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1 | INTRODUCTION focused either on the patterns of genetic variation within spe-

cies that are restricted to a particular region or habitat (e.g.,
Diversification patterns of widespread African vertebrates lowland Forest: Bell et al., 2017; Fuchs & Bowie, 2015;
remain poorly understood. A growing body of literature has Huntley & Voelker, 2016; Marks, 2010; Portik et al., 2017,
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TABLE 1

Taxonomic history within the Dicrurus adsimilis superspecies among primary classification schemes. We listed species and their

subspecies (between parentheses). The number of subspecies within D. macrocercus has been constant through time and their range (Indo-Malaya)

is not part of the present study. *' Vaurie considered the subspecies firgax to be a synonym of adsimilis sensu stricto. ** the subspecies apivorus

was described by Clancey in 1976 (Vaurie, 1949, could not distinguish it from adsimilis sensu stricto and fugax)

Vaurie (1949) Pearson (2000)
macrocercus (seven subspecies)  (not treated)
waldenii waldenii
fuscipennis fuscipennis

forficatus (forficatus, potior) forficatus (forficatus, potior)

aldabranus aldabranus

adsimilis (divaricatus, adsimilis (divaricatus, fugax,

. . o) C .

coracinus, modestus, apivorus*, adsimilis)
PP |

adsimilis*", atactus)

modestus (atactus, coracinus,
modestus)

Voelker et al., 2013; Eastern Arc Mountains: Bowie, Fjeldsa,
Hackett, & Crowe, 2004b; Bowie, Fjeldsa, Hackett, Bates, &
Crowe, 2006; Bowie, Pasquet, McEntee, Njilima, & Fjeldsa,
2018; Ceccarelli et al., 2014; Fuchs, Fjeldsa, & Bowie, 2011;
Southern Africa: Oatley, Voelker, Crowe, & Bowie, 2012;
Ribeiro, Lloyd, & Bowie, 2011; Ribeiro, Lloyd, Dean, Brown,
& Bowie, 2014; Sithaldeen, Ackermann, & Bishop, 2015; da
Silva & Tolley, 2017) or on species-level phylogenies that
have employed limited intraspecific species sampling (e.g.,
Cercomela: Outlaw, Voelker, & Bowie, 2009; Mymecocichla
Voelker, Bowie, Wilson, & Anderson, 2012). In contrast, the
phylogenetic relationships, levels of genetic differentiation
and diversification dynamics of superspecies complexes that
are distributed across different life zones have been less well-
studied (Barlow et al., 2013; Fuchs, Crowe, & Bowie, 2011;
Fuchs, Fjeldsa, & Bowie, 2017; Fuchs, Pons, & Bowie, 2017;
Furman et al., 2015; Moodley & Bruford, 2007).

Recent studies on African passerine birds have repeatedly
demonstrated that traditional taxonomy is misleading with
respect to the evolutionary history of many taxa, especially
those distributed across the savannah belt (Fuchs, Crowe,
etal.,, 2011; Fuchs, Fjeldsa, etal., 2017). For example,
the Southern Fiscal Lanius collaris (arid zone of southern
Africa) is more closely related to Souza’s Shrike L. souzae
(Miombo woodlands) than to the Northern Fiscal L. humer-
alis (arid zones of central, eastern and western Africa), with
which it was traditionally considered conspecific (Fuchs,
Crowe, et al., 2011). Similarly, the West African populations
of Square-tailed Drongo Dicrurus ludwigii (dense second-
ary and gallery forests) are more closely related to the Shiny
Drongo D. atripennis (lowland rainforest) than to the east-
ern and southern populations of D. ludwigii (Fuchs, Fjeldsa,
et al., 2017). Although these studies mostly agree that the spe-
cies biogeography is more complex than previously thought,
several uncertainties remain regarding the exact location of

Rocamora and Yeatman-

forficatus (forficatus, potior)
aldabranus

adsimilis (divaricatus, fugax,
apivoms*z, adsimilis)

modestus (atactus, coracinus,
modestus)

Dickinson and Christidis (2014),

Berthelot (2009) Gill and Donsker (2016)
macrocercus (seven subspecies) macrocercus (seven subspecies)
waldenii waldenii

fuscipennis fuscipennis

forficatus (forficatus, potior)
aldabranus

adsimilis (divaricatus, fugax,
apivoms*z, adsimilis)

modestus (atactus, coracinus,
modestus)

genetic breaks in many taxa (e.g., S Tanzania; Lanius, N
Tanzania, D. ludwigii). Furthermore, the two studies identi-
fied above reached very different conclusions with respect to
the differentiation of populations in the northern Savannah
belt, with one finding very limited genetic differentiation
(Lanius, Fuchs, Crowe, et al., 2011) and the other finding
substantial differentiation across the Niger River (D. lud-
wigii, Fuchs, Fjeldsa, et al., 2017), a barrier also recovered
for lowland evergreen forest species (Campethera caroli and
C. nivosa Fuchs & Bowie, 2015).

The drongos (Dicruridae) are a family of corvoid birds
distributed across Africa, southern Asia, the Indian Ocean
islands and Australasia, as well as numerous oceanic islands
throughout this region (Rocamora & Yeatman-Berthelot,
2009). Approximately 25 species are recognized (Gill &
Donsker, 2016), and overall, the group is notable for their
limited variation in plumage coloration, although tail shapes
are quite variable. The Dicrurus adsimilis superspecies sensu
Vaurie (1949) consists of six species: (i) D. macrocercus with
seven subspecies distributed across Indo-Malaya, (ii) D. adsi-
milis with five subspecies distributed across the Afrotropics as
well as four taxa distributed across the Indian Ocean Islands
constituted by the Comoros archipelago, (iii) D. waldenii on
Mayotte, (iv) D. fuscipennis on Grande Comore, (v) D. aldab-
ranus on Aldabra Atoll, and (vi) D. forficatus forficatus on
Madagascar and D. f. potior on Anjouan. The species limits of
the Indo-Malayan and Indian Ocean taxa are well established,
and the colonization history and phylogeography of the Indian
Ocean taxa have already been described (Fuchs et al., 2013;
Pasquet, Pons, Fuchs, Cruaud, & Bretagnolle, 2007). In con-
trast, the relationships and taxonomic status of the Afrotropical
subspecies have remained problematic for nearly 70 years.

Vaurie (1949) recognized five subspecies within D. ad-
similis, merging all Afrotropical taxa into a single species.
In contrast, most subsequent authors have recognized a
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species-level distinction between taxa distributed in the tropi-
cal lowland forests (D. modestus atactus in the Upper Guinea
Forest Block extending to western Nigeria, D. m. coraci-
nus in the Lower Guinea Forest Block and D. m. modestus
on Principe Island) from those taxa distributed across more
open habitats spanning the savannah belt (D. adsimilis ad-
similis in Southern/Eastern Africa, and D. a. divaricatus
distributed from Senegal in the west extending to Somalia
in the east, Dickinson & Christidis, 2014; Gill & Donsker,
2016; Pearson, 2000; Table 1). Furthermore, most authors
since Vaurie (1949) have recognized the validity of the sub-
species D. a. fugax (coastal Eastern Africa extending from
Mozambique to southern Somalia). Finally, the distinctive-
ness of the drongo populations distributed in Angola, south-
ern DR Congo, Zambia, Namibia, Botswana and northern
South Africa was recognized in 1976 with the description of
D. a. apivorus (Clancey, 1976).

