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How  complex  does  a model  need  to be to provide  useful  predictions  is  a matter  of  continuous  debate
across  environmental  sciences.  In the  species  distributions  modelling  literature,  studies  have  demon-
strated  that  more  complex  models  tend to provide  better  fits. However,  studies  have  also  shown  that
predictive  performance  does  not  always  increase  with  complexity.  Testing  of  species  distributions  mod-
els is  challenging  because  independent  data  for testing  are  often  lacking,  but  a  more  general  problem  is
that  model  complexity  has  never  been  formally  described  in such  studies.  Here,  we  systematically  exam-
ine  predictive  performance  of  models  against  data  and  models  of  varying  complexity.  We  introduce  the
concept  of  computational  complexity,  widely  used  in  theoretical  computer  sciences,  to  quantify  model
complexity.  In addition,  complexity  of  species  distributional  data  is characterized  by their  geometrical
properties.  Tests  involved  analysis  of models’  ability  to predict  virtual  species  distributions  in the same
region and  the  same  time  as used  for training  the models,  and  to project  distributions  in different  times
under  climate  change.  Of the  eight  species  distribution  models  analyzed  five (Random  Forest,  boosted
regression  trees,  generalized  additive  models,  multivariate  adaptive  regression  splines,  MaxEnt)  showed
similar  performance  despite  differences  in  computational  complexity.  The  ability  of models  to  forecast
distributions  under  climate  change  was also  not  affected  by  model  complexity.  In contrast,  geometrical
characteristics  of  the  data  were related  to model  performance  in several  ways:  complex  datasets  were

consistently  more  difficult  to model,  and  the  complexity  of the  data  was  affected  by the  choice  of  predic-
tors  and  the  type  of  data  analyzed.  Given  our definition  of  complexity,  our  study  contradicts  the  widely
held  view  that  the  complexity  of  species  distributions  models  has  significant  effects  in their  predictive
ability  while  findings  support  for previous  observations  that  the  properties  of  species  distributions  data
and their  relationship  with  the  environment  are  strong  predictors  of  model  success.
. Introduction

Understanding why species distribute as they do is a central
roblem in ecology. Current methods for studying species distri-
utions often involve statistical or numerical models that relate
he distributions of species with layers of environmental infor-
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 

distributions models. Ecol. Model. (2015), http://dx.doi.org/10.1016/j.

ation. The use of correlative species distributions models (also
nown as bioclimatic envelope models, habitat suitability models,
nd ecological niche models; for definitions of these seemingly
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related terms see Araújo and Peterson, 2012) is currently the most
widespread approach due to their versatility, ease of use, and mod-
est data requirements (e.g., Guisan and Zimmermann, 2000; Elith
and Leathwick, 2009). Yet, despite widespread use of these models,
the debate as to what is the best modelling approach is far from
settled (Araújo and Rahbek, 2006), and predictions from alterna-
tive models can be markedly different in the context of spatial (e.g.,
Randin et al., 2006; Duncan et al., 2009; Heikkinen et al., 2012) and
temporal transferability (e.g., Thuiller, 2004; Araújo et al., 2005a;
Pearson et al., 2006; Zanini et al., 2009). Previous tests of perfor-
mance of species distributions models have led to the conclusion
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

that more complex models were generally better than simpler
ones (e.g., Segurado and Araújo, 2004; Elith et al., 2006). However,
model performance is typically inflated when test data that are not
independent from data is used to train the models, such as when

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
dx.doi.org/10.1016/j.ecolmodel.2015.06.002
http://www.sciencedirect.com/science/journal/03043800
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ata are randomly split between training and test sets (Araújo
t al., 2005b; but see Madon et al., 2013). In the few cases in which
odels have been tested for transferability using independent

ata (from another region or another time), no clear relationship
etween the perceived complexity of the models and their per-
ormance was found (Araújo et al., 2005b; Randin et al., 2006;
obrowski et al., 2011; Heikkinen et al., 2012; Smith et al., 2013).

