range movement being
sensitive to inherent uncertainties in estimates of
source–sink dynamics [26,49].

In addition to including adaptive evolutionary poten-
tial, extinction forecasts also need to properly account for
inbreeding, which reduces reproductive fitness and leads
to a loss of genetic diversity that reduces adaptive poten-
tial [50]. In connected populations, gene flow can offset
genetic drift, maintain beneficial mutations, and mitigate
inbreeding depression [50] but, at the same time, poten-
tially obstruct local adaptation [51]. Genetic markers can
be used to infer levels and impact of inbreeding by com-
paring fitness of individuals in matching environmental
conditions [52]. Inbreeding depression has not been in-
corporated into any case study of demographic model
forecasts of range dynamics in climate change settings
to date, despite its important role in driving the extinc-
tion vortex in small or fragmented populations [53]. Thus,
the survival prospects and distributions of threatened
species are likely to be overestimates, especially when
full life cycle impacts on reproductive fitness are properly
accounted [54]. More focus is needed on routinely incor-
porating individual-level genetic information in metapop-
ulation-level models of persistence and range movement,
particularly for species in highly fragmented populations
that are forecast to experience large shifts in climatic
conditions, and when modelling populations at the con-
tracting range boundary. Default estimates of inbreeding
or rules of thumb (i.e., populations with Ne >100 and
>1000 individuals will avoid inbreeding in the short and
long term, respectively) [53] should be used cautiously
and only in the absence of more detailed information,
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because they can overstate or understate the risk of
extinction depending on the level of metapopulation con-
nectedness.

Considering adaptive evolution in models of range
dynamics
Evolutionary adaptation and genetic diversity can influ-
ence range dynamics on medium- to long-term time scales,
by giving species the capacity to counter stressful condi-
tions or realise ecological opportunities [55]. There is some
evidence to suggest that climate change has caused genet-
ically based adaptive evolution in demographic traits so
that species can exploit or tolerate new conditions [56].
These rare examples are important, because in the near
future many species are unlikely to survive solely on
phenotypic plasticity or their ability to track their pre-
ferred environment in space, attributable to the rapidity of
anthropogenic climate change and the overlay of contem-
porary habitat fragmentation [57]. This means they must
adapt evolutionarily, in situ, to avoid extinction. Therefore,
reliable forecasts of species distributions and extinction
risk will require adaptive evolution to be considered in
range dynamics models [7], particularly for species with
large population sizes and short generation times that are
more likely to sustain the demographic cost of selection
[56].

Model architectures have been developed to use infor-
mation on adaptive capacity in simulations of species
range dynamics. Estimates of heritable variation and
selection intensity for ecologically important phenotypic
traits can be calculated using quantitative genetics mod-
els [55], and this information can be used in simulation
frameworks to condition vital rates (i.e., dispersal, surviv-
al, and fecundity) as they affect species distributions [17].
These models have recently been extended to include
phenotypic plasticity [58] and environmental and demo-
graphic stochasticity [59]. For example, Vedder et al. [60]
found that great tits (Parus major) are likely to adapt in
the face of climate change through a combination of phe-
notypic plasticity and microevolutionary response in egg-
laying date, allowing them to track changes in caterpillar
densities.

Technical advances in population genomics will contin-
ue to provide increasing power to identify ‘large-effect’
alleles that underlie heritable variation within populations
and divergence among them [61]. More specifically, the use
of historical DNA from museum specimens and next-gen-
eration sequencing for monitoring full genomes can pro-
vide relevant insights on genes involved in adaptive
responses and on the speed of those adaptations across
many species [62]. However, evolution often acts via large
numbers of small effect polygenes, and often epigenetic
influences, potentially causing misleading interpretations
of how alleles affect phenotypes and hence adaptive capac-
ity [63]. Furthermore, disentangling the signature of local
adaptation from other important but confounding genetic
processes, such as founder effects (and mutation surfing),
bottlenecks, and gene introgression, can be difficult [64]. As
such, there is certainly a need for ongoing technical [65]
and analytical [61] work in this area if range dynamics
models are to routinely capture evolutionary processes. In



Box 2. Validating simple versus complex models under past climatic changes

The Quaternary (�2.59 million years ago to Recent) is the best-studied

past period for biodiversity dynamics under multiple bouts of global

climate change, making it an ideal natural setting for examining how

model-based assumptions affect the integrated predictions of species

responses to climate change. The glacial–interglacial cycles of the

Quaternary were characterised by large globally averaged climatic

shifts of 4–68C [69]. The dominant response of species was idiosyn-

cratic shifts in geographical range with concomitant shuffling of

community composition [1]. There were few signals of elevated

extinction rates [14], with the exception of the Late Pleistocene and

megafauna and later Holocene losses, where human impacts

(probably in synergy with climate change) led to a temporally

staggered mass extinction of large-bodied fauna across many

continents and large islands [23,28]. Anthropogenic greenhouse gas

emissions are forecast to cause a further major shift in mean global

temperature by 2100, this time hotter than any Quaternary epoch [70],

which has the potential to cause widespread biodiversity loss [13].