The first molecular phylogeny of the Dicruridae con-
firmed the monophyly of the Dicrurus adsimilis superspecies
as well as the close phylogenetic relationships between all
taxa distributed across Indian Ocean islands with the excep-
tion of D. fuscipennis, which was more divergent (Pasquet
et al., 2007). Pasquet et al. (2007) sampled two taxa from
the Afrotropics, D. a. fugax (Tanzania) and D. m. modestus
(Principe Island), and found the two taxa to not be sister spe-
cies, with “D. macrocercus” found as sister to D. a. fugax.
This would suggest that the two Afrotropical taxa may war-
rant species status. However, during the course of the present
study, we discovered that a sample mix up occurred during
tissue subsampling of “D. macrocercus” (FMNH 347969),
which was determined to actually be D. leucophaeus (J.
Fuchs, unpubl. data); the individual included in Pasquet
et al. (2007) is actually D. a. adsimilis (FMNH 390192) (D.
Willard, FMNH, in litt). This has two primary consequences:
(1) Dicrurus macrocercus was not sampled by Pasquet et al.
(2007); and (ii) the monophyly of D. adsimilis—D. modestus
complex could not be rejected, despite the lack of strong sup-
port for this relationship.

More recently, Fuchs, Fjeldsa, et al. (2017) reconstructed
the biogeographic history of the Square-tailed (D. ludwigii)
and Shiny (D. atripennis) Drongos and sampled several
Afrotropical taxa of the D. adsimilis superspecies. Neither
D. adsimilis nor D. modestus were recovered as monophy-
letic; D. a. divaricatus was recovered as the sister group of
D. modestus atactus in both the mitochondrial topology and
multilocus species tree, whereas D. a. fugax and D. a. adsi-
milis were sister taxa. The relationships of D. macrocercus,
D. forficatus and D. m. modestus with respect to the D. a. di-
varicatus/D. m. atactus  and  D. a. fugax/D. a. adsimilis
clades were unresolved (Fuchs, Fjeldsa, et al., 2017). At first
glance, this would suggest a similar pattern to the D. lud-
wigii—D. atripennis clade with a major biogeographic break
between Central/West and East/South Africa and a shift in

habitat preference in the Central/West clade. However, fur-
ther conclusions were not possible because several crucial
Afrotropical taxa from the D. adsimilis superspecies complex
(e.g., D. a. apivorus, D. m. coracinus) were not sampled.

Here, using a thorough sampling of the Afrotropical taxa
from the D. adsimilis superspecies complex, we sought to
resolve the biogeography and taxonomy of the African taxa
and to understand in greater detail the species limits and evo-
lution of habitat preferences among the different African lin-
eages. Based on our results, we propose a new classification
for the D. adsimilis superspecies complex.

2 | MATERIAL AND METHODS

2.1 |

We included representative sampling of species level diver-
sity in the Dicruridae (Pasquet et al., 2007) in order to test
the monophyly of the Dicrurus adsimilis superspecies and
to compare the degree of genetic divergence among lineages
within this superspecies to that of traditionally recognized
species. We included individuals from all recognized African
subspecies comprising the Dicrurus adsimilis superspecies,
and our sampling encompassed most of their African dis-
tributional ranges (n = 103: Figure la and Table S1). We
included 31 individuals of the Crested Drongo (Dicrurus
forficatus), endemic to Madagascar, and for which a previ-
ous study (Fuchs et al., 2013) recovered considerable within
species allelic and nucleotide diversity at some nuclear loci
(e.g., Myoglobin intron-2). These diverse alleles may be pre-
sent in other members of the D. adsimilis superspecies and,
if so, could provide useful insight about the diversification
processes on the African continent. Phylogenetic trees were
rooted with representatives of the Corvidae (Corvus corone)
and Laniidae (Lanius collaris).

Sampling

2.2 | Laboratory protocols

We extracted DNA from tissue, toe pads or blood using the
Qiagen extraction kit (Qiagen, Valencia, CA) following the
manufacturer’s protocol, and sequenced one mitochondrial
protein-coding gene (ATP synthase subunit 6, ATP6), three
nuclear introns (myoglobin intron-2, MB; beta fibrinogen
intron-5, FGB; transforming growth factor beta-2 intron-5,
TGFb2) and one Z-linked intron (Brahma protein intron-15,
BRM). Primers and PCR protocols for the fresh samples were
identical to those reported in Fuchs, Fjeldsa, et al. (2017). We
obtained mitochondrial sequences from historical specimens
(toe-pad samples) by performing several overlapping PCR
amplifications (size 200-350 bp) using specific primers de-
signed in this study (available from author upon request). The
PCR-amplification protocol included an initial denaturation
at 94°C for 3 min, followed by 35 cycles at 94°C for 30 s,
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54-60°C for 30 s, and 72°C for 30 s, and was terminated by
a final elongation step at 72°C for 15 min.

Individuals were sexed by PCR using the primer pair
2550F and 2718R under standard PCR-amplification con-
ditions (Fridolfsson & Ellegren, 1999). Newly generated se-
quences have been deposited in Genbank (Accession Number
MG762217-MG762565).

2.3 | Phasing of nuclear alleles and testing
for selection and recombination

We used pHASE v2.1.1 (Stephens, Smith, & Donnelly, 2001), as
implemented in bNasp 5.0 (Librado & Rozas, 2009), to infer the
alleles for each nuclear locus. Three runs were performed, and
results were compared across runs. Using the recombination
model, we ran the iterations of the final run 10 times longer than
for the initial runs. We considered the output of the long final
PHASE run as the best estimate of haplotypes. The McDonald—
Kreitman test (MK; McDonald & Kreitman, 1991) in DNASP
5.0 (Librado & Rozas, 2009) was used to test for evidence of
selection acting on ATP6. Significance was assessed using
Fischer’s exact test and a threshold of 0.05. We performed
four MK tests on the D. adsimilis superspecies clade using
sequences from four different proximate outgroups (D. leu-
cophaeus, D. bracteatus, D. ludwigii ludwigii and D. aeneus).
We tested for selection acting on the nuclear loci using the
Hudson—Kreitman—Aguadé test (HKA; Hudson, Kreitman, &
Aguadé, 1987), as implemented in the software HKA (https://
bio.cst.temple.edu/~hey/software/software.htm). Sequences
from D. leucophaeus were used as the outgroup.

We tested for evidence of recombination within each nu-
clear locus using the GARD (genetic algorithm for recom-
bination detection) and SBP (single breakpoint) algorithms
(Kosakovsky Pond, Frost, & Muse, 2005; Kosakovsky Pond,
Posada, Gravenor, Woelk, & Frost, 2006) as implemented on
the DATAMONKEY webserver (www.datamonkey.org; Delport,
Poon, Frost, & Kosakovsky-Pond, 2010).

24 |

Gene tree reconstructions of unique haplotypes and alleles
were performed using Bayesian inference (BI), as imple-
mented in MRBAYEs 3.2 (Ronquist et al., 2012). We used the
nst=mixed and rates=invgamma options such that model un-
certainty is taken into account during the phylogenetic recon-
struction. Four Metropolis-coupled MCMC chains (one cold
and three heated) were run for 5 x 10° iterations, with trees
sampled every 10 iterations.

Species trees were reconstructed using the coalescent-
based model implemented in *BEAST (Heled & Drummond,
2010) on four data sets: mitochondrial, autosomal, nu-
clear (autosomal and Z-linked) and mitochondrial/nuclear.
The species tree algorithm in *BEAST requires at least one

Phylogenetic reconstruction

sequence per ‘“species” per locus be present in the data set;
nuclear data were not obtained from lineages where DNA
was extracted from museum toe-pad tissues: D. fuscipennis,
D. modestus coracinus (see Results about the level of differ-
entiation from D. modestus modestus) and the eastern por-
tion of the range of D. adsimilis divaricatus (see Results),
or FGB for D. aldabranus; hence, these taxa could not be
included in analyses involving nuclear data. We selected the
substitution model for each locus using TopaLl (Milne et al.,
2009) under the Bayesian information criterion. Each locus
had its own substitution rate matrix and clock model (all as-
signed to a strict clock model). We used a Yule process for
the tree prior with a normal prior distribution for the ATP6
(0.026 substitutions/site/lineage/million year -s/s/l/myr-;
95% HPD: 0.021-0.031 s/s/l/myr) and TGFb2 (0.0017 s/s/l/
myr; 95% HPD: 0.0013-0.0022 s/s/l/myr) rates, correspond-
ing to those obtained by Lerner, Meyer, James, Hofreiter,
and Fleischer (2011). Substitution rates for the other nuclear
loci were estimated in relation to the Lerner et al. (2011)
rates for ATP6 and TGFb2. We conducted two runs for
5 x 10® iterations, with trees and parameters sampled every
5% 10° iterations, discarded the first 25 X 10° iterations as
the burn-in period. We used the cipres 3.1 gateway server
(www.cipres.org; Miller, Pfeiffer, & Schwartz, 2010) to run
MRBAYES 3.2 (Ronquist et al., 2012) and the *BEAST analyses.

