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Abstract

Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes

on Africa’s biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from

alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we

examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 spe-

cies of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the

ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models.

Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three

multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turn-

over estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected

novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections

from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain

projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios

increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Two-

fold differences in median species turnover across the study area emerge among alternative climate projections and

emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or

climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan

African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling

will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we

provide a framework to address methodological uncertainties and contextualize results.
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Introduction

Assessments of the potential effects of 21st century

climatic changes on biodiversity commonly rely on

bioclimatic envelope models (BEMs). Using correla-

tions between climate and known species occurrences,

BEMs estimate future shifts in suitable climate for spe-

cies. Widespread use of BEMs has been accompanied

by discussions of the biological (e.g. Pearson & Daw-

son, 2003; Araújo & Pearson, 2005; Sinclair et al., 2007)

and methodological (e.g. Heikkinen et al., 2006; Beau-

mont et al., 2008) uncertainties that surround the out-

puts. BEMs rely on assumptions about the association

between climate and species distributions, and their

biological realism hinges on additional factors influ-

encing species vulnerability to climatic changes, such

as ecophysiological and micro-habitat preferences,

phenotypic plasticity, evolutionary rates, dispersal

ability (Chevin et al., 2010; Dawson et al., 2011; Hof

et al., 2011), and biotic interactions (Araújo & Luoto,

2007; Suttle et al., 2007). In turn, BEM results are sensi-

tive to the data and statistical functions that are used

to describe the associations between species and

climate. Alternative algorithms differ regarding the

data used, variable selection, model parameterisation

(Guisan & Zimmermann, 2000; Elith et al., 2006;

Heikkinen et al., 2006), and techniques for extrapolation
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to novel conditions (Thuiller et al., 2004b; Pearson

et al., 2006; Elith & Graham, 2009). BEMs are also

sensitive to the greenhouse gas emissions scenarios

and climate models used to simulate future climates

(Beaumont et al., 2008).

Research is ongoing to develop more biologically

realistic models (Keith et al., 2008; Anderson et al.,

2009; Brook et al., 2009; Huntley et al., 2010; Kearney

et al., 2010), but the breath of information and data

required to appropriately parameterize them is large.

Simpler approaches such as BEMs are thus likely to

remain important tools for assessing potential impacts

of climate change on biodiversity for a considerable

time. In face of the increasing number of climate pro-

jections and statistical functions available, calls have

been made to explicitly address the methodological

uncertainties of BEMs so as to quantify the confidence

that can be placed in forecasts (Thuiller et al., 2004a;

Araújo et al., 2005b, 2006; Pearson et al., 2006; Diniz-

Filho et al., 2009; Wiens et al., 2009; Buisson et al.,

2010). The high level of certainty typically required

for policy making can hardly be attained using correl-

ative models—least of all under unknown future

climates—leaving model users with the option of

exploring the uncertainty in projections and weighing

the risks associated with alternative actions (Wiens

et al., 2009). One approach to address such uncertain-

ties is to incorporate several assumptions and explore

the resulting range of potential results (‘ensemble

forecasting’, Araújo & New, 2007). Here, we provide

the most extensive investigation to date of methodo-

logical uncertainties associated with ensemble fore-

casts of climate change impacts on sub-Saharan

African vertebrate species.

The African continent is predicted to be one of the

most vulnerable to 21st century climatic changes

(Boko et al., 2007; Collier et al., 2008). Forecasts of

warming above the global average (Christensen et al.,

2007) are projected to affect African biodiversity and

people’s livelihoods (Velarde et al., 2005; Boko et al.,

2007; Biggs et al., 2008). Yet, in comparison to well-

researched regions, such as Europe or North Amer-

ica, Africa has received limited attention regarding

the potential impacts of climate change on biodiver-

sity (Lovett et al., 2005; Felton et al., 2009). Attribution

of shifts in species distributions to climate change is

difficult in Africa (Chown et al., 2010; Midgley &

Thuiller, 2011) because changes in water availability

—the main determinant of ecological responses

(Hawkins et al., 2003)—are spatially complex and dif-

ficult to document (MacKellar et al., 2007). Increases

in temperature, however, have been associated with

the observed range extension of the Common Swift

(Hockey & Midgley, 2009), and are likely to have

more severe impacts for tropical species (Deutsch

et al., 2008; Wright et al., 2009).

Previous studies using BEMs at a continental scale

have projected substantial geographical shifts in suit-

able climate for African plants, birds and mammals by

late-century (Table 1). Specifically, McClean et al. (2005)

predicted losses of suitable climate for plant species in

the Guineo-Congolian forests of western and central

Africa, and gains in the surrounding uplands as well as

the highlands of Namibia and the South African Dra-

kensberg. Mammal species ranges around the equatorial

zone in central Africa were projected to shift westward,

with contractions in the Congo Basin, whereas mam-

mals in southern Africa were projected to contract in the

Kalahari region, and to shift eastward (Thuiller et al.,

2006). For birds, forecasts revealed losses in southern

and eastern Africa for breeding birds (Huntley et al.,

2006) and trans-Saharan migrant passerines (Barbet-

Massin et al., 2009), but relatively small changes for the

former in equatorial and moist tropical forest habitats

and even gains for the latter in the Sahel and Arabian

Peninsula. Hole et al. (2009) also projected higher

ensemble turnover for breeding birds in southern

Africa, despite high persistence of suitable climate

across the network of Important Bird Areas as a whole.

The results presented in these studies are, however, con-

tingent on the specific BEMs and future climate projec-

tions used. Only one study (Barbet-Massin et al., 2009)

has fitted a range of different BEMs. Most of them also

spanned a limited number of General Circulation Mod-

els (GCMs) and emissions scenarios, overlooking the

variability among simulations of future climates which

has been shown to be region-specific and relatively high

for most of Africa south of the Equator (Hawkins & Sut-

ton, 2009, 2011). Investigation of the level of uncertainty

associated with the results was, thus, limited.