Models perceived as ‘simple’ usually have procedures for fit-
ing the data that are easier to grasp, and/or perform fewer and/or
impler operations with the data. In contrast, models perceived as
complex’ involve procedure for fitting the data that are more diffi-
ult to comprehend while usually performing a significant number
f operations in order to produce the desired outcome. It is implic-
tly assumed that this loose definition of complexity is related to the
apacity of different models to produce either ‘simple’ or ‘complex’
esponse curves (e.g., Elith et al., 2006; Merow et al., 2014). When
electing the best model for a given problem, it is expected that
arsimony should lead to selecting models that minimize overall
rediction error by finding an optimal balance between the error in
tting the training data (also referred to as parameter estimation
rror or bias) and the error in generalizing to new datasets (also
eferred to as approximation error, or variance). Models that are
oo simple would fit training data poorly (high bias), while overly
omplex models would generate low bias and high variance as they
ould capture random error or biases in the data.

The concept of model complexity is central to the endeavour
f finding optimal models for predictive purposes. Yet, measur-
ng model complexity is not straightforward. Here, we attempt to
ormalize one of the key aspects of model complexity (algorith-

ic  or computational complexity, see Section 1.1: computational
omplexity), and test whether the principle of parsimony can
uide identification of the optimal model complexity for predicting
pecies distributions in space and time. In addition, we quan-
ify structural complexity in the response data (i.e., presence and
bsence of species) and examine how data complexity affects the
redictive abilities of models. To overcome problems of data avail-
bility, we simulated virtual species across a realistic geographical
omain with different sets of environmental predictors, and com-
are some of the results with empirical presence–absence records
ithin the same geographical domain.

.1. Computational complexity

The computational complexity of an algorithm is defined by the
mount of computational resources it requires to produce an out-
ut (Arora and Barak, 2009). This definition stems from the idea that
n algorithm processes an input via a certain number of elementary
perations, and these operations consume varying amounts of com-
uting time. The computing time spent by the algorithm is, thus,
n approximation to the complexity of the operations performed
n the input. Complex algorithms inevitably perform more com-
lex operations on their input than simple ones, thereby requiring
ore computation time to solve a particular task. Numerical anal-

ses of computational complexity treat algorithms as black boxes,
isregarding their internal structure, functional form or any other
pecificity. Such analyses are, therefore, suitable when the goal is
o compare different methodologies on equal footing.

Computational complexity is also referred to as time complex-
ty or algorithmic complexity, and it is commonly expressed by
he O notation (read ‘big o’). This notation identifies the time com-
lexity of an algorithm by the highest-order term of its growth
ate as a function of input size, suppressing lower-order terms and
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 
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onstants. It is an asymptotic measure of complexity; as input size
ncreases, so does the importance of the dominant term in char-
cterizing computation time. For example, an algorithm may  take
x2 + 2x time units in solving a problem of size x. As x approaches
 PRESS
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infinity, the higher-order term (x2) will tend to take over computa-
tion time, and the lower-order terms, as well as the multiplicative
coefficients, will become irrelevant. This particular algorithm is
thus said to have a time complexity of O(n2). If the computation
time of an algorithm is independent of the dataset size, it is said
to be a constant time algorithm, expressed as a time complexity
of O(1). As this methodology aims to estimate the asymptotical
behaviour of a given algorithm, it also bypasses the issue of com-
paring algorithms written in different programming languages:
the computational cost of a given algorithm implemented in two
different languages is assumed to be proportional, up to a multi-
plicative constant that will become irrelevant asymptotically. The
chief assumption of the method is that the algorithms being com-
pared are efficiently programmed, i.e., there are no spurious tasks
within the algorithms consuming computation time. A full treat-
ment of computational complexity is out of the scope of this study
(but see Arora and Barak, 2009; Papadimitriou, 1994).

Consistent with the principle of parsimony and assuming that
algorithmic complexity is a good proxy for overall model complex-
ity, the highest predictive capacity should be expected in models
of intermediate algorithmic complexity. It is worth noting that
the quantification of algorithmic complexity is independent of
the modelling methodology. That is, the framework implemented
herein with correlative species distributions models, could also be
easily implemented with alternative mechanistic approaches for
modelling species distributions (e.g., Fordham et al., 2013; García-
Valdés et al., 2015).