TRACER V1.6 (Rambaut & Drummond, 2009) was used to
ensure that our effective sample size for all Bayesian analy-
ses of the underlying posterior distribution was large enough
(>200) for meaningful estimation of parameters.

2.5 | Network analyses

Multilocus networks were reconstructed using POFAD
v1.03 (Joly & Bruneau, 2006) and sSPLITSTREE v4.0 (Huson
& Bryant, 2006). We included only individuals from the
D. adsimilis superspecies for which sequences from all five
loci were available (n = 93), along with D. leucophaeus,
the closest relative of the D. adsimilis superspecies. We
used uncorrected p-distances as input for PoFAD and made
use of the standardized matrix for network reconstruction.

2.6 | Estimating divergence times

We estimated divergence times using BEAST 1.8 (Drummond,
Suchard, Xie, & Rambaut, 2012). We performed analyses
using the HKY + G model with either the strict or uncor-
related lognormal molecular clock models enforced with a
Yule tree prior. MCMC chains were run for 25 to 50 x 10°
steps and were sampled every 10° steps. We used two sub-
stitution rates and their associated uncertainties to calibrate
the trees. The first one corresponds to the ATP6 substitu-
tion rate (0.026 s/s/l/myr; 95% HPD: 0.021-0.031 s/s/l/
myr), that is derived from complete mtDNA genomes of the
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honeycreepers (Passeriformes, Drepanididae) and calibration
points based on the age of volcanic islands in the Hawaiian
archipelago (Lerner et al.,, 2011). The second substitution
rate was obtained by Subramanian et al. (2009) based on
fourfold degenerated sites from complete mtDNA sequences
of Adelie Penguins (Pygoscelis adeliae) to be 0.073 (95%
HPD: 0.025-0.123 s/s/l/myr); this is a mutation rate and
hence theoretically independent of variation in body size or
other life history traits.

We also used a body mass-corrected mitochondrial clock
recently proposed by Nabholz, Lanfear, and Fuchs (2016).
We employed the equation 10(0-145xlogio (body_mass)+0.459) /1),
corresponding to their calibration set 2, to calculate the
body mass-corrected substitution rate for the ATP6 third
codon position. We assumed an average body mass across
drongos of 40 g. We used the mitochondrial topology
(Figure 1b) to estimate the third codon position branch
lengths using pAML v4.9 (Yang, 2007). The branch lengths
were then converted to divergence times in R using scripts
from Nabholz et al. (2016).

We used TRACER v1.6 (Rambaut & Drummond, 2009) to
help ensure that the effective sample size of the underlying
posterior distribution was large enough (>200) for meaning-
ful estimation of parameters.
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To delimit putative species, we used a Bayesian implementa-
tion of the general mixed Yule-coalescent model (bGMYC
1.0; Reid & Carstens, 2012) with our molecular data. This
implementation is an extension of the generalized mixed
Yule-coalescent (GMYC) model (Pons et al., 2006) that in-
corporates gene tree uncertainty by sampling over trees ran-
domly selected from the posterior distribution We obtained a
posterior distribution of ultrametric gene trees of the unique
D. atripennis—D. ludwigii mitochondrial haplotypes using
BEAST v1.8 (Drummond et al., 2012) under a strict clock
model (0.026 s/s/l/myr, SD = 0.0025). We ran MCMC for
107 iterations, sampling parameters and trees every 10° itera-
tions, and we removed the first 10% of the samples as the
burn-in period. We analysed 100 trees sampled randomly
from the posterior distribution and used the default setting
in bGMYC. We ran the MCMC chains for 5 x 10* iterations,
with a burn-in of 4 x 10* iterations, and sampled parameters
every one-hundred iterations.

For an alternative approach to the bGMYC species de-
limitation method, we also used the newly developed mul-
tirate Poisson tree processes as implemented in mPTP
(Kapli et al., 2017) using both the maximum-likelihood and
Markov chain Monte Carlo algorithms (number of itera-
tions: 50 x 104; burn-in: 10 X 104). We performed the anal-
yses using both the single and multiple rates options with
the minimum branch length being detected from the data

Molecular species delimitation methods
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set. As an input topology, we used a maximum-likelihood
tree of the unique ATP6 haplotypes rooted with Corvus cor-
one and reconstructed using RAXML (RAxML black box,
http://embnet.vital-it.ch/raxml-bb/, Stamatakis, Hoover, &
Rougemont, 2008) and a GTR + G model.

Finally, we also used the software BPPv3.1 (Rannala &
Yang, 2003; Yang, 2015; Yang & Rannala, 2010) to esti-
mate the joint probability of the species tree and the spe-
ciation probability (model All, Yang & Rannala, 2014).
A speciation probability of 1.0 on a node indicates that
every species delimitation model visited by the jMCMC
algorithm supports the hypothesis that the two lineages de-
scending from a particular node represent distinct popula-
tions (putative species); speciation probability values >.95
were considered to indicate a putative speciation event. We
used a gamma prior on the population size parameters (0)
and the age of the root in the species tree (t(), and we
parameterized other divergence time parameters using a
Dirichlet prior (Yang & Rannala, 2010). We used the same
data set as for the *BEAST analyses of the mitochondrial/
nuclear analyses (i.e., we did not include D. aldabranus,
D. fuscipennis or D. a. divaricatus East of Lake Chad due
to the lack of nuclear DNA data). We restricted the analy-
ses to eleven taxa—the nine lineages within the D. adsimi-
lis superspecies, and two outgroup species (D. aeneus and
D. leucophaeus). We evaluated the influence of the priors
on the posterior probability distribution by changing the
priors for 0 and t,, assuming either small or large ances-
tral population sizes with G set to (2, 2000) and (1, 10),
respectively, and shallow or deep divergence with G set to
(2, 2000) and (1, 10), respectively. We allowed the loci to
have different rates (locus rate = 1, Dirichlet distribution)
and took into account the differences in heredity scalar
(heredity = 2). We ran the rjMCMC analyses for 4 X 10°
generations with a burn-in period of 4 x 10* and different
starting seeds. Each analysis was run twice.

3 | RESULTS

3.1 | Mitochondrial DNA

We analysed the complete ATP6 sequence (684 bp) for 154
Dicrurus individuals representing all described African taxa;
partial sequences were obtained for two further individuals.
Among the 142 individuals from the D. adsimilis super-
species complex, 104 haplotypes were detected with very
limited sharing of haplotypes among taxa, except for the sub-
species adsimilis and fugax. The McDonald-Kreitman test
did not detect any evidence of selection (Fisher’s exact test;
D. aeneus p = .39, D. bracteatus p = 1.0, D. leucophaeus:
p =22, D. ludwigii ludwigii p =.23). The Bayesian 50%
majority rule consensus tree recovered the monophyly of the
D. adsimilis superspecies complex (PP: 1.0), with the Ashy
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Drongo (D. leucophaeus) being the most closely related
taxon (PP: .95; Figure 1b). Six primary lineages emerged
within the D. adsimilis superspecies: (i) the Indo-Malayan
D. macrocercus; (ii) the clade West of Lake Chad comprising
D. m. atactus and D. a. divaricatus (PP: 1.0); (iii) the clade
East of Lake Chad consisting of D. a. divaricatus (PP: 1.0);
(iv) the D. m. modestus—D. m. coracinus clade (PP: 1.0); (v)
the clade consisting of the four Indian Ocean taxa (D. fusci-
pennis, D. aldabranus, D. forficatus, D waldenii: PP: 0.57);
and (vi) a clade consisting of the subspecies D. a. apivorus—
D. a. adsimilis-D. a. fugax (PP: 1.0; Figure 1b).