In this article, we use seven BEM techniques to

describe the bioclimatic envelopes of 284 amphibian, 310

snake, 623 mammal and 1506 bird species in sub-Saha-

ran Africa. To assess the impacts of climatic changes on

the modelled species, we project their envelopes to mid-

and late-century climates. We use an ensemble of 17

GCMs, under the B1, A1B and A2 emissions scenarios

from the Intergovernmental Panel on Climate Change

(IPCC). As large ensembles of projections are difficult to

interpret, consensus methodologies can be used to aver-

age across ensembles. Multi-model climate projections

are widely used in climatology, but there is still debate

on the best consensus methodologies to combine models

(Tebaldi & Knutti, 2007; Knutti et al., 2010). To retain

information about the full variability in our ensemble of

GCMs, we introduce a methodology that averages co-

varying GCMs based on their similarity in both magni-

tude and spatial pattern. We thus reduce the ensemble
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of GCMs to three multi-model projections, and obtain,

for each of the 2723 species modelled, 126 projections of

bioclimatic envelopes (seven BEM techniques, three cli-

mate projections, three emissions scenarios, and two

time periods), or 343 098 projections overall. To facilitate

interpretation of this ensemble, we also summarize

agreements among projections from the seven BEMs.

Consensus methodologies have been used in previous

climate change ecology work in Europe (Thuiller, 2004;

Araújo et al., 2006, 2011; Buisson & Grenouillet, 2009;

Thuiller et al., 2011), the Americas (Diniz-Filho et al.,

2009, 2010; Lawler et al., 2009; Marini et al., 2009, 2010;

Roura-Pascual et al., 2009), Asia (Ogawa-Onishi et al.,

2010), Australia (Crossman & Bass, 2008) and Africa

(Barbet-Massin et al., 2009; Coetzee et al., 2009), and

have generally yielded higher accuracy than single-

models. Yet, there is still debate on the best methodolo-

gies for combining BEM projections and only a few com-

parisons have been published (Araújo et al., 2005b;

Araújo & New, 2007; Marmion et al., 2009). Here, we

compare five methodologies, including the methodol-

ogy introduced to combine GCMs.

Our projections provide insights into the potential

exposure of sub-Saharan African vertebrates to 21st cen-

tury climatic changes. We explicitly address the variabil-

ity in forecasts of species temporal turnover from

alternative climate projections and BEMs, or combina-

tions thereof. More specifically, we investigate: a) the rel-

ative contribution of different sources of uncertainty in

forecasts of species turnover; b) the predictive accuracy

of forecasts from alternative BEM consensus methodolo-

gies; and c) the variation in forecasts with alternative

BEM consensus methodologies and climate projections.

Data and methods

Species and climate data

The study region covered continental sub-Saharan Africa,

south of 20°N. Species occurrence data for amphibian (Hansen

Table 1 Published continental- and sub-continental-scale studies using correlative models to assess the impacts of climate change

on African biodiversity

Species data Extent Resolution

Modelling

approach Future scenarios Reference

Distributional data

for 5197 plant species

(� 2 records)

Sub-

Saharan

Africa

1° ● Box model, SGA

and BGA

● 1 GCM: HadCM3

● 1 SRES: B1

● 3 time periods: 2025, 2055

and 2085

McClean et al.,

2005;

Distributional data

for bird species

breeding in Africa

Sub-

Saharan

Africa

1° ● Locally weighted

regression

● 3 GCMs: HadCM3,

GFDL_R30,

ECHAM4/OPYC3

● 1 SRES: B2

● 1 time period: 2070–99

Huntley et al.,

2006;

Extent of occurrence

data for 277 mammal

species

Africa 10′ ● GAM ● 1 GCM: HadCM3

● 2 SRES: A2 and B2

● 2 time periods: 2050

and 2080

Thuiller et al.,

2006;

Distributional data

for 1608 bird species

(� 5 records)

Sub-

Saharan

Africa

1° ● CRS and GAM ● 3 GCMs: HadCM3,

ECHAM4, GFDL-R30

● 1 SRES: B2a

● 3 time periods: 2025, 2055

and 2085

Hole et al.,

2009;

Distributional data

for 64 bird species

(� 6 records)

Sub-

Saharan

Africa

0.5° ● GLM, GAM, CTA,

ANN, MDA, MARS,

GBM, RF, MaxEnt

● Consensus projection

● 5 GCMs: BCM2,

ECHAM5, HadCM3,

MIROHIC3_2-HI and MK3)

● 3 SRES: A1B, B1 and A2

● 3 time periods: 2030, 2065 and

2100

Barbet-Massin

et al., 2009

ANN, artificial neural networks; GCM, general circulation model; AUC, area under the receiving operator curve; BGA, Bayes-based

genetic algorithm;CRS, species-climate response surfaces;CTA, classification tree analysis;GAM,generalized additivemodel;GBM,gen-

eralized boosting model; GLM, generalized linear model; MARS, multivariate adaptive regression splines; MaxEnt, Maximum Entropy;

MDA,mixturediscriminant analysis; RF, random forests; SGA, simple genetic algorithm; SRES, special report emission scenario.
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et al., 2007a), snake (Rasmussen et al., 2007), mammal (Galster

et al., 2007) and terrestrial bird species (Hansen et al., 2007b)

in sub-Saharan Africa were used from the 1° resolution

(�111 km x 111 km at the Equator) databases held at the Zoo-

logical Museum within the University of Copenhagen in Den-

mark. This is the most comprehensive biodiversity dataset for

Africa, compiled from multiple sources and continuously

improved over 15 years (Burgess et al., 1998; Brooks et al.,

2001). Data were available for 741 amphibians, 477 snakes,

1085 mammals and 1789 birds. Because of statistical difficul-

ties with modelling species with limited numbers of occur-

rence records (Stockwell & Peterson, 2002; Wisz et al., 2008),

we excluded species with fewer than 15 records over the study

area. Our threshold may introduce uncertainty in the analysis,

yet the effect of sample size on model accuracy is a question

that requires further study. More conservative thresholds for

sample size have been suggested (e.g. Harrell et al., 1984), but

some algorithms have been shown to achieve 90% of their

maximum accuracy with ten records (Stockwell & Peterson,

2002). In total 2723 species were modelled, accounting for 67%

of the available data (284 amphibians, 310 snakes, 623 mam-

mals and 1506 birds, with median range sizes of 71, 90, 94 and

162 grid cells respectively).

