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Abstract.

No species can persist in isolation from other species, but how biotic interactions affect

species persistence is still a matter of inquiry. Is persistence more likely in communities with higher
proportion of competing species, or in communities with more positive interactions? How do different
components of community structure mediate this relationship? We address these questions using a
novel simulation framework that generates realistic communities with varying numbers of species and
different proportions of biotic interaction types within and across trophic levels. We show that when
communities have fewer species, persistence is more likely if positive interactions—such as mutualism
and commensalism—are prevalent. In species-rich communities, the disproportionate effect of positive
interactions on persistence is diluted and different combinations of biotic interaction types can coexist
without affecting persistence significantly. We present the first theoretical examination of how multi-
ple-interaction networks with varying architectures relate to local species persistence, and provide
insight about the underlying causes of stability in communities.
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INTRODUCTION

Persistence of multicellular organisms depends on interac-
tions with other organisms, whether they be in the form of
energy intake, use of habitats created by other species, assis-
tance in reproduction by directed dispersal of genetic material,
or countless other examples (Bascompte and Jordano 2007).
Ecological communities can be represented as networks,
whereby species or guilds are nodes connected by links repre-
senting interactions (Proulx et al. 2005). Pairwise direct inter-
actions can have positive, negative or neutral effects on the
species involved, and this classification gives rise to five gen-
eral types of interactions: amensalism (—,0), antagonism
(+,—), commensalism (+,0), competition (—,—) and mutualism
(+,+). Despite the wealth of empirical observations of biologi-
cal interactions in nature, there still exists limited understand-
ing of the frequency with which different types of biotic
interactions occur in communities, and the consequences for
community structure and functioning. For example, is the fre-
quency of interaction types in communities related to overall
persistence of species locally? Does the structure of the differ-
ent interaction types play a role in increasing the odds of spe-
cies persistence? Answering these and other questions has
been hampered by difficulties in simultaneously sampling dif-
ferent interaction types in natural systems. Consequently,
most studies have been based on observations of single inter-
action types within networks, which obviously has limited the
ability to generalize beyond particular cases.

This fundamental gap in the understanding of ecological
networks has been largely acknowledged (Strauss and Irwin
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2004, Agrawal et al. 2007, Ings et al. 2009, Fontaine et al.
2011), and there is increasing evidence that accounting for
different interaction types generates novel insights on the
structure and dynamics of ecological communities (Pilosof
et al. 2017, Garcia-Callejas et al. 2018). Analyses of net-
works with multiple interaction types have already been
applied, for example, to investigate the distribution of the
different interaction types and its relationship with species
traits (Kéfi et al. 2015, 2016) or the robustness of communi-
ties to local extinctions and habitat loss (Pocock et al. 2012,
Evans et al. 2013). Recent studies have also focused on
investigating the relationship between the diversity of inter-
action types and several facets of community stability, often
reaching different conclusions over this relationship. For
example, it has been proposed that (1) mixing of interaction
types generally increases local stability of model communi-
ties (Mougi and Kondoh 2012, 2014, Kondoh and Mougi
2015), (2) mixing of interaction types generally decreases
local stability of model communities or increases the number
of functional extinctions (Suweis et al. 2014, Sellman et al.
2016), or (3) structural factors of the different sub-networks
enhance or decrease their stability (Melidn et al. 2009, Sauve
et al. 2014, 2016). The conflicting results over this funda-
mental question can be explained by the sheer diversity of
modeling assumptions, structural constraints, and varying
sets of interaction types included in the studies. For example,
several studies (Melian et al. 2009, Sauve et al. 2014, 2016)
analyzed communities consisting of only antagonistic and
mutualistic interactions in which a central group of species
(usually plants) is the guild connecting the mutualistic (e.g.
plant-pollinator) and antagonistic (e.g. plant-herbivore) net-
works. Other studies considered model communities with
only basic rules about food web structure (Mougi and Kon-
doh 2012, Suweis et al. 2014). A common feature of most
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studies is that, with the exception of Mougi (2016b), their
models did not consider the five general interaction types
concurrently. However, Mougi (2016b) only analyzed ran-
dom interaction matrices in his model, making his conclu-
sions difficult to contrast with those of other studies that
assumed stronger structural constraints. The role of species
richness in mediating community stability also has been
extensively studied in single-interaction networks, and ana-
lytical derivations have been produced for idealized condi-
tions in mutualism-competitition networks (Allesina and
Tang 2012). In most cases, theory shows that increasing
richness decreases local stability of random networks, but it
is unclear how species richness mediates different facets of
stability in networks with more complex structures and vary-
ing proportions of interaction types.