The mitochondrial topology suggests that geographic
proximity is a better predictor of lineage relationships within
the D. adsimilis superspecies complex than current taxon-
omy, especially given that two species (D. adsimilis and
D. modestus) were not recovered as monophyletic in our to-
pology (Figure 1b). The lineages were sorted geographically
with the exception of three individuals. UWBM 53209 and
UWBM 70422, both collected in Melmoth (Kwazulu-Natal,
South Africa), nested within the fugax and the adsimilis
clades, respectively. The third individual (MNHN CG 1968-
365), collected in Katanga (DR Congo), was related to three
individuals collected in Ethiopia and Somalia. The average
number of nucleotide substitutions per site between popula-
tions (Dxy) was as follows: D. m. atactus—D. a. divaricatus W
Lake Chad: 0.02595; D. a. apivorus/(a. adsimilis—a. fugax):
0.03820; D. a. adsimilis/a. fugax: 0.01948; and D. m. modes-
tus/m. coracinus: 0.01243.

adsimilis fugax
adsimilis jubaensis
adsimilis adsimilis
adsimilis apivorus
modestus coracinus
modestus modestus
waldenii
imilis divaricatus E Lake Chad **
aldabranus *
forficatus
fuscipennis *
modestus atactus
adsimilis divaricatus W Lake Chad

macrocercus
leucophaeus

ludwigii ludwigii
ludwigii tephrogaster
ludwigii muenznerii

—
T

! bracteatus

atripennis
sharpei sharpei

aeneus
remifer
annectans
paradiseus

bre I

(a) mtDNA

FIGURE 2

I
1y

(b) Nuclear

3.2 | Nuclear DNA

We did not detect any evidence of recombination in the four
nuclear introns using the GARD and SBP algorithms or any
indication of selection using the HKA test (p = .65). Five in-
dividuals (D. aldabranus, D. paradiseus and D. adsimilis fugax
MOM 2007.2.345, FMNH 447943, ZMUC 140641) could not
be sexed and were considered as females in the analyses.

Nuclear data were obtained from the 110 individuals where
DNA was extracted from buffered or frozen tissues; the only
exception was D. aldabranus, for which we could not obtain the
FGB sequence. The 50% majority rule consensus trees resulting
from the analyses of individual introns (FGB: 93 alleles, 563 bp;
MB: 94 alleles, 817 bp; TGFb2: 92 alleles, 584 bp; BRM: 41
alleles, 363 bp) were very similar in that (i) alleles were widely
shared among taxa from the D. adsimilis superspecies complex,
and (ii) the relationships among the Dicruridae alleles formed a
large polytomy (Figures S1-S4).

3.3 | Species tree analyses and
multilocus network

With the exception of one lineage (see below), the species
tree analyses were congruent with the mitochondrial results,
although relationships among members of the Dicrurus adsi-
milis superspecies were poorly supported.

As expected, the recovered topology using a coalescent
framework to analyse the mitochondrial locus (Figure 2a) was

adsimilis adsimilis adsimilis fugax/jubaensis
0.89

adsimilis apivorus 1 adsimilis adsimilis
adsimilis fugax/jubaensis adsimilis divaricatus W Lake Chad
adsimilis divaricatus W Lake Chad Ogdsimilis apivorus
forficatus modestus atactus
waldenii 0.8: modestus modestus/coracinus
modestus modestus/coracinus forficatus
modestus atactus 1 — waldenii

macrocercus macrocercus

leucophaeus leucophaeus
annectans
. sharpei sharpei
1 paradiseus
balicassius atripennis

ludwigii ludwigii

remifer ludwigii tephrogaster

. i ludwigii muenznerii
sharpei sharpei
annectans

atripennis paradiseus

ludwigii ludwigii balicassius

ludwigii tephrogaster bracteatus
ludwigii muenznerii remifer

aeneus

aeneus

(c) mtDNA/Nuclear

Species trees obtained using the algorithm implemented in *BEasT (Heled & Drummond, 2010) with sequences from (a)

the mitochondrial locus, (b) nuclear loci, and (c) mitochondrial and nuclear loci combined. Some lineages (D. fuscipennis, D. aldabranus and

D. a. divaricatus East of Lake Chad) could not be included in all analyses as nuclear sequences were not available. For analyses using nuclear DNA

data, D. a. jubaensis and D. m. coracinus were merged with D. fugax and D. m. modestus, respectively. Numbers close to nodes refer to posterior

probabilities >.70
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forficatus
FIGURE 3 Multilocus network
obtained using standardized genetic
distances from the five loci for all leucophaeus
individuals from the D. adsimilis
superspecies complex for which all loci were _—
available (n = 94) 0.1

very similar to the haplotype tree, with the only differences
being nodes that did not receive high posterior probability
support. Very few nodes were supported with posterior prob-
abilities >.95; these were D. aldabranus/forficatus (PP: .99)
and D. m. atactus/a. divaricatus W Lake Chad (PP: .99). The
monophyly of the clade consisting of the eastern and south-
ern subspecies of D. m. modestus/m. coracinus and adsimilis
(jubaensis, fugax, adsimilis, apivorus), although recovered,
was not quite statistically supported (PP: .94).

The monophyly of the Dicrurus adsimilis superspecies
complex was also recovered in the nuclear species topology
(PP: .95), but very few relationships were supported, with the
exception of the sister—species relationship between D. forfi-
catus and D. waldenii (PP: .98) and the monophyly of a clade
consisting of D. a. adsimilis, D. a. fugax, D. a. apivorus and
D. a. divaricatus W Lake Chad.

The species tree topologies were markedly different con-
cerning the relationships of D. a. divaricatus W Lake Chad;
the mitochondrial topology supported a relationship with the
parapatric D. m atactus (PP: .99) whereas the nuclear DNA
suggested affinities with the eastern and southern populations
of D. adsimilis (PP: 1.0). This conflict is also highlighted in
the multilocus network (Figure 3), where a substantial degree
of reticulation was present for D. m. modestus and D. a. di-
varicatus, and within adsimilis and fugax.

o-WILEY-L?

adsimilis

fugax

apivorus

U
modestus 9

atactus

macrocercus divaricatus

* fugax in the adsimilis component
+ adsimilis in the fugax component

The species tree topology resulting from the analyses of
the combined mitochondrial and nuclear data was similar
to the nuclear DNA topology regarding the relationships of
D. waldenii and D. a. divaricatus W Lake Chad. The Black
Drongo D. macrocercus was the sister species of all remain-
ing species of the D. adsimilis superspecies (PP: .85), a re-
lationship that was also recovered in the mitochondrial and
nuclear topologies, although with no support.
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Our divergence time estimates were strongly dependent
on calibration and methodological assumptions (Table 2).
Assuming the body mass-corrected mitochondrial rate from
Nabholz et al. (2016), the D. adsimilis superspecies diverged
from its sister species, the Ashy Drongo, about 16.7 mya
(13.3-20.3 mya) before further diversifying about 6.7 mya
(5.2-8.1 mya) with the split of the Indo-Malayan D. macro-
cercus. The African and Indian Ocean lineages of the D. ad-
similis superspecies complex radiated in two pulses around
5 mya and 1.4-2 mya. The mitochondrial estimates using the
Lerner et al. (2011) and Subramanian et al. (2009) rates were
approximately three to four times more recent, irrespective
of methodological assumption (species tree vs. haplotype
tree), with the diversification of the D. adsimilis superspecies