Baseline climate data averaged for the 1961-90 period were

obtained from the Climatic Research Unit (New et al., 2002) at

a resolution of 10′ (� 18.6 km 9 18.6 km at the Equator).

Monthly precipitation and mean temperature values were

used to compute 21 variables that are commonly useful in bio-

climatic modelling studies (see Appendix S1 in Supporting

Information). We applied principal components analysis

(PCA) to identify sets of uncorrelated variables that represent

major climatic gradients over the study area. From the first

axis, we selected the variable with the highest loading, i.e.,

annual precipitation. An additional variable was selected from

the first axis with high loading, but opposite sign (correlation

�0.45): temperature of the warmest month. The variable with

the highest loading on the second axis, i.e., temperature of the

coldest month, was the third variable selected. The two-first

axes explained 74.3% of the variation (Appendix S1).

Together, precipitation and temperature influence water avail-

ability, which controls biological activity in the tropics and

sub-tropics (Hawkins et al., 2003). Both precipitation- and tem-

perature-based variables are important determinants of the

distributions of bird species (Huntley et al., 2006) and a variety

of other species in Africa (Chown, 2010 and references

therein). The temperature-based variables selected in our

study further reflect the important effect of seasonal tempera-

tures on species’ distributions (Huntley et al., 2006).

Future climate projections were derived from 17 GCMs

downscaled to 10′ resolution (Tabor & Williams, 2010; see

Appendix S2). All downscaled GCMs were from the World

Climate Research Programme’s Coupled Model Intercompari-

son Project phase 3 multi-model dataset projections (Meehl

et al., 2007) and de-biassed using the change-factor technique

and observational data from the CRU. The datasets comprise

monthly mean temperature and precipitation projections for

the 2041-60 and 2081-00 time intervals. Simulations from the

17 GCMs were used for three illustrative greenhouse gas emis-

sions scenarios from the IPCC’s Special Report Emissions Sce-

narios (Nakicenovic et al., 2000). We used high- to low-end

scenarios (A2, A1B and B1) that reflect different assumptions

about demographic, socio-economic and technological devel-

opment on greenhouse gas emissions. For each GCM projec-

tion and scenario, we computed the three selected variables

over the study area. To match the species data resolution, both

baseline and future climate datasets were re-sampled in Arc-

GIS (ESRI, 2006), using bilinear interpolation, to the 1° grid

over sub-Saharan Africa. Data processing and statistical analy-

ses were performed using R (R Development Core Team,

2010) version 2.11.1.

Combining ensembles of climate projections

We first summarized the general tendencies among the 17

selected GCMs. In climatology, multi-model ensemble aver-

ages have often been shown to improve the outcome of cli-

mate simulations (Phillips & Gleckler, 2006; Tebaldi & Knutti,

2007; Gleckler et al., 2008; Reichler & Kim, 2008; Pierce et al.,

2009; Knutti et al., 2010; but see Fordham et al., in press). How-

ever, averaging ensembles can result in the loss of higher-

order variability reflected in extreme projections (Beaumont

et al., 2008). To avoid this limitation, we used a hybrid consen-

sus approach (Araújo et al., 2006) – hereafter referred to as

‘central cluster’ – that groups co-varying projections before

averaging them. When there is great variation in projections –

as it is often the case with precipitation – this approach also

avoids averaging projections that are very different or even

contradictory, by placing them in different groups.

To combine the GCMs, we used three steps in R (R Develop-

ment Core Team, 2010; see Appendix S3 for the R scripts).

First, as a basis for identifying co-varying projections under

each emissions scenario, we assessed similarities among GCM

simulations for each variable projected in the late-century,

when inter-simulation spread becomes larger (Stott & Kettle-

borough, 2002; Meehl et al., 2007; Hawkins & Sutton, 2009).

Similarities were assessed separately for each variable because

the performance of climate models varies for different vari-

ables (Lambert & Boer, 2001; Gleckler et al., 2008). We used

model performance metrics to characterize the agreement

between individual simulations for each variable and the

multi-model median ensemble for the same variable. These

metrics were spatially aggregated point-wise measures of

regional deviations (Duan & Phillips, 2010). The spatial pat-

tern Pearson correlation (R) reflects spatial agreement between

individual simulations of a given variable and the median sim-

ulation of that variable. The signed standardized anomaly (D),

in turn, measures signed differences in magnitude between

individual simulations and the median simulation of a given

variable, standardized using the standard deviation of all sim-

ulations. D thus reflects whether a simulation tends to under-

or over-estimate a given variable in relation to the median of

all simulations of that variable, and by how much. D values

close to zero and R values close to 1 indicate high similarity

between a given model and the multi-model median.

Second, the ensemble of 17 GCMs was partitioned into

groups of co-varying projections according to the 2081-00 D
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and R statistics obtained. We used k-means, a clustering tech-

nique that assigns data points to the closest pre-defined centre.