All in all, while approaches assessing the local stability of
random interaction networks have important heuristic value
(Allesina and Tang 2012, Allesina et al. 2015), such randomly
assembled networks lack key structural patterns found in real
communities (Jacquet et al. 2016). Furthermore, local stabil-
ity analyses have little concordance with non-equilibrium
dynamics of real systems (Pimm 1982, Chen and Cohen
2001), which limits their predictive ability. The equilibrium
assumption is further ingrained in most interaction models
by assuming that interactions occur with a constant strength
coefficient. This assumption is widely used for convenience
despite repeated claims against its realism (Abrams 1980,
2001, Hernandez 1998, Holland and Deangelis 2009). Here
we address all the above-mentioned shortcomings and investi-
gate whether the frequencies of the five biotic interaction
types affect persistence of species in communities with vary-
ing species richness. We generate model networks informed
by empirical observations on distributions of species abun-
dances across trophic levels, link topology, and develop a
measure of the impact that a species has over another based
not on static interaction coefficients, but on species abun-
dances and their associated frequency of interaction. With
this model design, and by performing a comprehensive set of
simulations, we ask the following questions: (1) Is species per-
sistence affected by the frequency of the different interaction
types in model communities? If so, does community richness
mediate this relationship? (2) Which types of biotic interac-
tions are more likely to be lost, as species go locally extinct?
Lastly, given the unfeasibility of validating our predictions
with empirical data, we indirectly test the validity of our
model by asking: (3) does our model generates community-
level patterns consistent with those of empirical networks?

METHODS

We designed a dynamic network model accounting for the
five possible types of pairwise interactions (antagonism,
amensalism, commensalism, competition, and mutualism),
whereby the impact of a species over another is character-
ized by the abundances of the species involved. Accounting
for different interaction types meant that a trophic level dis-
tribution of species had to be specified a priori, as we
expected different interaction types to be distributed
unevenly across trophic levels. Furthermore, the modeling
of pairwise interactions in our model is closely linked to
the abundances of the interacting species, so we imposed
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non-random initial abundance values. In particular, we
assembled our model communities with three assumptions:

1. The initial Species Abundance Distribution of the overall
community follows a hollow curve.

2. The initial abundances of the different trophic levels vary
with a power-law scaling.

3. The distribution of interaction types within and across
trophic levels is non-random.

In the following sections, we describe these assumptions
and the methodology for incorporating them in the commu-
nity assembly process. Then, we specify the implementation
of the dynamic interactions model and the simulations per-
formed. The main response variable obtained from our sim-
ulations is the ratio of persistent species in our model
networks. Thus, in the context of the present study, we
define community persistence as the ratio between initial
(denominator) and final (numerator) number of species in a
simulated community. Persistence values can therefore range
from O (all initial species have died out by the end of the sim-
ulation) to 1 (all species show positive abundances at the
end of the simulation).

Abundance distribution of the overall community

Each species within a model community was assigned an
initial abundance by drawing random samples from a gam-
bin distribution. The gambin is a distribution with a single
free parameter that provides a similar or better fit to empiri-
cal SADs than classic choices such as the lognormal or the
logseries (Matthews et al. 2014). A value of oo = 2 was given
to generate the initial SADs.

Abundance scaling across trophic levels

Species were distributed among four trophic levels (a basal
one consisting on primary producers and three consumer
levels), which is a number commonly found in empirical com-
munities (Ulanowicz et al. 2014). Assignment of species into
each trophic level was made following the findings of Hatton
et al. (2015), who showed that for herbivore-predator trophic
guilds, biomass distribution follows a power law with expo-
nent ~0.75. These authors generalized the scaling rule to the
abundance of species at each trophic level since, for most
predator-prey couplings, weak relationships between body
mass and community biomass were found. As a starting work-
ing hypothesis for the simulations, we extended Hatton et al.’s
(2015) scaling rule to the four trophic levels considered.

Distribution of interaction types within communities

The different types of biotic interactions are unlikely to be
uniformly distributed in nature. Yet little is known regarding
the varying proportion of interaction types within communi-
ties or trophic levels (Dodds 1997), let alone about changes
in such proportions across communities, or the effects of
varying proportions of interaction types on mechanisms of
community assembly.