1.2. Geometrical complexity of the data

Estimating the ecological niche of a species is an instance of
the broad class of problems in which a set of points (in environ-
mental space) must be classified into one of two opposing classes
(presence/absence) according to some relationship between the
dimensions of the space and the class to which each point belongs.
The difficulty in estimating the ecological niche of a species can
be assessed by evaluating the geometrical structure of the bound-
ary between classes in the training data. Aside from deficiencies
and biases in the data collection (Barry and Elith, 2006; Araújo
et al., 2009), the internal structure of the data and its relationship
with models predictive capacity has never been formally explored
(but see Blonder et al., 2014). It has been, though, extensively
addressed in other scientific fields; particularly within the machine
learning community where the concept of geometrical complexity
has been developed. Given a dataset with a two-class categorical
response and N predictors, the geometrical complexity is defined
as an approximation of the structural characteristics of the N-
dimensional boundary separating the response classes (Basu and
Ho, 2006). It is a general measure defined by a set of complementary
metrics (see Section 2). When analyzed together, these metrics help
differentiate datasets with geometrically simple class boundaries
from those with complex and/or random class boundaries.

We  predict that data complexity is related to the predictive
capacity of the models. Specifically, simpler datasets will tend to
reflect simpler occurrence–environment relationships thus being
easier to model and yielding comparatively better performance
than models trained with more complex datasets.

2. Materials and methods

2.1. Virtual species generation
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

We  created three different types of virtual species. Their dis-
tributions were projected across mainland Spain by defining
environmental suitability landscapes based on different sets of

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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Table  1
Variables used in the creation of the three types of virtual species.

Species type Variables used

Type I (annual response) Mean annual temperature, mean annual
precipitation

Type II (seasonal response) Mean annual temperature, mean annual
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precipitation, precipitation seasonality
Type III (spatial response) Mean annual temperature, mean annual

precipitation, vegetation basal area of each cell

nvironmental covariates resampled within a 1 km × 1 km grid
Table 1 and Appendix A). Following Valladares et al. (2014), we
ssumed that the suitability of the environment for species fol-
owed nonlinear functional forms, and the overall environmental
uitability was the product of the partial suitabilities for each
nvironmental correlate. The first type of virtual species, labelled

annual’, comprised nine species with different combinations of
aussian and Beta response curves for mean annual temperature
nd mean annual precipitation (Appendix A). For defining the sec-
nd type of virtual species (‘spatial’), we added, in addition to mean
nnual temperature and precipitation, a spatially explicit covariate
Table 1). The spatial variable was basal area of forest species for
ach cell, as measured by the Third National Forest Inventory of
pain (IFN, Ministerio de Medio Ambiente, 2006). For the third type
f virtual species, labelled ‘seasonal’, in addition to mean annual
emperature and precipitation, we constrained the potential suit-
bility with an index of precipitation seasonality obtained from the
orldClim database (Hijmans et al., 2005). Two ‘spatial’ species and

wo ‘seasonal’ were created, with varying optima for each covari-
te. From the set of 9 annual, 2 spatial, and 2 seasonal continuous
esponse curves, we derived 26 more suitability distributions by
dding two white noise filters to each surface, varying the over-
ll suitability in 0.25*e and 0.5*e, where e ∼ N(0,sd(suitability)). A
xed threshold of 0.5 was further applied to define presences and
bsences. The combined use of the selected stochastic filters and
he fixed threshold effectively blurs the separation between pres-
nces and absences at geographic range limits, without altering
ignificantly the outcome for areas with very high or low suitability
Appendix A). Furthermore, the use of a variable presence threshold
or generating virtual distributions is analyzed in Appendix C.

Using the response curves of each species, we then projected
pecies presence–absence maps in 2090, using the CGCM2 Global
limate Model under the A2 climate scenario (IPCC, 2007). While
ean annual temperature, mean annual precipitation, and the

easonality index in precipitation were taken from the climate
odel, the basal area of vegetation was assumed constant to the

evels of 2010. We  also assumed no limitations to dispersal for the
rojected virtual species.

For comparison with our virtual species distributions, we also
odelled the distributions of 16 empirical tree species across main-

and Spain. These data were again obtained from the third national
orest inventory of Spain (Ministerio de Medio Ambiente, 2006). All
panish territory was consistently sampled in a grid of 1 km × 1 km
or the inventory. Consequently, it is reasonable to assume true
bsences in this dataset.