These centres were the median points of single linkage hierar-

chical clusters based on the Euclidean distance matrix (Ven-

ables & Ripley, 2003). The significance of the differences

between clusters was tested with Anosim, a nonparametric

test of analysis of similarity (Clarke & Warwick, 1994). Ano-

sim was applied to the dissimilarity matrix of D and R values

to test whether the distances between clusters were greater

than the distances within clusters. The initial number of clus-

ters to extract was selected so as to minimize inter-cluster dis-

tances in the hierarchical trees, and was increased when

needed until the Anosim test was statistically significant. For

each emissions scenario we obtained a set of clusters, each

with a number of co-varying late-century climate models. The

same clusters were applied to the baseline and 2041-60 time

periods.

Third, we generated summaries of the patterns of central

tendency in each cluster extracted. For each cluster of co-vary-

ing GCMs obtained for different emissions scenarios and time

slices, un-weighted median consensus forecasts were com-

puted on each variable. There are contrasting views on the use

of weights to perform climate ensemble averages. They have

been shown not to systematically change the results in some

cases (e.g. Pierce et al., 2009) and to improve them in other

cases (e.g. Min & Hense, 2006). Which model performance

metrics to use as weights also remains an issue of debate

(Tebaldi & Knutti, 2007; Gleckler et al., 2008). As the optimal

performance weights for future projections are unlikely the

same as for baseline climate (Tebaldi & Knutti, 2007), we

opted for un-weighted averages. In summary, for each emis-

sions scenario and time period combination we obtained a set

of clusters of GCMs, each with the median simulation of each

variable computed across GCMs. For each set, the cluster with

the average D closest to zero and the highest average R cap-

tured the maximum consensus among projections, corre-

sponding to the ‘central cluster’, whereas clusters departing

from the multi-model median ensemble captured extreme

projections.

Bioclimatic envelope modelling

Models were fitted at 1° resolution using seven presence-

absence BEM techniques in BIOMOD (Thuiller et al., 2009), a

computing platform for ensemble forecasting that operates in

R environment (R Development Core Team, 2010). The tech-

niques included three regression methods (generalized linear

models (GLM), generalized additive models (GAM) and mul-

tivariate adaptive regression splines (MARS)), three machine-

learning methods (artificial neural networks (ANN), Breiman

and Cutler’s random forest for classification and regression

(RF), and generalized boosting models (GBM)), and one classi-

fication method (flexible discriminant analysis, FDA). Due to

differences in quality, species occurrence data were treated

differently across taxa. Estimated range maps for mammals

and birds, based on numerous records of species across multi-

ple countries, lend themselves to be treated as presence-

absence data. For most amphibians and snakes, however, the

data comprise confirmed specimen locality records from

museum collections and thus were considered to be closer to

presence-only data. For the latter taxa, pseudo-absences were

randomly generated to allow fitting models that assume the

data to be in the form of presences and absences. The process

of generating random pseudo-absences in BIOMOD weighs

them to achieve a prevalence of 0.5. There is a debate on how

to select pseudo-absences, and the choice of selection method

is dependent on the purpose of the study (Chefaoui & Lobo,

2008). Yet, random selection has been shown to result in

higher predictive power than strategies that select pseudo-

absences from low-suitability regions (Wisz & Guisan, 2009).

For each species, the seven models were built using a cali-

bration subset of 75% of the sites selected at random and eval-

uated with the remaining 25% of the sites. This data-splitting

procedure was repeated five times. Projections of the probabil-

ity of occurrence of species in each site were converted to bin-

ary format (presence/absence) using a threshold maximizing

the True Skill Statistic (TSS, Allouche et al., 2006). The models

were evaluated based on median omission and commission

errors and TSS on the cross-validated data. The calibrated

models were used to generate projections of species’ biocli-

matic envelopes under each GCM cluster and emissions sce-

nario for 2041-60 and 2081-00. The projections were based on

the final runs of the models using 100% of the data, as data

partitions have been shown to add significant uncertainty to

forecasts (Araújo et al., 2005b, 2009). As we were interested in

measuring changes in climatic suitability for species rather

than interpreting model projections as estimates of the

changes in observed species distributions, we adopted an

‘unlimited dispersal’ scenario, whereby species are assumed

to be able to track shifting suitable climate over the entire

study area. To complement these projections, the areas where

higher proportions of species are projected to retain climatic

suitability over time (corresponding to a ‘no dispersal’

assumption) were also mapped.

Combining ensembles of BEM forecasts

For each taxon, we explored the agreement among projections

from the seven BEM techniques using five consensus method-

ologies. The first three methodologies provide a synthetic

measurement of the central tendency in the frequency distri-

bution of the projections obtained from all BEMs. Imple-

mented within the BIOMOD package, the ‘ensemble mean’

computes the un-weighted mean (e.g. Buisson & Grenouillet,

2009; Diniz-Filho et al., 2010), the ‘ensemble weighted mean’

(e.g. Marmion et al., 2009) uses the TSS values as weights, and

the ‘ensemble median’ calculates the second quartile of the

frequency distribution of forecasts from all models (e.g. Ara-

újo et al., 2005b; Lawler et al., 2009). The fourth and fifth meth-

odologies, in turn, preselect projections that best summarize

consensus among them.

With the fourth method – ‘central model’ – we selected the

model summarizing the highest amount of variation among

projections. For each species, PCAs were performed on the

projected probabilities within the BIOMOD package, and the

‘central model’ corresponded to the one with the highest PCA

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 1253–1269
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loading in the first (consensus) axis (e.g. Thuiller et al., 2005;

Algar et al., 2009). In the fifth method – ‘central cluster’ – we

investigated patterns of central tendency among groups of

co-varying projections (e.g. Araújo et al., 2005b, 2006). Follow-

ing the approach used to combine the ensemble of GCMs, we

clustered the BEMs based on the similarities between single-

BEM probabilistic projections and the multi-model median

probabilistic projection. We used the same measures of D and

R, computed for each species. Unlike the other four consensus

methodologies, the grouping was performed for the set of all

species in one taxon rather than individually for each species.