A first step towards examining the frequency distribution
of the different interaction types in a community with several
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discrete trophic levels is to consider the sign matrix of the
community, S, assuming that interaction signs are kept con-
stant within the spatial and temporal limits of the study, and
with varying abundances. We hypothesize that the relative fre-
quency of each interaction type in S will be influenced by the
number of species in the different trophic levels, as different
interaction types will have different probabilities of occurring
among species belonging to the same or different trophic
levels. In order to check this working hypothesis, we under-
took an extensive survey of literature on biotic interactions
and compiled the extent to which the five general interaction
types (amensalism, antagonism, commensalism, competition,
mutualism) are documented to occur between species of the
same, adjacent, or non-adjacent trophic levels. Specifically,
we performed a search in the Web of Science for studies pub-
lished from 1991 to 2015, including the terms ‘“ecology”
AND “interaction” AND “interaction type” (see also Mor-
ales-Castilla et al. 2015). We reviewed studies documenting
direct pairwise interactions and annotated the trophic level of
the species involved. For competition, antagonism (predation
OR herbivory), and mutualism, we included ca. 100 papers.
For commensalism and amensalism the list of suitable studies
was more reduced (67 studies on commensalism and only 12
on amensalism). We constrained the results by discarding
interactions involving microorganisms, fungi, parasites or
parasitoids, owing to the overall difficulty of classifying these
groups into clear cut trophic levels. The list of selected studies
is available in Appendix S1: Table S4. The resulting relative
frequencies (Fig. 1) were incorporated as a last constraint in
the model in the form of probabilities of pairwise interactions
taking place within a single trophic level, adjacent, or other
trophic levels.

For estimating the number of links of each species, we fol-
lowed the constant connectance hypothesis (Martinez 1992).
Thus, we assumed no variation in connectance levels with ini-
tial community size, imposing C = 0.5 for every simulation,
where connectance is defined as the ratio between realized
and potential interactions in the network. This value was
chosen so that specific connectances of the different interac-
tion types (see Appendix S4) ranged between 0.07 and 0.2,
values consistent with empirical estimates of mutualistic and
antagonistic connectance (Thébault and Fontaine 2010).

With the probabilities of interaction occurrence across
trophic levels (Fig. 1) and connectance values of the net-
work, we constructed the sign matrices of our model com-
munities stochastically: for each link, first its interaction
type is selected; second, the trophic levels affected by that
interaction are chosen according to the probabilities of
interaction occurrence; and third, the specific species are
randomly chosen. This process ensures that, on average, sign
matrices will reflect the probabilities of Fig. 1, while allow-
ing for an intrinsic component of variability in each particu-
lar matrix. The full community assembly process is
explained in detail in Appendix S1.

A framework for modeling dynamic interactions

The realization and outcome of direct pairwise interactions
is dependent on three classes of mechanisms (Poisot et al.
2015): First, the frequency of stochastic encounters of indi-
viduals mediated by their relative abundances. Second, the
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interactions for each interaction type. When the trophic level of the
interacting species was not explicitly alluded to, we assumed that (1)
species of the same taxonomic group belong to the same trophic
level (e.g., isopods), (2) omnivory represents feeding on both “adja-
cent” and “other” trophic levels, (3) pollinators and seed dispersers
are “adjacent” to plants. Nuymensatism = 12, Nantagonism = 135 (123 of
adjacent trophic levels, 10 of other, 2 of same), Ncommensalism = 635
(44 of same trophic level, 20 of adjacent, 1 of other), Neompetition =
97 (95 of same trophic level, 2 of adjacent), Npuyatism = 113 (94 of
adjacent trophic levels, 11 of same, 9 of other).

matching of traits between individuals that establish contact.
Third, other factors such as environmental constraints or the
influence of higher order interactions with other species.
Hence, empirical measurements of interactions show a high
degree of variability explained, partly, by density-dependent
mechanisms (Aizen et al. 2014), by trait matching (Santa-
maria and Rodriguez-Gironés 2007) or by environmental fac-
tors (Mazia et al. 2016, Poisot et al. 2017). This inherent
variability on both the sign and the strength of interactions
has hardly been explored in community dynamic models,
even if the assumption of static interaction sign and strength
is known to be unrealistic (Abrams 1980, 2001, Hernandez
1998, Holland and Deangelis 2009). The importance of each
mechanism in explaining observed patterns of interaction
strengths is currently under debate. In plant-pollinator net-
works, for example, the net impact of a species over another
is significantly related to the frequency of interaction
(Vazquez et al. 2005, 2012), and to the abundances of the
interacting species (Vazquez et al. 2007), but not in all cases.
A neutral model of interactions can also reproduce structural
patterns observed in empirical food webs (Canard et al.
2012). On the other hand, trait-matching has been shown to
accurately reproduce network structure in different types of
networks (EkIof et al. 2013), and also outperforms neutral
interaction frequency for predicting network structure in
some empirical networks (Vizentin-Bugoni et al. 2014, Saza-
tornil et al. 2016). However, another recent study showed
that while abundances and traits can predict network
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structural patterns, they were not generally able to predict the
realization of specific interactions in a plant-pollinator net-
work (Olito and Fox 2014). Finally, higher-order influences
on interaction occurrence and strength, in particular environ-
mental forcing, are a main focus of Stress Gradient Theory
(Maestre et al. 2009) and Environmental Stress Models
(Menge and Sutherland 1987), but an integration of these
frameworks with the recent advances on multi-trophic, multi-
ple interactions networks is still lacking.