.2. Modelling methods and projections

Eight methods were used to model species distributions,
onsidering three broad modelling approaches. Specifically, a
urface-range envelope method: BIOCLIM (Booth et al., 2014); three
egression-based methods: GLM with first order terms (Guisan and
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 

distributions models. Ecol. Model. (2015), http://dx.doi.org/10.1016/j.

immermann, 2000), GAM (Hastie and Tibshirani, 1990) and MARS
Friedman, 1991); and four machine learning algorithms: MaxEnt
Elith et al., 2011), boosted regression trees (BRT, Elith et al., 2008),
andom Forest (Breiman, 2001) and support vector machines (SVM,
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Vapnik, 1998) with a linear kernel. Algorithms were applied using
the base R implementation for GLM, and the packages dismo (for
BIOCLIM and the interface to MaxEnt), gbm (for BRT), earth (for
MARS), mgcv (for GAM), randomForest,  and e1071 (for SVM) in R
3.0.3 (R Core Team, 2014). Throughout the simulations, model-
specific parameters were kept constant at recommended values
found in the literature (Appendix B).

We  undertook two  types of simulations: the first for testing the
ability of models to characterize the baseline distributions of the
virtual and empirical species in 2010; and the second for testing
the ability of the models calibrated in 2010 to predict distributions
of the virtual species in 2090.

In the first set of simulations, for each species, 10 training
sets were sampled each consisting of 200 presences and 200 true
absences. We  selected training sets without sampling error or bias,
so as not to include more confounding factors in our analyses.
Metrics of geometrical complexity of data for training sets were
obtained and averaged, and model fits were averaged and evaluated
against the known distributions. In the second set of simulations,
models were trained and results averaged again over 10 train-
ing sets of 200 presences and 200 true absences. Data complexity
metrics were obtained, and models were evaluated against the
2090 known (virtual) projections. In model projections, we  used as
predictors the two climate variables common to all virtual species
(Table 1), deliberately omitting the other variables used to simulate
presence and absence of the spatial and seasonal species (we  also
conducted simulations with the full set of environmental variables
as predictors, see Appendix C). This allowed us to weigh the influ-
ence of omitting different types of covariates in models predictive
capacity. Model performance was evaluated using the area under
the receiving operator curve (AUC). This performance metric is par-
ticularly useful when comparing models including true absences
(e.g., Jiménez-Valverde, 2012). Trends in AUC scores were also com-
pared with those of another accuracy metric recently proposed, Se*
(Jiménez-Valverde, 2014; see Appendix C).

Variation in AUC scores was analyzed with linear mixed-effects
models, taking AUC as response and the following fixed effects:
model, type of simulation (no transferability or temporal transfer-
ability) and type of species. Species were included as a random
effect nested within species type. We used the Kenward-Roger
approximation for obtaining p-values associated to the significance
of the fixed effects (Halekoh and Højsgaard, 2014), and evaluated
the inclusion of the random effect by comparing the AIC value of
models with and without the species random effect. Analyses were
performed using the lme4 and pbkrtest packages in R (R Core Team,
2014).

2.3. Computational complexity

The time complexity of each technique was numerically approx-
imated by measuring the computation time for training models
with datasets of increasing number of records. The exact expression
of the time complexity of a given algorithm is virtually impossible
to obtain with numerical approximations, but the broad asymp-
totical relationship between computation time and dataset size
can be inferred. An analytical expression of the time complexity,
on the other hand, can be obtained only after a detailed evalua-
tion of the algorithm’s source code. Such evaluation is impractical
in most cases, especially when comparing a significant number
of algorithms comprising several hundreds or thousands of lines
of code. Computation time was  measured with the R function
proc.time. Models were fitted for datasets with two  predictor vari-
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

ables and a categorical response (i.e., species distributions) ranging
from 100 000 to 750 000 observations, with every other param-
eter in each model kept constant. As we  were not interested in
the results of the model fitting, but only on the computation

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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Fig. 1. Data complexity as measured with different geometrical complexity metrics.
A  two-dimensional environmental space with two response classes is defined where
a  set of presence and absence samples are plotted. Shown, data with (a) low ratio
intra/interclass distance and low nonlinearity; (b) low ratio intra/interclass distance

species distributions (Table 2). The only exception was  BIOCLIM
that proved insensitive to the size of the dataset and performed
equally fast, on average, for any potential number of data points.