The same procedure of clustering and Anosim testing we used

for GCM projections was followed. The corresponding binary

projections for the BEMs in each cluster were combined using a

majority vote criterion, whereby a species was considered pres-

ent in grid points where more than half of the BEMs in the clus-

ter predicted presence. The ‘central cluster’ was the closest to

the multi-model projection. Both the PCA and cluster analysis

were applied to the end-of-century scenario, when divergence

is expected to be highest, and the same model(s) used to derive

consensus forecasts in the baseline and 2041-60 time periods.

The BEM consensus projections were built using 100% of

the data for the same reasons cited above for single-BEM pro-

jections. To evaluate the consensus projections, we applied the

same five consensus methodologies to the five evaluation

datasets (25% of the data) and computed the median omission

error, commission error and TSS of all cross-validations and,

in the case of amphibians and snakes, all pseudo-absence runs.

To assess the level of consensus among BEMs, we performed

PCAs for each species on the probabilistic projections, both for

all seven BEMs and for the ‘central cluster’ BEMs only. The

proportion of variance explained by the first principal compo-

nent axis provided a measure of consensus among projections

(Thuiller, 2004; Araújo et al., 2006; Grenouillet et al., 2011).

Mapping shifts in climatic suitability and associated
uncertainties

For each emissions scenario and GCM cluster combination,

and for the five BEM consensus methodologies applied, base-

line and future species richness and the number of contracting

and expanding species were computed. Spatial patterns of

change were investigated using measures of species temporal

turnover per grid cell (Peterson et al., 2002). The ‘species turn-

over rate’ refers to local dissimilarities between baseline and

future sets of species for which a given area is projected to be

climatically suitable, and thus incorporates both losses and

gains of climate space. In addition, in situ persistence of cli-

matic suitability for species was investigated.

To evaluate and map the relative contributions of emissions

scenarios, future climates and BEMs to the overall uncertainty

in forecasts, we performed analyses of variance (ANOVA) in R (R

Development Core Team, 2010). Following Diniz-Filho et al.

(2009), we performed a three-way ANOVA without replication

for each grid cell, using the turnover rate as the response vari-

able and the emissions scenarios, future climate projections and

BEM consensus methodologies as factors. An ANOVA using

single-BEMs, climate projections and emissions scenarios as

factors, in turn, provided indications on the relative contribu-

tion of individual BEMs to uncertainty in turnover projections

(before combining the ensembles). To explore BEM uncertain-

ties associated with model extrapolation, we mapped the areas

projected to experience future climates beyond the range of

climate values used to fit the models for each of the three vari-

ables. For each GCM cluster and scenario combination, the sum

of these areas corresponded to ‘non-analogue’ areas, where

projections become statistically less reliable (Heikkinen et al.,

2006;Williams et al., 2007; Fitzpatrick &Hargrove, 2009).

Results

Relative contribution of different sources of uncertainty
in forecasts of species turnover

Uncertainty in species turnover forecasts was mainly

caused by the variability among BEMs. In the point-

wise ANOVA using BEMs, GCM clusters and emissions

scenarios as factors, the median proportions of the total

sum of squares across the study area attributed to

BEMs reached between 76% for mammals and 82% for

snakes by mid-century (Appendix S4). The relative

contribution of BEMs to overall uncertainty decreased

by late-century (to between 61% for mammals and 69%

for snakes) due to increased divergence among emis-

sions scenarios. Variability across BEMs was strongly

affected by RF projections that displayed higher losses

and gains of suitable climate across climates and emis-

sions scenarios, departing from the general trend across

models (Fig. 1a; see below).

Disagreement among BEM forecasts in late-century

was mainly concentrated in the northern half of the

study area, particularly in Sahelian and southern Saha-

ran Africa (Fig. 2). These areas were predicted to expe-

rience mean temperatures of the warmest and coldest

months above the calibration range (Fig. 3a; Appendix

S5), forcing the models to extrapolate beyond known

relationships. Late-century nonanalogue climates cov-

ered up to 50% of the study area for the most severe

climate projection. A comparison of grid points with

analogue and nonanalogue climates (Fig. 3b) revealed

significant differences in the proportion of the total

sum of squares attributed to BEMs for all time periods

and future climates (Kolmogorov–Smirnov tests P-

value < 0.001). The northern regions of high BEM

uncertainty mostly corresponded to areas with nonana-

logue climates.

Predictive accuracy of forecasts from alternative BEM
consensus methodologies

Using the median TSS across all species as an evalua-

tion criterion, we found that consensus projections
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outperformed or equalled all or six of the single-BEMs

for amphibians and snakes, and between one and seven

single-BEMs for mammals and birds (Fig. 4a). The ‘cen-

tral cluster’ methodology provided the most robust

projections for all taxa, surpassing all single-BEMs. This

methodology resulted in four clusters for each taxon,

with the ‘central cluster’ combining high-accuracy

models (GAM and GLM for mammals, GAM, GBM,

GLM and RF for birds, and GBM and GLM for amphib-

ians and snakes for most GCM cluster and scenario

combinations; Anosim P-value < 0.05, see Appendix S6

for results on 100% of the data). The ‘central cluster’

projections were also the most consensual, raising the

median levels of consensus across all species for the

four taxa, although to different degrees depending on

the number and spread of projections in the cluster

(Appendix S7). The ‘central model’ methodology, in

turn, yielded high accuracy projections for amphibians

and snakes, but the lowest accuracy of all consensus

projections for mammals and birds. Whereas for a large

fraction of amphibian and snake species the ‘central

model’ corresponded to high-accuracy models (GBM

and ANN), for mammal and bird species the selection

covered a wider range of models (see Appendix S8 for

results on 100% of the data) with varying levels of accu-

racy, yielding lower median TSS across species.