We modeled the impact of a species over another by con-
sidering the first of these three mechanisms, i.e., the stochas-
tic encounters between individuals of two populations
driven by their abundances. This process is the only one that
can be generalized to any interaction and community type
without considering further, specific assumptions about trait
distributions or the role of environmental covariates. Thus,
in our modeling framework, the impact of a species over
another is only dependent on the frequency of interaction
between the two species, which in turn depends on their net
abundances. As our approach is fundamentally different to
that of models with static interaction strength coefficients,
we refer to the interaction strength in our model as species
impact (a population-level effect, Vazquez et al. 2012).

In formulating species impact, we followed Poisot et al.
(2015) and considered it a product of interaction frequency
by an interaction strength term:

I,'J = IF,’J X IS,’J (1)

The IF function derives the net frequency of interactions
between two populations in a given time interval from their
local abundances. We assume that (1) the maximum poten-
tial interaction frequency will equal the population density
of the least abundant species, and (2) interaction frequency
saturates asymptotically, as one or both abundances
increase. It takes the form:

1

IFI-!]- = mm(NnN/)l + e—a(max(N,»‘N,»)—xo)

2

The a parameter adjusts the saturating behavior of the
function (i.e., its steepness), so that a higher value of a implies
that the IF function saturates at lower abundances of both
populations, i.e., interactions are comparatively more com-
mon. Parameter x, indicates the abscissa of the midpoint for
the logistic part of the function, and was kept for reference.

The IS function (for interaction strength) models the sign
and strength of per capita interactions of species j over spe-
cies i. This function was defined just as the sign of the pair-
wise interaction times a scaling factor for differentiating
interaction types. For example, a scaling of 1 indicates that
the maximum effect of species j over species i is of the same
order of magnitude as the population growth rate. There-
fore, we defined the IS function simply as:

IS[‘_j = 8 X k, (3)

where s;; is the sign of the effect of species j over species 7,
and k, is the scaling factor for an interaction of type z.

We incorporated Eq. 1 to a population dynamics model
based on the recent extensions to the logistic growth
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equation by Garcia-Algarra et al. (2014). Their formulation
averts a known divergent behavior of the r-k classic form of
the logistic equation and is sufficiently simple while being
able to reproduce the complexity of more elaborate models
in terms of fixed points and stabillity of the dynamics. Con-
sider a community of n species. The model has the form:

dN;
dt

= riN; 4)

whereby all extrinsic effects — environmental, biotic interac-
tions — fall on the intrinsic growth rate r;. This allows the
comparison between the strength of different interactions,
i.e., it is an example of an equal footing network (Garcia-
Callejas et al. 2018). The effective growth rate is modeled as:

. = 0 n PR . . n P .
ri = Vl- + j:l,j;éfIW (OLI + Cj Zj:l,/#ill‘J)Nl (5)
where r¢ is the intrinsic growth rate, o is the friction term that
regulates the asymptotic behavior of the function, ¢; is a propor-
tionality constant, and /;; is the impact function from Eq. 1.