Table 2
Pearson product-moment correlation coefficient (PCC) between computation time
and dataset size for the original data (indicating a linear relationship) and the log–log
transformed data (indicating a polynomial relationship). Bold results indicate the
highest PCC value. Also shown the slope of the linear regression that generates the
best  fit for each model.

Model Linear PCC Polynomial PCC Slope of best fit

BRT 0.921 0.817 2.229e−7
GAM 0.966 0.833 1.669e−6
GLM 0.838 0.758 5.951e−9
ARTICLECOMOD-7565; No. of Pages 9
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ime, we used randomly generated data of the desired length.
atasets of less than 100 000 observations showed no clear trend

or most models and a high number of nil values for compu-
ation time. Each measurement reported is the average of 50
ootstrap repetitions in the same computer (intel i7 processor
ith 16 GB RAM) under the same conditions. For analyzing the

symptotical behaviour of each model, we estimated the type of
urve that best described the relationship between dataset size
nd computation time, considering the broad categories of lin-
ar and polynomial relationships (no model appeared to exhibit
n exponential behaviour). A linear relationship is recovered by a
inear model on the untransformed data, and a polynomial rela-
ionship y =  ̨ × xˇ is recovered by a linear model on the log–log
ransformed data: log(y) ∼ log(  ̨ × xˇ) = log(˛) +  ̌ × log(x). We fit-
ed these alternatives to the computation times obtained for each
pecies distribution modelling technique, and assumed that the
orrect relationship was given by the data that best approximated

 linear correlation, measured by the Pearson product-moment
orrelation coefficient (PCC). Models falling within the same com-
lexity category were sorted according to the slope of their
egression curves.

.4. Data complexity

The overarching concept of geometrical complexity has proved
o be virtually impossible to capture with a single metric, because
here are several aspects of the structure of the boundary between
ategories that need to be accounted for (Basu and Ho, 2006). From
he range of metrics developed in the studies that first proposed
he geometrical complexity concept (Ho and Basu, 2002; Basu and
o, 2006; Ho, 2008), our own preliminary analyses showed that

wo of them were especially effective in discriminating our pool of
irtual and empirical datasets. These are the ratio of intra/interclass
earest neighbour distance and the nonlinearity of a classifier.

.4.1. Ratio of intra/interclass nearest neighbour distance
Ratio of intra/interclass nearest neighbour distance is a measure

f the spread within classes relative to the spread among classes.
or each record, the distance to the nearest neighbour of its class
nd the distance to the nearest neighbour of its opposite class are
ecorded. These quantities are averaged over the entire dataset, and
heir ratio is the metric. The metric is sensitive to the magnitude
f the dispersion in environmental space within classes relative to
he environmental gap between classes: high values of the metric
re less exact than low values.

.4.2. Nonlinearity of a classifier
The nonlinearity rate for a given dataset is defined as the prob-

bility that an arbitrary point, uniformly and linearly interpolated
etween two arbitrary points in the dataset with the same clas-
ification, shares this classification (Hoekstra and Duin, 1996). It is
ntended to give a measure of the nonlinearity of the N-dimensional
oundary between classes. First, a test set is created by interpo-

ating randomly sampled points from the same class. Then, the
lassifier is applied, and the error rate of the classifier over the inter-
olated set is the metric. With the implementation proposed here,
sing a nearest-neighbour classifier, a high error rate implies that
any interpolated points do not share the classification of their

earest neighbours, implying a high nonlinearity of the classifica-
ion boundary. The metric is, therefore, sensitive to the geometry
f the class boundary.

All in all, both metrics measure complementary aspects of the
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 
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eometrical complexity of a classification problem. Other metrics
mplemented are reviewed in Appendix D. In Fig. 1, the most com-
lex situation is that of panel (d), but different dataset structures
ive rise to different combinations of the metrics. Geometrical
and high nonlinearity; (c) high ratio intra/interclass distance and low nonlinearity;
(d)  high ratio intra/interclass distance and high nonlinearity. Dashed lines represent
potential class boundaries.

complexity metrics are built upon the N-dimensional distances
between points of the environmental space. In our analyses, these
distances were computed using a variation of the N-dimensional
Euclidean distance, called the Heterogeneous Value Distance Met-
ric that is more accurate than the former and able to generalize
over categorical and numeric covariates seamlessly (Wilson and
Martinez, 1997).