High accuracy of consensus projections was linked to

both low omission and commission errors (Fig. 4b and

c). The ‘central cluster’ projections displayed lower

numbers of known absence points incorrectly predicted

(Fig. 4c; for each taxon, distribution of commission

errors across species significantly different from the

remaining consensus projections according to Wilcoxon

signed rank tests, see Appendix S9). For birds in partic-

ular, the models combined in the ‘central cluster’ pro-

jections included RF, which incorporate the notion of

ensemble forecasting (Araújo & New, 2007) and can

yield highly accurate projections (Prasad et al., 2006).

The extreme discrepancy in commission error of RF

models from the other projections, however, suggests

that these models may have over-fitted the training

data (see Jimenez-Valverde et al., 2008). For amphibians

and snakes, the measurements of commission error

may have been affected by random pseudo-absences

placed in climatically suitable areas (Anderson et al.,

2003, Peterson et al., 2011).

Fig. 1 Proportion of suitable climate projected to be lost and gained by species for the seven bioclimatic envelope models (BEM) (a)

and the five BEM consensus projections (b) under alternative climate projections. Values are median percentages of grid cells lost or

gained for all species of amphibians (n = 284), snakes (n = 310), mammals (n = 623) and birds (n = 1506) in mid- (open circles) and

late-century (solid circles). For a given time period, each circle corresponds to one of the nine combinations of three emissions scenarios

and three general circulation model (GCM) clusters. The BEMs are Artificial Neural Networks (ANN), Generalized Additive Models

(GAM), Generalized Boosting Model (GBM), Generalized Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS),

Flexible Discriminant Analysis (FDA) and Random Forests (RF), and the BEM consensus are ensemble mean (EMean), ensemble

weighted mean (EWMean), ensemble median (EMed), central model (CMod) and central cluster (CClus).
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Variation in forecasts with alternative BEM consensus
methodologies and climate projections

When the BEMs were combined and the relative sources

of uncertainty re-assessed in a point-wise ANOVA, differ-

ences emerged across taxa. For amphibians and snakes,

mid-century turnover forecasts varied most with the

BEM consensus methodologies (median proportions of

the total sum of squares across the study area of 37%

and 43% respectively, decreasing to 24% and 29% by

late-century; see Table 2). For these taxa, ‘central clus-

ter’ median estimates of late-century species turnover

over the study area were up to 1.6 times higher than

those produced by the most conservative BEM consen-

sus methodologies across all climate projections

(Appendix S10). By contrast, only up to 1.2-fold differ-

ences resulted for mammal and bird species. Geogra-

phically, the five BEM consensus projections displayed

similar patterns of species turnover for each taxon, with

larger variations for amphibians and snakes between

the ‘central cluster’ and the remaining consensus projec-

tions (Appendix S11). For each taxon, there were consis-

tent trends among consensus methodologies of median

losses and gains for all species across climate projections

(Fig. 1b). Consistent across all taxa was a trend towards

more species contracting their bioclimatic envelopes

than expanding. Depending on the BEM consensus pro-

jection, between 54% and 74% of the species in each

taxon were consistently estimated to lose suitable cli-

mate across emissions scenarios by late-century

(Fig. 5a).

In contrast, alternative climate projections had the

largest impact on mid-century projections for mammals

and birds, with the GCM clusters explaining 34% and

40% respectively of the total sum of squares in the

ANOVA (Table 2). Towards the end of the century, the

spread across emissions scenarios increased, becoming

the major source of uncertainty for all taxa. For each

scenario, the three clusters of GCMs obtained (Anosim

statistics 0.72 (A1B) and 0.81 (B1 and A2), P = 0.001)

reflected a warming gradient. The maximum consensus

‘central cluster’ (cluster 2) reflected intermediate levels

of warming. The other clusters captured low- (cluster 1)

and high-end (cluster 3) temperature variability across

climate models. For the temperature of the warmest

month, for example, median values of late-century

anomalies projected over the study area varied between

1.8 °C (lower and upper quartiles 1.6–2.0%) for the

low-end cluster 1 under B1 and 5.1 °C (4.6–5.7 °C) for
the high-end cluster 3 under A2 (similar patterns

emerged for the temperature of the coldest month; see

Appendix S12). Trends across the GCM clusters were

less clear for precipitation forecasts, and sometimes

showing contrasting directions of change (Appendix

S13), but cluster 3 was consistently the driest for all

scenarios. Following the warming gradient, median

Fig. 2 Spatial variation of the relative contribution of future climate projections and bioclimatic envelope models to the variability in

species turnover forecasts for amphibian, snake, mammal and bird species. Values shown correspond to the proportion of the total

sum of squares accounted for by the bioclimatic envelope models (BEM), general circulation model clusters (GCMcons), emissions sce-

narios (SRES), and one interaction factor (GCMcons:SRES) in the three-way analysis of variance (ANOVA) performed for each grid cell

over the study area (N = 1851) on turnover forecasts for each taxon. Data are shown for mid- and late-century.
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late-century turnover rates across the study area almost

doubled from cluster 1 under B1 to cluster 3 under A2

(Appendix S10).