Simulations

We generated theoretical communities with 20,40, and 60
initial numbers of species that corresponded to overall abun-
dances of around 2,395, 4,640 and 6,850 individuals, respec-
tively. For each richness level, we defined six types of
communities according to the frequency with which the differ-
ent interaction types occurred: equal ratio type with relative
frequency of 0.2 for every interaction type; and five types in
which each of the interaction types was the most prevalent
(with frequencies of 0.4 for the prevalent type and 0.15 for
the others). We projected the dynamics of 1,000 replicates
for each of these combination of factors, ending up with
3 x 6 x 1,000 = 18,000 simulated communities. For each
replicate, aside from the inherent stochasticity of the assembly
process, we drew the intrinsic growth rates and saturation
terms of each species (¢ and o, from Eq. 5) randomly from an
interval of potential values (Appendix S1: Table S3), ensuring
that primary producers have intrinsic growth rates ¢ > 0 and
consumers ¢ < 0. Introducing these stochastic components
on the assembly process and parameterization enabled us to
test the robustness of the model to small variations in its initial
conditions. The full parameterization of the model, alongside
with further details about its implementation and numerical
solving, is given in Appendix S1. Preliminary tests showed that
most simulated communities reached a stable abundance dis-
tribution after 2,500 or less time steps but, conservatively, we
ran our dynamic model for 5,000 time steps. In order to be
more confident on the time steps chosen, we also tested
whether there were significant differences between the resulting
persistence patterns after 5,000 and 10,000 time steps. As no
significant differences were found, we considered 5,000 time
steps to be an appropriate time frame for our simulations.

We also performed additional simulations in order to test
the influence of the imposed structural constraints in our
results. In these simulations we relaxed, one by one, the three
constraints of the community assembly process (see
Appendix S3 for more details).



October 2018
REsuLTs

Is species persistence influenced by the frequency of the
different interaction types? If so, does community richness
mediate this relationship?

Model communities with a higher proportion of positive
interactions (mutualism and, to a lesser extent, commensal-
ism) tended to have higher species persistence than any other
community type (Fig. 2, results of statistical tests in
Appendix S2: Tables S1 and S2). The effect of positive inter-
actions on persistence was strongest for species-poor commu-
nities, and decreased consistently as the numbers of species in
the communities increased. Although average species persis-
tence converged to around 88% as richness increased, there
was significant variation between the persistence of species
belonging to the different trophic levels (Appendix S2:
Fig. S1): in communities with low initial richness, the second
and third trophic levels saw more extinctions than the first,
while species on the fourth trophic level did not show a uni-
form behavior, and were more dependent on variations in the
relative frequency of interaction types. This general pattern
was reversed in more speciose communities, in which species
of all higher trophic levels showed more persistence than the
basal ones, for all community types.

Supplementary simulations (Appendix S3) showed that
persistence values are further influenced by the community
structural patterns imposed. The removal of both the abun-
dance scaling across trophic levels and the distribution of
interaction types across trophic levels had a significant nega-
tive effect on persistence. Sampling species abundances from
a uniform SAD instead of a skewed one, on the other hand,
increased overall persistence.

Which types of biotic interactions are more likely to be lost,
as species go extinct?

In our model, local extinctions have structural conse-
quences for the remaining network: when a species goes
extinct, its interactions disappear as well and are not
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replaced. The initial and final frequencies of the different
interaction types were significantly different in most cases
(Fig. 3, results of statistical tests in Appendix S2: Table S3).
Amensalism and competition tended to decrease in relative
frequency with respect to initial levels, while mutualism
tended to increase. Antagonism and commensalism res-
ponded differently for varying levels of community richness.
Antagonistic interactions decreased in frequency only in
communities with 20 initial species, while in communities
with 60 species, they increased; the opposite was observed
for commensalism, which increased in species-poor commu-
nities but decreased with high species richness.

Does our model reflect structural patterns observed in
empirical networks?

Focusing on the structural features listed by Jacquet et al.
(2016), we checked three features observed in empirical net-
works: the distribution of interaction strengths (species
impacts in our scheme), their variation in magnitude with
trophic level, and the correlation of antagonistic pairwise
interaction impacts. The distribution of species impacts in
our model communities (/;; in Eq. 1) was positively skewed
in all cases, with communities with high proportion of nega-
tive interactions being the most skewed (Fig. 4,
Appendix S2: Table S4). The magnitude of species impact
decreased consistently with increasing trophic level (Fig. 4,
Appendix S2: Tables S5 and S6). Lastly, there was a signifi-
cant negative correlation in the values of pairwise species
impact for antagonistic interactions (Fig. 4, Wilcoxon
signed-rank tests, V=0, P < 0.001 in all cases).

DiscussioN

Our simulations indicate, primarily, that positive interac-
tions are key for maintaining species persistence, particu-
larly in species-poor communities. For understanding the
outcomes of our model and in order to place them in a gen-
eral context, we first evaluate the role and implications of
modeling interaction impacts based on species abundances

40 sp 60 sp
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and interaction frequencies. Secondly we analyze the com-
bined influence of other community-level factors.