Whether the contrast between high future forecast and lower

observed biodiversity loss attributable to Quaternary climate change

is an artefact of models bias inflating extinction risk, or reflects

ongoing lags, is an important question that needs to be urgently

resolved [15]. Genetic data could help resolve this issue by providing

crucial independent validation data on the expansion and contraction

of effective population size (Ne). Our hierarchical framework proposes

using hindcasts of change in past range sizes based on models of

varying complexity, with simulated trends in Ne using genetic data

(see Figure 3 in main text). The assumption is that range expansion

and contraction affects Ne and these changes are reflected in the time

series of genetic diversity [28]. Because the identification of temporal

genetic signatures can be difficult, particularly for metapopulations

with low average densities [35], this approach could initially be

applied to a small number of species with good fossil abundance data

that can be used to interpret [36], and potentially calibrate, the

temporal relationship between Ne and total population abundance, or

for species with large metapopulations. At one end of the continuum

there would be environmental niche models, parameterised using

occurrence data for the present day. At the other end would be

mechanistic models that account for demographic and biophysical

responses (and potentially evolutionary adaptation) to climate change

and shifts in biotic responses, such as hunting by humans [9,10]. By

applying this approach to diverse groups of species (small in number

owing to data limitations, but representing a range of ecological–

evolutionary milieu), our understanding of the environmental and life

history conditions that determine when estimates of shifts in potential

range area are likely to provide a good approximation of population

expansion or contraction (and when they might be static) will be

improved. Furthermore, comparing hindcast estimates of simulated

population size (i.e., from niche population models) with genetic

estimates of Ne should help define the circumstances when range

area is a useful proxy for change in population abundance.
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particular, more empirical data are urgently required to
identify evolutionary potential across groups of individual
species. This should be collected using a targeted approach,
focused on case study species that are likely to be
most sensitive to changes in thermal or hybrid conditions,
thermal extremes, and whose climate preferences are fore-
cast to change rapidly.

Past genetic signatures, model validation, and the
dilemma of model complexity
There is strong theoretical support for using mechanistic–
range dynamics models (e.g., NPMs) to explore species
potential responses to climate change. Yet whether such
added sophistication results in more consistently reliable
forecasts of range movement and extinction risk, given
inherent data and knowledge limitations, remains largely
unknown [19]. Contrary to simple correlative habitat
suitability models, the data needed to parameterise com-
plex mechanistic models can be time consuming and ex-
pensive to collect, meaning that the majority of forecasts of
biodiversity loss are inferred based on change in potential
range size and not directly estimated from declines in
population size or extinction risk. Establishing the envi-
ronmental and demographic settings that determine
when a more complex mechanistic model is preferable
to a simple correlative association is crucial for improving
forecasts of species range movement and persistence [26]
and economic prioritisation. For example, recent work on
commercially exploited molluscs showed that ENMs pre-
dict range and density expansion in response to global
warming but the reverse when limiting biophysical and
metapopulation processes are included [19]. In this exam-
ple, a simple model would lead to adverse management
decisions.

Genetic signatures of the timing and intensity of past
population size changes, episodes of range shifts (e.g.,
expansion from, or contraction to, refugia), and admixture
of previously isolated populations provide crucial indepen-
dent data for validating spatiotemporal predictions. If
repeated on many species, this could deliver vital insights
into the balance between model complexity (i.e., niche
models versus data intensive mechanistic models)
and predictive skill. However, separating these effects
independent of a spatial model can be difficult. Genetically
derived validation data can yield superior spatial coverage
and temporal resolution compared with other indepen-
dent data sources (such as repeat surveys, fossil or space-
for-time substitution data), by using after-the-fact sam-
pling, which does not require intensive field work. Genetic
data can also give a deep temporal perspective (in the case
of aDNA) by providing estimates of local to range wide
population changes during periods when the global cli-
mate was substantially different to the present [28]. Box 2
and Figure 3 show how temporal reconstructions of past
genetic diversity and estimated population sizes could be
used to assess the predictive ability (bias reduction and
precision) of different families of models of species range
dynamics.

A challenge will be developing ways to represent and
interpret uncertainty in fossil dates, palaeoclimate simu-
lations, and genetic estimates of spatiotemporal popula-
tion size changes. Some of these uncertainties can be
addressed directly, and their effect minimised [28], for
example, by using Late Quaternary palaeoclimate simula-
tions (with high temporal resolution) to calculate average
climatic conditions over the exact range of uncertainty in
fossil dates. However, for some species the uncertainty
intervals in validation data and model parameters will
be so wide that validating hindcasts will yield little infor-
mation about the capacity of models to predict extinction
probabilities [66]. Due diligence on candidate species is
thus needed.
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Figure 3. Schematic illustration of the integration of population genetics and geographical range models for independently validating projections of species responses to

climate change. Reconstructions of change in past geographical distributions through time can be compared against effective population trends, Ne (see Box 2). Similarly,

population trends estimated by methods that predict spatial patterns of abundance (e.g., niche population models) can be directly validated against genetic-based

estimates of Ne. The framework allows for comparison of key assumptions of each model family and the assessment of the predictive ability (bias reduction and precision)

of simple versus complex models. Based on Lorenzen et al. [28].
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Concluding remarks
New approaches are emerging at the frontier between
population genetics and ecological modelling that are
useful for both uncovering the processes governing the
past responses of species and populations to global en-
vironmental change, and showing the way to better
integrate these disciplines for prediction. Inference of
past population and range dynamics using multiscale
genetic data will both strengthen ecological forecasting
methods and enhance biological understanding of species
demographic responses to climate change for well-stud-
ied species, and lend general insights into the expected
behaviour of others. Wider application of models that
incorporate evolutionary and ecological mechanisms –
for cases where sufficient data exist – should allow
conservation scientists to develop useful generalisations
on the importance of these processes for extinction risk
attributable to climate change and thus to achieve better
on-ground implementation of effective measures to pro-
tect biodiversity.
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