For all taxa, a southern area centred in the arid

regions of Namibia emerged with high turnover rates

by late-century (Fig. 6). However, the geographical

extent of this high-turnover effect varied from isolated

patches of the Kalahari in Namibia and Botswana and

of southern Mozambique for cluster 1 under B1, to

most of inland Namibia, Botswana and southern

Mozambique for cluster 3 under A2. A comparison of

the areas projected to remain climatically suitable for

species over time revealed more striking differences

across taxa (Fig. 7). For amphibians, it was the West

African forests that were projected to remain climati-

cally suitable for the largest proportion of species, irre-

spective of climate projection. A significant proportion

of snake species were also projected to persist in this

area, but under the B1 scenario also in the Albertine

Rift mountain forests and extending around the Congo

Basin. In comparison, larger climatically stable areas

were projected for mammal and bird species, particu-

larly under B1, with the highest proportions of species

persisting in the Ethiopian highland mountain, Alber-

tine Rift, East Africa montane and Eastern Arc forests,

as well as the Angolan scarp and Miombo woodlands

and the Drakensberg and eastern coast of South Africa

for bird species. Projections for cluster 1 under B1

showed the lowest proportions of species of all taxa

consistently predicted to contract across all BEM con-

sensus projections (Fig. 5b).

Discussion

We explored the spread in estimates of climatically

suitable areas for African vertebrates using alternative

climate projections and emissions scenarios, as well as

BEMs and combinations thereof. Our aim was to

address the methodological uncertainty associated with

the results. Other methodological factors that are not

accounted for in our analysis are likely to add further

uncertainty to the projections. They include gaps and

biases in species occurrence data (Hortal et al., 2008),

the selection of predictors (Synes & Osborne, 2011), the

temporal (Roubicek et al., 2010) and spatial resolution

(Kriticos & Leriche, 2010) of baseline climate data, and

the thresholds used to convert probabilistic to binary

projections (Araújo et al., 2005b; Nenzén & Araújo,

2011). Yet, the uncertainty arising from future climate

projections and from BEMs, which differ in how they

extrapolate to nonanalogue climates, has particular rel-

evance in the climate change context.

Sources of uncertainty

Although comparisons of sources of uncertainty in

forecasts depend on the amount of variability captured

by each source (Diniz-Filho et al., 2009), our assessment

spanned a wide variability for the three sources consid-

ered: seven classes of BEM that perform differently

when projected to the future (Thuiller et al., 2004a; Ara-

újo et al., 2006; Pearson et al., 2006), three emissions sce-

narios that span a good portion of the range of the six

IPCC scenarios (Manning et al., 2010), and 17 of the 23

IPCC fourth Assessment Report GCMs. In line with

previous studies (Araújo et al., 2005b; Pearson et al.,

2006; Diniz-Filho et al., 2009, 2010; Nenzén & Araújo,

2011), mid-century projections were most affected by

the choice of BEM (Fig. 2). The relative amount of vari-

ation introduced by BEMs, however, decreases over

time (Buisson et al., 2010 and this study), as divergence

among emissions scenarios increases (Stott & Kettlebor-

ough, 2002; Hawkins & Sutton, 2009). By late-century,

Fig. 3 Comparison of uncertainties arising from bioclimatic

envelope models between analogue and nonanalogue climate

grid cells, for amphibians, snakes, mammals and birds. The

maps (a) show the distribution over the study area (N = 1851)

of nonanalogue climates (dark grey) for scenarios A2 (N = 738

non-analogue grid cells), A1B (N = 632) and B1 (N = 374). The

graphs (b) show the frequency of the distributions of the pro-

portions of the total sum of squares accounted for by bioclimatic

envelope models in the point-wise three-way analysis of vari-

ance (ANOVA) performed for each taxon using species turnover

projections as response variable. The difference is shown

between analogue (light grey) and nonanalogue (dark grey) cli-

mate grid cells over the study area (Kolmogorov–Smirnov tests

P-value < 0.001 across taxa). Data refer to the ‘maximum con-

sensus’ general circulation model cluster (cluster 2) under the

three emissions scenarios.
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twofold differences emerged in species turnover

projections with alternative GCM clusters and emis-

sions scenarios.

Differences among projections from alternative

climate projections were especially important in south-

ern Africa (Fig. 2), where some of the greatest changes

in species turnover were projected (Fig. 6). In contrast,

variability from BEMs was especially high in the north-

ern half of the study area (Fig. 2), coinciding with pro-

jected nonanalogue climates (Fig. 3). The problem of

model extrapolation into 21st century novel climates

has been overlooked in most continental-scale studies

in Africa and elsewhere, although there have been

efforts to quantify it at different geographical scales, for

example in Europe (Saetersdal et al., 1998; Thuiller

et al., 2004b; Araújo et al., 2011), North America (Rob-

erts & Hamann, in press) and Australia (Fitzpatrick &

Hargrove, 2009; Elith et al., 2010). Projected novel cli-

mate conditions are unevenly distributed worldwide

(Williams et al., 2007). In Africa, forecasts of severe

warming increase the risk of nonanalogue climates,

particularly under high-end emissions scenarios (Wil-

liams et al., 2007; Appendix S5).

Solutions to the problem of extrapolation into nonan-

alogue climates include classifying such areas as spe-

cies absences (Austin & Meyers, 1996; Thuiller et al.,

2004b), excluding them from the analysis (Saetersdal

et al., 1998), or using a larger calibration area before

projecting to the region of interest (Pearson et al., 2006).

Yet, such solutions may lead to misleading results

when the bioclimatic envelope of the species has not

been fully captured by the calibration data or when the

species is not in equilibrium with climate (Svenning &

Skov, 2004; Araújo & Pearson, 2005). With long time

horizons, novel climates are expected to become more

widespread (Williams et al., 2007), and the problem of

extrapolation may persist even when using larger cali-

bration areas, and all the more when the species

(a)

(b)

(c)

Fig. 4 Comparison of average True Skill Statistics (TSS) between bioclimatic envelope models (BEM) and BEM consensus projections

(a), and density functions of omission error (b) and commission error (c) of BEM consensus projections for all species in each taxon.