Species persistence and pairwise direct interactions

All other things being equal, the number of interactions
every species has with other species (i.e., their degree) is
expected to increase with increasing number of species in the
community. This is exactly what we recorded in our model
communities: by keeping network connectance constant, we
obtained average degrees of 9.5 for communities of 20 spe-
cies, and degrees of 19.5 and 29.5 for communities of 40 and
60 species, respectively (values not far from the empirical
estimates obtained by Kéfi et al. 2015, who reported an
overall connectance of 0.47 for a community of 104 species,
and thus a mean overall degree of 24.2). Given such a sce-
nario, in species-poor communities the dynamics of a species
will directly depend on only a handful of pairwise interac-
tions. In such cases, a single interaction with high impact
will have a disproportionate direct effect on species dynam-
ics and, by extension, the prevalence of negative or positive
interaction types will be an important driver of persistence
at the community level.

The direct impact of interactions in communities is not
only dependent on their numbers, but also on the abun-
dances of the interacting species. Considering a skewed
SAD (Species Abundance Distribution) of the overall com-
munity, as in our main simulations, the percentage of rare

species (e.g., these with <10 individuals) increases and then
stabilizes with increasing richness, while the percentage of
very abundant species (e.g., with >100 individuals) decreases
(Appendix S2: Table S7). In species-poor communities, thus,
a higher proportion of interactions will involve very abun-
dant species, increasing the probability of comparatively
strong direct impacts on species dynamics. As richness
increases, more interactions will take place between compar-
atively rare species. The average impact per interaction
will decrease accordingly (Appendix S2: Fig. S2), with the
effect that average persistence will increase regardless of the
distribution of interaction types.

An important consequence of the differential effect of
interaction types on species persistence is that species engag-
ing in a high number of direct positive interactions will tend
to persist and maintain their interactions, whereas species
with a high number of direct negative interactions will tend
to go extinct more frequently and, thus, their associated
interactions will be lost, increasing the overall ratio of posi-
tive interactions (Fig. 3). This reasoning is, however, contin-
gent on the modeling assumption that there is no
interaction rewiring. Keeping in mind this strong assump-
tion, if these results hold, natural assemblages should be fil-
tered to maintain a relatively high ratio of direct positive
interactions, in particular in species-poor communities, and
species with a high degree of negative interactions will be
rare and, in any case, have otherwise strong life-history traits
that allow them to persist. Note that, throughout the study,
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we limit our discussion to the role of direct interactions. The
importance of indirect or net effects for understanding com-
munity patterns is well established (e.g. Montoya et al.
2009), and the mechanisms proposed here for linking species
interactions, abundance and persistence, would be improved
by accounting for the role of these higher-order effects.
However, in model networks, net effects are commonly ana-
lyzed by calculating the negative of the inverse Jacobian
matrix (Novak et al. 2016). The formulation of our model,
without static interaction coefficients and, potentially with-
out attaining static equilibria, limits the applicability of
analyses based on Jacobian matrices. Therefore, we opted
not for calculating net effects and leave their analyses in our
framework for future studies.

By explicitly modeling species impacts based on species
abundances and interaction frequencies, our interpretation
of species persistence and community dynamics differs fun-
damentally from that of other theoretical models of multiple
interactions (e.g., Mougi and Kondoh 2012). Furthermore,
our response factor, species persistence, also differs from the
common local stability analyses performed in the majority
of theoretical network studies. Despite these fundamental
differences, some common trends seem to surface. Much like

our finding that the frequency of interaction types is less
important in speciose communities, in the study by Mougi
and Kondoh (2012) increasing richness allowed for high
local stability regardless of the proportion of positive to neg-
ative interactions (but see Suweis et al. 2014). With a com-
pletely different methodology, built on individual-based
models, Lurgi et al. (2016) further found that increasing the
proportion of mutualistic links increased overall stability in
their model. Yet another, more general interaction model
showed that positive interactions tend to become dominant
in interaction networks as a consequence of spontaneous
self-organization (Jain and Krishna 2001). Overall, these
independent lines of evidence point to the combined impor-
tance of positive interactions and community size on stability
patterns in a broad sense.

The relationship between species richness, abundances
and interaction types may shed light on other general ques-
tions in community ecology, aside from the comparison with
previous theoretical models.