Divergence times
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TABLE 2 Estimates of divergence times within the Dicrurus adsimilis superspecies
Nuclear and
mitochondrial
Mitochondrial data only Nuclear data only data
Clade ATP6 Body ATP6 clock ATP6 ATP6 clock TGFb2 clock ATP6 and
mass-corrected Lerner et al. fourfold Species tree, (species tree TGFb2 clock,
rate (clock, third (2011) rate (mtDNA Lerner et al. Nuclear—*BEAST) Lerner et al.

codon position, only) (2011) (2011)

Rate 2) (species tree
nuclear and
mtDNA—
*BEAST)

D. leucophaeus/D. adsimi- 16.7 (13.2-20.3) 34(25-44) 3.0 2.7 (1.8-3.6) 2.3 (1.3-3.5) 29(1.9-3.2)
lis superspecies (1.3-5.3)
D. adsimilis superspecies 6.7 (5.2-8.1) 1.8 (1.3-2.3) 23 1.6 (1.2-2.1) 1.4 (0.75-2.2) 1.5 (1.0-1.9)
(1.0-4.0)
D. a. divaricatus W Lake 1.8 (1.5-2.2) 0.6 (0.4-0.9) 0.8 0.4 (0.05-0.8) NA NA
Chad/D. m. atactus (0.2-1.5)
D. a. divaricatus E Lake 5.4 (4.2-6.6) 1.5 (1.1-1.9) 1.7 1.2 (0.9-1.6) NA NA
Chad/sister group (0.8-3.1)
D. m. modestus-D. m. co- 4.8 (3.8-5.9) 1.5 (1.0-2.0) 1.4 0.8 (0.4-1.3) 1.0 (0.6-1.5) 0.9 (0.5-1.3)
racinus/sister group (0.6-2.5)
D. m. modestus/D. m. co- 0.5 (0.4-0.7) NA 0.5 0.2 (0.05-0.3) NA NA
racinus (0.2-1.0)
D. apivorus/D. a. adsimi- 2.0 (1.6-2.4) 0.7 (0.5-0.9) 0.7 0.4 (0.2-0.7) 0.09 (0.03-0.16) 0.16
lis—D. a. fugax (0.3-1.3) (0.10-0.24)
D. a. adsimilis/D. a. fugax 1.4 (1.0-1.7) 0.5 (0.3-0.36) 0.7 0.3 (0.15-0.45) 0.08 (0.025-0.15 0.09
0.3-1.2) (0.06-0.13)
D. aldabranus/D. forficatus 0.35 (0.3-0.4) 0.3 NA 0.15 (0.04-0.3) NA NA
D. waldeniilD. aldabra- 4.6 (3.5-5.4) 1.3 (0.9-1.6) 1.2 1.1 (0.7-1.4) 0.6 (0.3-1.0) 0.8 (0.4-1.2)
nus—D. forficatus 0.4-2.1)
D. fuscipennis/sister group 5.1 (4.0-6.2) 1.5 (1.1-1.9) 1.2 0.9 (0.4-1.4) NA NA
(0.6-2.3)
D. macrocercus—sister taxa 6.7 (5.2-8.1) 1.8 (1.3-2.3) 2.0 1.6 (1.2-2.1) 1.4 (0.75-2.2) 1.5 (1.0-1.9)
(0.8-3.5)

NA means ‘Non Applicable’ and refers either to clade that could not be evaluated due to one lineage missing (e.g., no nuclear data available) or due to one lineage nested

in the other (e.g., D. aldabranus in D. forficatus in the ATP6 fourfold analyses).

occurring during the Pleistocene (1.6-2.3 mya). The species
trees analyses based on the nuclear data and combined nu-
clear and mitochondrial data also supported a Pleistocene
diversification for the D. adsimilis superspecies complex
(1.4-1.5 mya). The estimates from the species tree analyses
were always more recent than those based on the gene tree
sensu stricto—an expected pattern, as gene divergence pre-
cedes population divergence.
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The results from the different molecular species delimitation
methods are summarized in Table 3.

Molecular species delimitation methods

The analyses performed using the bGMYC method in-

dicated that the species-level diversity within the D. ad-
similis superspecies complex is likely underestimated.
Several lineages were recovered as specifically distinct at
the 0.05 level (Figure S5): (i) D. a. apivorus; (ii) D. a. adsi-
milis/D. a. fugax/D. a. jubaensis; (iii) western D. a. divarica-
tus/D. m. atactus; (iv) D. m. modestus/D. m. coracinus; and
(v) eastern D. a. divaricatus, as well as the three Indian Ocean
taxa; (vi) D. fuscipennis; (vii) D. waldenii; (viii) D. forfica-
tus (including D. aldabranus) and the Indo-Malayan species;
(ix) D. macrocercus. Hence, instead of two African species,
the bGMYC analyses suggest the occurrence of five putative
species in Africa.
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The mPTP analyses recovered strikingly different results,
as assuming either a single or multirate Poisson process had
a strong impact on the number of putative species, ranging
from 16 to 24; there was no difference between the maximum-
likelihood and Markov chain Monte Carlo algorithm results,
and the only significant parameter was single versus multiple
rates. Unrealistic results were recovered under the multirate
model for non-members of the D. adsimilis superspecies; for
example, D. remifer and D. aeneus were considered conspe-
cific under this scheme. We attributed these results among
Dicrurus “outgroups” to the differences in sampling schemes
between Dicrurus outgroups (one individual per species) and
members of the D. adsimilis superspecies (denser subspecies/
populations sampling). Within the D. adsimilis superspecies,
the single rate mode favoured ten species (D. a. apivorus,
D. a. adsimilis/D. a. fugax/D. a. jubaensis, western D. a. di-
varicatus, D. m. atactus, D. m. modestus/D. m. coraci-

Chad could not be

included)
divaricatus
(2) a. adsimilis

5 (a. divaricatus E Lake
modestus

(3) a. fugax/a. jubaensis

Mitochondrial/nuclear
(4) m. atactus

0 G(2,2000) 7, G(2,
2000)

(1) a. apivorus/a.

(5) m. coracinus/m.

BPP

Chad could not be
included)

0 G(1, 10) 7y, G(2, 2000)
modestus

0 G(1, 10) 7y, G(1, 10)
0 G(2,2000) 7, G(1, 10)
Mitochondrial/nuclear

6 (a. divaricatus E Lake
(1) a. apivorus

(2) a. adsimilis

(3) a. fugax/a. jubaensis
4) a. divaricatus

(5) m. atactus

(6) m. coracinus/m.

BPP

nus, eastern D. a. divaricatus, D. fuscipennis, D. waldenii,
D. forficatus/D. aldabranus, D. macrocercus) where the
multirate mode recognized only nine; in the latter model,
D. a. apivorus and D. a. adsimilis/D. a. fugax/D. a. jubaensis
were considered conspecific. In both cases, support for nine
or ten species was marginal.

The analyses performed with BPPv3.1 (Rannala & Yang,
2003; Yang, 2015; Yang & Rannala, 2010) using the mi-
tochondrial and nuclear data suggest that the nine primary
lineages within the D. adsimilis superspecies complex had
a speciation probability of one (note that D. aldabranus,
D. fuscipennis and D. a. divaricatus E Lake Chad were not
included in the BPP analyses) in all but one prior combina-
tion. Only in the analyses assuming small population size and
small divergence times were eight species recognized, with
D. a. apivorus and D. a. divaricatus emerging as conspecific
(»p = 1.0). We performed further analyses using unrealistic
priors with respect to population size where the gamma dis-
tribution was set to G (5, 10) and coupled with deep (G (1,
10) or shallow (G (2, 2000) divergence; the resulting analyses
recovered varied support for the distinction of different puta-
tive lineages, demonstrating that the algorithm was not stuck
on a local optimum, thus increasing our confidence in our
initial BPP results.