3. Results

3.1. Computational complexity

The asymptotical behaviour of all techniques was best approx-
imated by a linear relationship between the dataset size and
computation time, but the slope of the linear regression differed
several orders of magnitude among the algorithms used to model
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

MARS 0.912 0.826 2.695e−8
MaxEnt 0.941 0.938 2.176e−7
Random Forest 0.996 0.996 2.399e−5
SVM 0.97 0.851 1.191e−6

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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Fig. 2. Computation time for different SDM algorithms and dataset sizes, ranging
from 100 000 to 750 000 points (except for Random Forest that became compu-
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C: Table C.5). In the temporal transferability simulations, signifi-

F
i
O

ationally too expensive for sizes of more than 200 000 points). The inset shows
he same plot at a smaller scale for computation time, to showcase the different
ehaviour of MARS, GLM and BIOCLIM.

mong the other methodologies, the Random Forest algorithm dis-
layed a clearly distinct pattern from the remaining techniques,
ecoming too computationally expensive for datasets of more than

 × 105 points (Fig. 2). The other methodologies only started to dif-
erentiate for datasets bigger than 2 × 105 points. SVM and GAM
ad similar behaviour, and these in turn were more computation-
lly expensive than BRT and MaxEnt. MARS and GLM were the most
fficient algorithms, with the said exception of BIOCLIM.

.2. Model accuracy and transferability

AUC scores were significantly influenced by model technique
Kenward-Roger corrected test: F = 61.06, df = 7, p-value < 0.0001),
nd type of simulation (Kenward-Roger corrected test: F = 839.18,
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 
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f = 1, p-value < 0.0001). The random effect of species, nested within
pecies type, significantly improved the AIC of the model, and
as thus maintained for the analyses. For the simulations that
id not involve transferability, the highest mean AUC scores were

ig. 3. AUC values of each algorithm for two  simulations. (a) Using subsets of the same data
n  time. Error bars represent standard errors. Groupings in the horizontal axis represent
(n)  models, sorted by the magnitude of the slope of the linear regression between datas
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obtained by MaxEnt (0.97 ± 0.02) and GAM (0.97 ± 0.03), and all
methodologies ranged from fair to excellent AUC scores, according
to the Swets criteria (0.5 ≤ AUC < 0.6 = fail; 0.6 ≤ AUC  < 0.7 = poor;
0.7 ≤ AUC < 0.8 = fair; 0.8 ≤ AUC < 0.9 = good; 0.9 ≤ AUC  = excellent;
Swets, 1988). In simulations involving temporal transferability,
performance was consistently lower and more variable for all
type of species and modelling techniques (Figs. 3 and 4). Partic-
ularly important was  the decrease in predictive capacity for the
seasonal species, due to the strong variation of the precipitation
seasonality index in the climate scenario used for generating the
virtual species (from 48.25 ± 15.26 in 2010 to 70 ± 20.25 in 2090).
With temporal transferability, models with the best performance
were MaxEnt (0.82 ± 0.18), MARS (0.81 ± 0.19) and Random For-
est (0.81 ± 0.20). GLM and SVM consistently performed worse than
the other methodologies, regardless of the type of species modelled
(Fig. 3) or the type of simulation (Fig. 4). Additional simulations in
which we accounted for the environmental predictors deliberately
omitted from the model projections improved significantly the per-
formance of all models, particularly for the two seasonal species in
the temporal transferability set of simulations (Appendix C: Tables
C.1–C.4).

3.3. Data complexity of the training sets

Virtual datasets obtained consistently lower values for the two
geometrical complexity metrics of data complexity used herein
(see Section 2) than species from the IFN dataset did (Fig. 5). Pre-
liminary analyses showed that the addition of stochasticity in the
data significantly increased both the nonlinearity and the ratio
of intra/interclass distance metrics for all types of virtual species
(Appendix C: Table C.7, Figs. C.4 and C.5). Those datasets with a
clear delimitation between presences and absences (low nonlinear-
ity) and with low ratio of intra/interclass distance obtained higher
AUC values (Fig. 5). AUC scores were significantly correlated with
the two metrics of data complexity in the simulations not involv-
ing transferability for all models except SVM and GLM (Appendix
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

cant correlations were found between the nonlinearity metric of
data complexity and AUC score for MARS, MaxEnt, BRT and Ran-
dom Forest, but not for other models or the ratio of intra/interclass
distance metric of data complexity (Appendix C: Table C.6).

 for training and testing; and (b) using projections to 2090 to evaluate transferability
 complexity categories: BIOCLIM is a constant time model O(1) and the others are
et size and computation time (Table 2).