First, in line with empirical findings from plant communi-
ties in stressful environments (Cavieres and Badano 2009,
Soliveres and Maestre 2014), we have shown that a high
ratio of positive to negative interactions significantly
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increases species persistence, particularly in communities
with low initial richness. By the explicit consideration of
four discrete trophic levels, we show that a preponderance of
positive interactions is particularly important for the persis-
tence of intermediate consumers (Appendix S2: Fig. S1,
upper panels). These species are preyed upon by top preda-
tors and also subject to competition (both direct as modeled
and indirect as a result of resource consumption) and amen-
salism. Hence, they are potentially the most benefited from
engaging in mutualisms with species from adjacent trophic
levels. As mutualistic interactions are most prevalent across
adjacent trophic levels (Fig. 1), intermediate species will be
the ones showing a highest degree of these positive interac-
tions. Note that we did not model competition for resources
at the basal trophic level, and all our communities included
a fourth trophic level of top predators. Thus, these latter
species, not subject to predation (aside from a very small
probability of intraguild predation, Fig. 1), are likely to have
a strong top-down influence on the persistence of intermedi-
ate species.

Second, our findings contribute to reframing the debate
on whether pairwise interactions are stronger in richer com-
munities. On the one hand, the hypothesis of a gradient on
pairwise interaction strength with latitude has been gener-
ally supported on empirical grounds (Schemske et al. 2009,
but see Moles and Ollerton 2016), but it is unclear whether
or how this pattern is affected by the richness of the ana-
lyzed communities. On the other hand, we have shown that
if interaction impacts are neutral (i.e., driven solely by spe-
cies abundances), then species impact will generally decrease
with increasing richness. This theoretical result has been
partially supported in a recent study that found that, on
islands whose size granted a certain environmental stability,
the strength of competitive and antagonistic interactions
decreased with island size and richness (Schoener et al.
2016). Clearly, an array of factors can cause deviations from
neutrality in interaction strengths (IS function in Eq. 1),
and hence the neutral interactions hypothesis should be
viewed as a baseline for estimating species impacts when no
other information is available. Such neutral estimations have
already been applied for plant-pollinator networks (Vazquez
et al. 2012) or in sampling campaigns of multiple interac-
tions networks (Pocock et al. 2012).

Emerging community structure further enhances persistence

Components of community structure, such as species
diversity or different network-level metrics, have been
regarded as key factors in previous modeling studies (Sauve
et al. 2014, 2016), where accounting for empirically
informed values generally enhances stability metrics. Such
theoretical results are, however, difficult to validate, since
empirical data on communities with varying structural pat-
terns is extremely scarce. As an alternative for testing the
adequacy of our model, we analyzed whether our model
communities displayed properties comparable to those
found in empirical networks. Recently, Jacquet et al. (2016)
showed that empirical food webs possess three structural
characteristics that clearly differentiate them from random
counterparts: first, they display the classic skewed distribu-
tion of interaction strengths, whereby there are very few
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strong interactions and a majority of weak ones (McCann
et al. 1998). Secondly, empirical food webs show strong pair-
wise correlations in interaction strengths, in line with theo-
retical findings (Tang et al. 2014). Thirdly, interaction
strengths are not evenly distributed across trophic levels;
rather, average interaction strength tends to decrease with
trophic level. In our model, the skewed distribution of spe-
cies impacts and their “pyramidal” arrangement are
observed and maintained throughout the community
dynamics (Fig. 4, panels A and B). On the other hand, the
pairwise correlations generated in our model communities
(Fig. 4, panel C) are significantly different from zero but
smaller than those reported by Tang et al. (2014). Such dis-
parity may be due to the lack of trait-matching mechanisms
in our model, as trait-matching may give rise to increasingly
specialized and correlated pairwise interactions (Santamaria
and Rodriguez-Gironés 2007).

The three patterns outlined by Jacquet et al. (2016), i.e.,
skewed distribution of impacts, pairwise correlations in
interaction strength, and decrease of species impacts with
increasing trophic level, are already present at the beginning
of the simulations (Fig. 4), so they arise from the structural
constraints of our community assembly process. It is there-
fore informative to analyze the dynamics of the model with-
out these constraints, namely (1) a skewed Species
Abundance Distribution of the overall community, (2) a
sublinear scaling of overall abundances with increasing
trophic level, and (3) a non-random distribution of links
across trophic levels, for each interaction type (Fig. 1).