(1) a. apivorusla. adsimilis/

mPTP (multirate)
Mitochondrial
a. fugaxl/a. jubaensis
(2) a. divaricatus
(E Lake Chad)
(3) a. divaricatus
(W Lake Chad)
(4) m. atactus
(5) m. coracinus/m.
modestus

Jjubaensis
(4) a. divaricatus (W Lake Chad)

(5) m. atactus
(6) m. coracinus/m. modestus

(2) a. adsimilis/a. fugaxia.

mPTP (single rate)
Mitochondrial

(1) a. apivorus

(3) a. divaricatus
(E Lake Chad)

4 | DISCUSSION

Lake Chad)
(5) m. coracinus/m. modestus

Jjubaensis
(3) a. divaricatus (E Lake Chad)

(4) m. atactus/a. divaricatus (W

Our analyses revealed unexpected biogeographic patterns,
phylogenetic relationships and levels of divergence among
the primary lineages of the sub-Saharan African members of
the Dicrurus adsimilis superspecies complex. Although dis-
tinct lineages/clades could be defined with confidence, the
relationships among these lineages and their Indian Ocean
and Indo-Malayan relatives (the D. adsimilis superspecies
complex sensu lato) were poorly resolved in the species tree

(2) a. adsimilis/a. fugax/a.

Mitochondrial
(1) a. apivorus

5

bGMYC

Summary of the molecular species delimitation results within the D. adsimilis superspecies. For clarity, only Afrotropical taxa are shown. Note that for BPP, D. m. modestus and

Number of species
recognized

D. m. coracinus, and D. a. fugax and D. a. jubaensis were considered conspecific (no nuclear data were available for D. m. coracinus and D. a. jubaensis)
Data type

TABLE 3
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analyses using five loci. Pasquet et al. (2007), in their con-
catenated analyses using a slightly different gene sampling
strategy, recovered the same general pattern with a lack of
support among lineages within the D. adsimilis superspe-
cies complex. This lack of resolution is likely attributable
to several cladogenetic events occurring over a short period
of time, thereby making the order of divergence events a
challenging problem to resolve. Our present results suggest
(Figure 2) that the D. adsimilis superspecies complex diver-
sified into seven to nine primary lineages between 1.5 and
2.3 mya, with one lineage occurring in the Indo-Malayan re-
gion (D. macrocercus), three in the Indian Ocean (D. walde-
nii, D. fuscipennis and D. aldabranus/D. forficatus) and three
to five in Africa (D. m. atactus, D. m. coracinus/D. m. mod-
estus, D. a.divaricatus E and W of Lake Chad, and
D. a. adsimilis/D. a. apivorus/D. a. jubaensis). This uncer-
tainty in the number of lineages is due to the non-monophyly
and complex relationships of the D. a. divaricatus popula-
tions sampled E and W of Lake Chad. As in Pasquet et al.
(2007), our analyses did not recover any consistent support
for the monophyly of the Indian Ocean taxa, implying multi-
ple colonization events from the continent or recolonization
of the mainland, a pattern found in several other songbird lin-
eages from this region (e.g., Bristol et al., 2013; Fabre et al.,
2012; Fuchs et al., 2008; Warren, Bermingham, Bowie, Prys-
Jones, & Thébaud, 2003; Warren, Bermingham, Prys-Jones,
& Thébaud, 2006).

Within the D. adsimilis superspecies complex, neither
of the two currently recognized species (D. modestus and
D. adsimilis) are monophyletic. This result is similar to that
recovered among members of the D. ludwigii superspecies
complex (Fuchs, Fjeldsd, etal., 2017). Within the D. ad-
similis superspecies complex, we recovered four primary
sub-Saharan mitochondrial lineages that strongly reflect
geography.

The first lineage (D. a. divaricatus/D. m. atactus) is
restricted to western Africa, extending from Nigeria to
Senegal. This lineage is itself divided into two primary clades
distinguished by habitat preference (D. adsimilis divaricatus
in savannah and D. m. atactus in forest). The second lin-
eage comprises all individuals sampled in the savannah east
of Lake Chad (part of D. a. divaricatus). The third lineage
comprises all individuals sampled in the forests of the Lower
Congo Forest Block (D. m. coracinus; Uganda, Cameroon,
Republic of Central Africa, Gabon, DR Congo) and on
Principe Island (D. m. modestus) in the Gulf of Guinea.
Finally, the fourth lineage comprises all individuals sampled
in the savannah and woodlands of eastern (Kenya, Tanzania,
Somalia, southern Ethiopia), central (Malawi, southern DR
Congo) and southern (Zimbabwe, South Africa, Namibia,
Botswana) Africa. The latter clade consists of three to four
subclades that also have a strong taxonomic and geographic
component: D. a. jubaensis (southern Ethiopia and Somalia),

D. a. apivorus (central and southern Africa), D. a. adsimilis
(coastal southern Africa) and D. a. fugax (Kenya to South
Africa extending through Malawi, southern DR Congo and
Zimbabwe). One individual (MNHN CG 1968-355, Kolwezi,
DR Congo) clustered with the D. a. jubaensis clade, although
with little support.

4.1 | Divergence in the Lower Guinea
Forest Block

Our analyses revealed that the populations from Principe
Island (D. m. modestus) and its sister lineage from the Lower
Guinea Forest Block (D. m. coracinus) are only weakly dif-
ferentiated in mitochondrial DNA (no nuclear DNA was
available for the continental lineage). At first glance, this
result is surprising as the two taxa differ markedly in biom-
etric measurements (especially in bill and tail characteristics;
de Naurois, 1987; J. Fuchs, unpubl. data), suggesting that
morphological changes occurred very quickly on the island
due to character release or that there is strong selection and
canalization of development due to interspecies competition
on the mainland. Such a pattern of rapid morphological dif-
ferentiation coupled with low genetic differentiation has also
been highlighted in other lineages of birds (Heron Island
silvereyes; Clegg, Frentiu, Kikkawa, Tavecchia, & Owens,
2008).

Interestingly, and counter to several other forest-
associated lowland African species (e.g., Fuchs & Bowie,
2015; Fuchs, Fjeldsa, et al., 2017; Fuchs, Pons, et al., 2017,
Huntley & Voelker, 2016), the Principe/Lower Guinea for-
est block lineage (D. m. coracinus/D. m. modestus) was not
recovered as sister to the Upper Guinea Forest block lineage
(D. m. atactus). In all classification schemes, D. m. atactus
has been considered conspecific with the Lower Guinea
Forest Block populations (e.g., Gill & Donsker, 2016; Vaurie,
1949). However, Vaurie (1949) did notice that D. m. atactus
showed divergent plumage characters from D. a. coracinus
(primaries never as sombre, immature plumage being more
barred below), and in some characters, the taxon resembles
D. a. divaricatus or “D. a. adsimilis” (Vaurie, 1949 did not
distinguish adsimilis from fugax, and apivorus was not de-
scribed). Vaurie (1949) considered atactus to be intermediate
between adsimilis/divaricatus and coracinus. Our analyses
revealed that D. m. atactus is distinct from all other taxa in
the D. adsimilis superspecies complex.