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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Fig. 4. Distribution of AUC scores for the two types of experiments (no transferability and temporal transferability), evaluated for all models and averaged over all virtual
species.
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ig. 5. Two aspects of geometrical complexity (nonlinearity of a 1-nearest neighbou
epresent the mean AUC and geometrical complexity obtained for each species, ei
imulations. Note how the IFN datasets are not represented in the temporal transfe

. Discussion

We  asked how computational complexity of species distri-
utions models and the geometrical complexity of the species
istributions data affected the performance of species distributions
odelling techniques with and without temporal transferability.

he starting assumption was that models of intermediate com-
lexity would tend to show increased performance, while simpler
ata would be easier to model. Consistent with our hypothesis,
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 

distributions models. Ecol. Model. (2015), http://dx.doi.org/10.1016/j.

e found that data complexity was inversely related with model
erformance (with and without transferability), whereas the com-
utational complexity of the models was not related to model
erformance.
ifier and ratio of intra/interclass distance) and AUC of the models considered. Points
irtual or empirical. NT, no transferability simulations; TT, temporal transferability
y simulations.

4.1. Is computational complexity a reliable estimator of
predictive capacity?

With the exception of BIOCLIM, all models fitted fall in the broad
category of linear time algorithms, i.e., algorithms that show a
linear relationship between computation time and input size. BIO-
CLIM is a remarkable exception due to its fast computation, inde-
pendent from dataset size. Although its performance is significantly
lower than MARS, MaxEnt, BRT, GAM or Random Forest, it also out-
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

performs GLM and SVM in our model configurations and data sets.
Note, however, that for design clarity, GLM were fitted allowing
only first-order terms and no interactions, and SVM were fitted
with a linear kernel, effectively forcing these two methodologies to

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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of the data was  shown to be a strong predictor of model perfor-
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odel linear responses to the covariates. More generally, we  found
o relationship between model computational complexity and per-

ormance (Fig. 4). Random Forest was 1 order of magnitude slower
han the next models, with no significant increase in performance
n any simulation. We  suggest that when computational cost is an
ssue, Random Forest might well be avoided. One of the objectives of
valuating models in two sets of simulations was to look for overfit-
ing, specially in the most complex models: if more complex models
verfit the training data, we would expect to find decreasing AUC
cores the temporal transferability simulations. We  found no evi-
ence for this hypothesis, and instead found that all models showed
he same pattern of decreasing AUC scores regardless of their
omputational complexity (Fig. 4). In other words, either the com-
utational complexity of species distributions models is not good

 proxy for overall model complexity or the complexity of species
istributions models is unrelated to model performance, both in
he contexts of no transferability and temporal transferability.

Clearly, other unaccounted factors can affect computational
omplexity: the number of covariates directly influences the com-
utational cost of certain models (Cutler et al., 2007), as well as
he complexity of the functional response obtained; model-specific
arameters in machine learning methods can also potentially
lter the computational complexity curves obtained (Elith et al.,
008). But it is also possible that models exploring the relation-
hip between species distributions and environmental covariates
re powerful at explaining a given pattern but are poor predictors of
uture patterns given that mechanisms driving distribution are not
xplicitly accounted for; if the estimated relationships between dis-
ributions and environmental covariates are indirect (sensu Austin,
002), then model complexity is bound to be unrelated to predictive
apacity of models for transferability.

.2. Does geometrical complexity of the data affect model
erformance?