Relaxing these constraints does not modify the main quali-
tative patterns of our results, i.e., positive interactions and, to
a lesser extent, increasing richness, have a positive effect on
persistence (Appendix S3: Fig. S1), but quantitative out-
comes vary. The effect of removing the second and third con-
straints on species persistence is negative, while removing the
first constraint has a generally positive effect on persistence.
This effect is particularly strong for upper trophic levels,
where average persistence varies widely depending on the
assembly constraints imposed (Appendix S3: Fig. S2). These
results invite the interpretation that community structure,
both in terms of the topology of the different interaction
types and the distribution of species abundances across
trophic levels, is a key factor for maintaining high levels of
persistence. Despite their recorded importance, understand-
ing of these factors in empirical communities is still limited.
Further empirical work is needed to evaluate the generality of
the abundance scaling law (Hatton et al. 2015) for multiple
trophic levels and community types, and, importantly, to
understand its underlying mechanisms. Regarding the distri-
bution of interaction types, our approach was to assign prob-
abilities of occurrence based in empirical observations. This
methodology is biased towards the most studied interaction
types (antagonism, competition and mutualism), and towards
easily observed organisms and interactions, thereby failing to
account for functionally important yet rarely considered
organisms, such as microorganisms, parasites or parasitoids.
It has been shown, for example, that accounting for parasites
when analyzing food webs significantly modifies network
structural patterns (Lafferty et al. 2006), so the interaction
probabilities obtained here should be taken as broad esti-
mates. Despite these shortcomings, evidence is increasing
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theoretically and empirically that link topology is key not
only for consumer-resource, but for all interaction types
(Pocock et al. 2012, Evans et al. 2013, Kéfi et al. 2015, 2016,
Sauve et al. 2016). Due to the difficulty in obtaining reliable
estimates of multiple interactions at once in empirical com-
munities (Garcia-Callejas et al. 2018), we currently do not
know whether the distribution and topology of interaction
types is homogeneous across communities or how it is influ-
enced by habitat type or environmental factors.

The significant variation in persistence ratios with struc-
tural patterns shown here suggests that theoretical studies
relying on idealized communities (e.g., totally mixed interac-
tions and/or random distributions of biomass across trophic
guilds) are likely to miss key mechanisms for maintaining
species persistence. Rather, future studies on multiple inter-
actions networks should take into account the variability of
community-level factors present in natural assemblages, like
interaction frequencies and distribution, or abundance scal-
ings across trophic levels. Our model is a first step in that
direction, but it is important to note that the insights
obtained are, of course, contingent on the assumptions
made. In particular, important features of the model are the
constant connectance hypothesis and the implementation of
dynamic interaction impacts. Furthermore, we assumed that
the degree of a species is independent of its relative abun-
dance in the community. While none of these assumptions
hold completely true in nature, they represent convenient
starting hypotheses for modeling complex ecological com-
munities, because ecological interpretations can be drawn
when empirical systems deviate from these assumptions
(Banasek-Richter et al. 2009). Further investigation on the
differential functional form of the different interaction
types, e.g., as outlined for mutualism by Holland et al.
(2002), and on interaction rewiring (Valdovinos et al. 2010,
Mougi 2016a), will also help refine the conclusions obtained
here. Aside from these potential developments, our results
can be used to establish baseline predictions on the dynam-
ics of natural communities across gradients of richness or
other factors. In that regard, the sensitivity of species-poor
communities to interaction diversity is of particular interest:
as these communities are particularly endangered by anthro-
pogenic drivers of ecosystem change (Cavieres and Badano
2009), it is paramount to evaluate this theoretical result and
its potential consequences for management and conserva-
tion schemes.

CONCLUSIONS

To understand how the persistence of species is influenced
by the complex networks of interactions in which they are
inserted, it is important to develop models that account for
the diversity of interactions present in nature, and that
incorporate realistic constraints to the structure of these net-
works. By developing one of such models, we found that
species’ local persistence is not explained by a single axis of
variation in network properties, but rather is contingent on
the interaction of several structural factors: the diversity
and distribution of biotic interactions, the size of the com-
munity, and the distribution of species abundances across
trophic levels. In particular, we found that a high prevalence
of positive interactions can lead to increased persistence of
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species in communities with low richness, whereas speciose
communities can sustain varying ratios of interaction types
without significant decreases in average persistence.
Although simulation studies are, by definition, affected by a
number of simplifying assumptions, we found that our simu-
lated networks have emerging features also present in empir-
ical networks, suggesting that our modeling framework
captures part of the mechanisms that maintain the richness
and diversity of natural assemblages. The insights from net-
work models, such as ours, are one of the complementary
ways in which ecologists approach the understanding of
local species persistence, and should prove valuable in devel-
oping a robust predictive framework for its variation across
different types of gradients.
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