No discrete mitochondrial genetic structure was de-
tected among sampled individuals of D. m. coracinus,
despite sampling the range boundaries of its distribution.
This lack of mitochondrial structure among populations is
sometimes recovered for various lineages of flying verte-
brates (birds: Bowie, Fjeldsa, Hackett, & Crowe, 2004a;
Fuchs & Bowie, 2015; Fuchs, Fjeldsa, et al., 2017; Fuchs,
Pons, et al., 2017; bats: Nesi et al., 2013). However, despite
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the above examples—the absence of genetic divergence
across the Lower Guinea Forest Block—is uncommon in
comparison with most vertebrates including several bird
species (e.g., Antony et al., 2007; Bell et al., 2015; Gonder
et al.,, 2011; Hassanin et al., 2015; Leaché, Fujita, Minin,
& Bouckaert, 2014; Marks, 2010; Nicolas et al., 2008;
Schmidt, Foster, Angehr, Durrant, & Fleischer, 2008;
Voelker et al., 2013) and plants (Duminil et al., 2015).
These studies typically reveal at least two primary lineages
across the Lower Guinea Forest Block. We suggest that
these differences in the levels of genetic structure among
different vertebrates reflect differential dispersal capacities
among lineages, where birds of the mid-storey or canopy
(e.g., drongos) are less sensitive to habitat fragmentation
than are understorey birds or terrestrial mammals, reptiles
or amphibians (see Burney & Brumfield, 2009 for an ex-
ample of Neotropical birds).

4.2 | Divergence across the
Northern Savannah

In D. a. divaricatus, a deep divergence was recovered
across the Northern Savannah, with two mitochondrial line-
ages delimited by Lake Chad and which are only distantly
related in the mitochondrial topology; populations sampled
west of Lake Chad are sister to D. m. atactus, whereas indi-
viduals east of Lake Chad and extending to southern Sudan
are more closely related to the eastern/southern African
and Indian Ocean lineages (Figure 2a). This result is at
odds with traditional taxonomy, as individuals collected
east and west of Lake Chad have been considered morpho-
logically homogeneous (Vaurie, 1949), a hypothesis that
would have been more consistent with that recovered for
the Fiscal Shrike species complex, where there is limited
mitochondrial differentiation from eastern Sudan to Guinea
(Fuchs, Crowe, et al., 2011). In contrast, studies of mam-
mals (Brouat et al., 2009; Dobigny et al., 2013) and other
bird species (Fuchs & Bowie, 2015; Fuchs, Fjeldsa et al.,
2016) have recovered deep genetic breaks around the Lake
Chad/Niger River system. The variation in avian diversity
across Africa shows a distinct drop in species diversity
east of the Lake Chad basin (Rahbek, Hansen, & Fjeldsa,
2012). This region mainly reflects range disjunctions where
widespread savannah species (and notably those associated
with wetlands and mesic habitats) are absent or very locally
distributed, between the western Niger—Kano—Chad drain-
age and the drainage system of the Nile and East Africa.
Western Chad is also a zone of west—east replacement for
numerous avian sister taxa (e.g., Peliperdix albogularis and
P. coqui versus P. schlegeli, Lybius dubius versus L. rolleti,
Poicephalus senegalus versus P. meyeri, Crinifer pisca-
tor versus C. zonurus, Laniarius barbarus versus L. ery-
thogaster, Batis senegalensis versus B. orientalis, and
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Cisticola rufus versus C. troglodytes). In addition, substan-
tial genetic differentiation of populations was recently high-
lighted for the woodpeckers Campethera punctuligera and
Dendropicos obsoletus (Fuchs, Pons, et al., 2017). All this
suggests a significant frequency of historical connectivity
breaks between populations distributed west and east of the
Lake Chad basin.

Yet, the pattern recovered for D. a. divaricatus appears
much more complex. The nuclear and species tree analy-
ses recovered D. a. divaricatus individuals sampled west
of Lake Chad as sister to the eastern and southern African
subspecies (D. a. apivorus/adsimilis/fugax; Fig 2B, C), sug-
gesting the monophyly of D adsimilis as currently defined. In
contrast, mitochondrial data suggested that they are related
to the Upper Guinean Forest-endemic D. m. atactus. Hence,
the mitochondrial and nuclear results strongly conflict with
one another. Two processes could explain this result: (i) in-
complete lineage sorting of ancestral polymorphism or (ii)
hybridization. Incomplete lineage sorting of ancestral poly-
morphism could have occurred during the initial radiation of
the D. adsimilis superspecies in which all primary lineages
appeared. If lineage sorting were the main cause, we would
expect similar or almost identical divergence times among
the nuclear and mitochondrial data. This is not the observed
pattern. Instead, we recovered much more recent mitochon-
drial divergence times. We suggest that this discrepancy is
due to hybridization between members of D. m. atactus and
the western population of D. a. divaricatus, with capture of
the D. m. atactus mitochondria by D. a. divaricatus west of
Lake Chad, and further that this hybridization lasted until
approximately 0.5 mya (corresponding to the divergence be-
tween the two mitochondria lineages). Examples of hybrid-
ization and gene flow between taxa at the forest—savannah
interface in Africa have been described for elephants (e.g.,
Mondol et al., 2015), and for birds there is also evidence
for such processes in other savannah systems (Shipham,
Schmidt, Joseph, & Hughes, 2016). It is striking that during
the past 0.5 myrs the two primary D. a. divaricatus haplotype
lineages remained strongly geographically segregated and
that this segregation corresponds to a previously described
biogeographic barrier (Lake Chad), which suggests that the
two D. a. divaricatus populations distributed on either side
of the Lake Chad basin might have achieved reproductive
isolation. This putative reproductive isolation could either
have resulted from classic allopatric divergence where the
two lineages accumulated sufficient genetic differentiation
leading to incompatibility upon secondary contact, or alter-
natively due to cytoplasmic incompatibility. In this instance,
the populations west of Lake Chad might carry an incompat-
ible mitochondrion from D. m. atactus in combination with
the nuclear genomic background of populations east of Lake
Chad. Whether this is the case, however, remains to be tested
(Hill, 2017).

Zoologica Scripta &
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4.3 | Diversification across Eastern and
Southern sub-Saharan Africa

All analyses revealed a strongly supported clade consisting of
all lineages found in eastern and southern Africa. Depending
on the type of loci analysed (mitochondrial or nuclear), this
group may also be closely associated with D. a. divaricatus
of the northern Savannah zone. Our data revealed three (D.
a. apivorus, D. a. adsimilis, D. a. fugax) or four (D. a. jubae-
nsis) clades within the eastern/southern lineage. The putative
fourth clade (D. a. jubaensis) included four individuals (three
collected in Ethiopia/Somalia in July/August and one in
southern DR Congo in January) that were differentiated from
the three other primary lineages. The range of this latter clade
corresponds to the range of the taxon jubaensis van Someren,
1931 in southern Ethiopia and Somalia. The latter taxon, not
recognized by Vaurie (1949), was thought to be more closely
related to the populations of the Sudanian savannah belt
(D. a. divaricatus). Our results suggest that the Ethiopian/
Somalian populations could be more closely related to the
populations of the eastern and southern savannahs, a pattern
consistent with genetic structure in Bushbuck (Tragelaphus
scriptus; Moodley & Bruford, 2007) but not Giraffe (Giraffa
sp., Fennessy et al., 2016), suggesting that lineages distrib-
uted in the north-eastern African savannahs have mixed phy-
logeographic histories. The sister-group relationship of one
individual (MNHN CG 1968-365) from southern DR Congo
to the three Ethiopian/Somalian specimens was more surpris-
ing, but consistent with phylogeographic pattern recovered
for the Bushbuck, where individuals from Kenya/Somalia
cluster with those from Zambia (Moodley & Bruford, 2007).