Previous studies showed that the structural characteristics of
ata influenced projections of species distribution models (e.g.,
egurado and Araújo, 2004; Brotons et al., 2004; Lobo, 2008; Foody,
011; Moudrý and Šímová, 2012). We  have quantified the com-
lexity of distributional data with novel metrics, drawn from the
achine learning field, and found that data complexity is sig-

ificantly related to model performance. Several insights can be
utlined from these results. The empirical datasets analyzed here
panned a high range of values for the two complexity metrics used,
ut most of these datasets showed higher values than the virtual
ata generated and, consequently, lower AUC scores (Fig. 5). The
ppearance of high complexity for some datasets associated with
omplex or quasi-random structural characteristics may  indicate
1) the existence of important covariates missing in the experi-

ent, (2) a highly complex occurrence–environment relationship,
r (3) the existence of other sources of variability. Note that only the
econd point relates to the intrinsic complexity of the response of
he taxa to the environmental covariates, while the other two have
xtrinsic causes that relate to deficiencies in sampling or experi-
ental design. An intrinsically complex occurrence–environment

elationship can reflect, among other patterns, a high variability
n individual responses to environmental factors, or if life stages
re aggregated in the presence count, it may  arise from differ-
nces in the occurrence–environment response among life stages.
oncerning extrinsic factors, minimizing these external sources of
ariability will lead to better performance with any given model
Barry and Elith, 2006) by decreasing the geometrical complex-
Please cite this article in press as: García-Callejas, D., Araújo, M.B., The 
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ty of the data. For example, an adequate sampling across all
imensions of the environmental space may  decrease the ratio
f intra/interclass distance by spanning the records of presences
nd absences over bigger regions of the environmental space. The
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nonlinearity metric is potentially affected by the accuracy of the
presence/absence records, i.e., the ratio of false positives and false
negatives in the sample.

The data complexity metrics presented here can help design
of virtual datasets better approaching the structural characteris-
tics of empirical data. The key factors influencing the complexity
of empirical data (i.e., omission of important covariates, com-
plex occurrence–environment relationships, and existence of other
sources of variability) can be manipulated for generating and ana-
lyzing virtual datasets. In our study, the omission of covariates
when projecting virtual species significantly altered the geomet-
rical complexity of the datasets and, accordingly, decreased model
performance compared to data with the full set of covariates
(Appendix C: Tables C.1–C.16 and Fig. C.5). The addition of white
noise to the virtual datasets also increased significantly both com-
plexity metrics (Appendix C: Table C.19, Figs. C.8 and C.9). Either
option made our virtual data closer to the complexity levels of
the empirical datasets. However, randomization of the data has
the drawback that the causal relationship between covariates and
distribution may  become too blurred, thus preventing any useful
analyses on the virtual data (e.g., see Appendix A). In order to keep
as much control as possible over the sources of variability, the use
of complex response functions is often preferable, including mech-
anistic models based in population (Brook et al., 2009; Pagel and
Schurr, 2012) or individual-level processes (Matias et al., 2014)
and, if necessary, the deliberate omission of covariates for model
evaluation.

We have not conducted analyses about the effects of other fea-
tures sources of data complexity (e.g., grain size, systematic biases).
To the extent that different ecological processes influence distribu-
tion and abundance of taxa at different scales, datasets at different
scales will showcase different degrees of geometrical complexity,
representative of the differential role of each ecological process.
Datasets at biogeographical scales may, for instance, yield compar-
atively simple geometrical complexity due to the averaging out of
local ecological processes and the strong large-scale signal of envi-
ronmental forcing (Pearson and Dawson, 2003). Therefore, while
the comparison of geometrical complexity of categorical datasets
may  potentially be useful for different types of analyses, caution
should be taken to verify potential inconsistencies between the
different datasets.

5. Conclusions

We evaluated different aspects of complexity related to (1) the
computational cost of eight SDM algorithms, and (2) the geomet-
ric characteristics of species distributions data. MARS, MaxEnt, BRT
and GAM fared equally well as Random Forest with much less com-
putational costs while BIOCLIM performed worse than these five
methods but better than GLM and SVM, which were the worst-
performing methods with and without temporal transferability.
Consistent with previous studies, the capacity of models to pre-
dict events in the future under climate change, i.e., to transfer in
time, were significantly reduced when compared with their ability
to characterize the training data in the baseline period. However,
loss of predictive ability of the models when used to transfer species
distributions in time was  independent of their computational com-
plexity, thus failing to support the original hypothesis that models
of intermediate complexity would have greater performance.

In contrast to model complexity, the geometrical complexity
effects of model and data complexity on predictions from species
ecolmodel.2015.06.002

mance. For most modelling methodologies, both with and without
temporal transferability, there was  a statistically significant nega-
tive correlation between predictive performance and geometrical
complexity metrics.

dx.doi.org/10.1016/j.ecolmodel.2015.06.002
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