There is also a suggestion that the range of D. a. fugax
haplotypes overlap with the range of D. a. adsimilis and
D. a. apivorus, potentially indicative of the merging of the
different lineages. We recovered widespread haplotype shar-
ing among distant localities (e.g., Kenya/Bostwana or Kenya/
South Africa). Although this result could be due to high lev-
els of gene flow and homogenization in D. a. fugax, it could
also be explained by seasonal migratory movements of some
populations. Interestingly, specimens that shared the mixed
haplotypes were all collected at different times of the year:
February—March for Kenya, and October—November for
South Africa/Botswana, and June for intervening countries
(e.g., Malawi).

4.4 | Africa as a model for speciation driven
by divergent ecology

The large-scale biogeographic pattern (western, central,
southern/eastern) recovered for the D. a. adsimilis super-
species complex has similarities to that recovered for the
Square-tailed/Shiny Drongo species complex (D. ludwigii;
Fuchs, Fjeldsa, et al., 2017), as well as that of the Fiscal

Shrike species complex (Lanius collaris; Fuchs, Crowe,
etal., 2011). Indeed, most of the divergence time analyses
indicated that widespread sub-Saharan bird lineages diver-
sified across habitat boundaries (forest, dense woodland/
Miombo and open savannah) slightly after the beginning of
the Pleistocene (2.3—-1.5 mya; e.g., this study, Fuchs, Crowe,
et al., 2011; Fuchs, Fjeldsa, et al., 2017). These divergence
time estimates are similar to those recovered for other ver-
tebrates (e.g., Moodley & Bruford, 2007), although some
analogous instances of divergence could have happened ear-
lier (e.g., forest and savannah elephants 2.6-5.6 mya; Roca
etal., 2015; crombecs 2.8-5.8 mya; Huntley & Voelker,
2017). Hence, it appears that divergence across habitat gra-
dients (i.e., a model of speciation by diversification across
broad continental ecotones) has occurred several times over
Africa’s history and has likely played an important role in
generating the rich, contemporary bird diversity on the
continent.

4.5 | Plumage evolution and the
importance of habitat in diversification

Common findings of most African phylogeographic stud-
ies of widespread bird species complexes are the discrep-
ancies between traditional taxonomy and evolutionary
relationships as uncovered using molecular data, and the
concordance of molecularly defined clades/lineages with
geographic barriers. Further, a consistent surprise has been
the recovery of readily diagnosable species with distinct
plumage characters that occupy distinct habitats being
nested within more broadly distributed species: Lanius sou-
zae or L. mackinnoni for Lanius collaris, D. atripennis for
D. ludwigii, mutual paraphyly of D. adsimilis and D. mod-
estus; Fuchs, Crowe, etal., 2011; Fuchs, Fjeldsa, et al.,
2017, this study).

In the Dicrurus adsimilis superspecies complex, species
are primarily discriminated by mantle and upperpart color-
ation in the context of the habitat the species occupies (forest:
velvet blue, open habitat: steel greenish blue; Vaurie, 1949).
Recent phylogeographic studies of sub-Saharan African ver-
tebrates have indicated that widespread and often morpho-
logically uniform species are typically paraphyletic, with
one of the lineages being closely related to a species with a
drastically different phenotype and inhabiting a different, yet
geographically proximal biome (Fuchs, Crowe, et al., 2011;
Moodley & Bruford, 2007; Oatley et al., 2012).

The pattern we highlight may have two implications
for our understanding of the evolution of African birds.
First, habitat appears to exert a strong selective pressure
on plumage; unrelated bird species or highly differenti-
ated lineages that occur in the same habitat type are more
morphologically similar to each other than to phylogenet-
ically closer lineages occurring in different habitats. This
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reinforces the view that plumage traits can be poor indi-
cators of phylogenetic relationships (e.g., Alstrom et al.,
2014; Christidis, Rheindt, Boles, & Norman, 2010; Shultz
& Burns, 2013), but reasonable indicators of genetic di-
vergence (Christidis et al., 2010). Secondly, diversification
and possibly speciation is potentially tightly linked to spe-
cialization to a particular habitat, a process which appears
to be a common mechanism underlying the divergence of
many sub-Saharan Africa vertebrates (e.g., Moodley &
Bruford, 2007; Oatley et al., 2012; Roca et al., 2015; da
Silva & Tolley, 2017).

4.6 | Taxonomic recommendations

Our phylogenetic and species delimitation analyses con-
firmed the validity of all recognized subspecies, but the
phylogenetic relationships among taxa depart consider-
ably from traditional taxonomy (Table 1). Based on our
results, it is clear that the current species limits within
the D. adsimilis superspecies complex are still in need of
further work. Our data strongly suggest that D. modestus
atactus and D. m. coracinus/D. m. modestus are distinct
species that are differentiated and not directly related
in the mitochondrial and nuclear data sets. Both the
bGMYC and mPTP species delimitation methods sug-
gest that D. m. modestus and D. m. coracinus should be
considered conspecific, at least from a genetic perspec-
tive. Determining the taxonomic status of several taxa
distributed across the African savannah belt will require
more data, particularly for the D. a. divaricatus popula-
tions east and west of Lake Chad for which our analy-
ses suggest that the individuals sampled from northern
Cameroon and extending to southern Sudan may war-
rant recognition at the species level. The type locality of
D. a. divaricatus is in Senegambia; thus, this name should
apply to the clade formed by all individuals collected
in the western savannas, from Senegal to Nigeria. The
subspecies lugubris (type locality: Ambukol, Dongola,
Sudan; Hemprich and Ehrenberg 1828) has been con-
sidered synonymous with divaricatus by all taxonomists
since Vaurie (1949). Here, we propose to resurrect this
name for the populations distributed in the savannah
zone from Lake Chad to Ethiopia but suggest that it is
better recognized as a subspecies of D. divaricatus until
further data are available. Similarly, most molecular spe-
cies delimitation methods we used suggested that the last
taxon described in the superspecies complex, D. a. apiv-
orus, may also be distinct at the species level from the
other eastern and southern subspecies (D. a. adsimilis,
D. a. fugax and D. a. jubaensis), although support for
this split depends on the methods and prior assump-
tions used. The D. apivorus species would be parapatric
with at least two or three taxa distributed across biomes
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boundaries, a result similar to that recovered for south-
ern African white eyes (Zosterops sp., Oatley, Bowie,
& Crowe, 2011; Oatley et al., 2012; Oatley, De Swardt,
Nuttall, Crowe, & Bowie, 2017). The determination of
the extent of hybridization between D. a. adsimilis and
D. a. fugax will also be decisive in ascertaining their
taxonomic status.

Based on our phylogenetic results, we propose a new clas-
sification and taxonomy for the D. adsimilis taxa distributed
in sub-saharan Africa.

Dicrurus atactus Oberholser, 1899. Distribution: Sierra
Leone to SW Nigeria

Dicrurus modestus Hartlaub, 1849

D. modestus modestus Hartlaub, 1849. Distribution:
Principe I. (Gulf of Guinea)

D. modestus coracinus J Verreaux and E. Verreaux,
1851. Distribution: SE Nigeria to Kenya, C DR Congo
and NW Angola

Dicrurus divaricatus M. H. C. Lichtenstein, 1823

D. divaricatus divaricatus M. H. C. Lichtenstein, 1823.
Distribution: Mauritania to Guinea E to Lake Chad

D. divaricatus Ilugubris (Hemprich & FEhrenberg,
1828). Distribution: Lake Chad east to Somalia and
N Kenya

Dicrurus apivorus Clancey, 1976. Distribution: se Gabon
and Congo to n South Africa

Dicrurus adsimilis Bechstein, 1794.

D. adsimilis adsimilis Bechstein, 1794. Distribution: W
Swaziland and E and S South Africa

D. adsimilis fugax W. K. H. Peters, 1868. Distribution:
Uganda and Kenya S to NE South Africa and
Swaziland

D. adsimilis jubaensis van Someren, 1931. Distribution:
Somalia, Ethiopia, S DR Congo
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