Omission and commission error and TSS values refer to the median of the validation datasets (and pseudo-absence runs in the case of

amphibians and snakes). The TSS plots (a) show the median (full circles) and the upper and lower quartiles (the extremes of the hori-

zontal lines) of the TSS values of all species for each BEM consensus projection, as well as the median TSS values of all species for each

BEM projection (black vertical lines). The consensus projections are the ensemble mean (EMean), ensemble weighted mean (EWMean),

ensemble median (EMed), central model (CMod) and central cluster (CClus). The CMod and CClus projections shown were built using

late-century projections from the GCM cluster 2 under A1B. The individual models are Artificial Neural Networks (ANN), Generalized

Additive Models (GAM), Generalized Boosting Model (GBM), Generalized Linear Models (GLM), Multivariate Adaptive Regression

Splines (MARS), Flexible Discriminant Analysis (FDA) and Random Forests (RF).
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Table 2 Relative contribution of general circulation models and bioclimatic envelope model consensus methodologies to overall

uncertainty in species turnover projections for amphibian, snake, mammal and bird species. The values are proportions of the total

sum of squares from the three-way analysis of variance (ANOVA) performed for each grid cell over the study area (N = 1851) to eval-

uate the relative contributions of the bioclimatic envelope model consensus methodologies (BEMcons), the general circulation

model clusters (GCMcons), the emissions scenarios (SRES) and interactions among these factors, to the variability in turnover fore-

casts for each taxon. Values correspond to the median and (in brackets) the lower and upper quartiles of the proportions of the total

sum of squares attributed to each factor over the study area, and are shown for both mid- and late-century

Amphibians Snakes Mammals Birds

2041–60

BEMcons 36.5 (20.4–60.5) 42.8 (24.8–60.6) 24.7 (11.8–44.1) 20.6 (11.4–34.9)

GCMcons 24.4 (9.2–40.7) 25.7 (11.6–41.3) 34.1 (19.0–50.4) 40.2 (24.5–54.7)

SRES 9.8 (4.4–16.3) 10.7 (6.0–16.7) 15.2 (9.5–21.7) 18.2 (11.7–25.7)

BEMcons:GCMcons 3.4 (1.7–6.4) 3.1 (1.8–5.2) 3.2 (1.8–5.9) 2.0 (1.1–3.3)

BEMcons:SRES 1.9 (0.9–3.8) 1.9 (1.1–3.4) 2.3 (1.3–4.1) 2.0 (0.9–4.7)

GCMcons:SRES 4.2 (2–7.6.0) 3.9 (2.1–6.8) 4.3 (2.2–7.5) 4.5 (2.4–8.1)

BEMcons:GCMcons:SRES 4.3 (2.2–8.5) 3.7 (2.1–5.9) 4.3 (2.5–7.5) 2.4 (1.3–4.4)

2081–00

BEMcons 23.6 (7.6–48.8) 28.8 (11.3–47) 12.7 (3.6–29.3) 12.4 (3.3–24.7)

GCMcons 19.2 (8.9–27.7) 19.8 (11.7–27.2) 24.7 (17.6–31.1) 28.0 (21.3–34.6)

SRES 28.5 (13.3–48.7) 32.1 (19.6–48.8) 44.2 (31.4–57.1) 45.8 (32.3–57.3)

BEMcons:GCMcons 1.9 (0.9–3.7) 1.5 (0.7–3.2) 1.4 (0.6–2.8) 1.0 (0.4–1.8)

BEMcons:SRES 1.8 (0.9–3.7) 1.7 (0.9–3.3) 1.9 (0.8–3.7) 1.4 (0.6–2.7)

GCMcons:SRES 4.3 (2.2–8.2) 3.8 (2.0–6.9) 3.6 (2.0–6.1) 4.0 (2.0–6.8)

BEMcons:GCMcons:SRES 3.4 (1.5–8.5) 2.6 (1.5–5.9) 2.4 (1.1–4.7) 1.2 (0.7–2.3)

(a)

(b)

Fig. 5 Percentage of species predicted to lose or gain suitable climate consistently across the three emissions scenarios (a) and across

the five BEM consensus methodologies (b). The percentages of species of amphibians (n = 284), snakes (n = 310), mammals (n = 623)

and birds (n = 1506) that are consistently projected to contract (lighter tones, left side of graphs) or expand (darker tones, right side of

graphs) their bioclimatic envelopes for the ‘maximum consensus’ general circulation model cluster across all emissions scenarios (A2,

A1B and B1) are shown for each consensus methodology (a). The percentages of species in each taxon that are consistently projected to

contract or expand across all BEM consensus projections (EMean, ensemble mean; EWMean, ensemble weighted mean; EMed, ensem-

ble median; CMod, central model; CClus, central cluster) are shown for each climate projection (b). Data are shown for mid- and late-

century.
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response curves are high or increasing where truncated

(Anderson & Raza, 2010; Webber et al., 2011). The ideal

solution of using ecological or physiological knowledge

of the species to classify nonanalogue climate areas as

either presences or absences (Elith et al., 2010) is not

feasible for most species where these data are lacking.

The approach used in our study may thus reflect the

current best practice: mapping nonanalogue climates to

identify where uncertainties are likely to be higher

(Platts et al., 2008; Fitzpatrick & Hargrove, 2009; Elith

et al., 2010; Araújo et al., 2011; Roberts & Hamann, in

press) and using a range of BEMs that make different

assumptions about the responses of species in those

areas (Pearson et al., 2006).

Role of consensus approaches

Although multi-model averages of GCMs have rarely

been used by ecologists (but see Beaumont et al., 2011;

Roberts & Hamann, in press), their value for global

change studies has been recognized (Beaumont et al.,

2008; Fordham et al., in press). Our ensemble of GCMs

reflects availability, and may thus not sample the full

range of uncertainty or guarantee independence of

models (Meehl et al., 2007; Tebaldi & Knutti, 2007;

Knutti et al., 2008), but the large number of models

included is expected to minimize potential biases by

model choice (Knutti et al., 2010). Our approach to com-

bine groups of co-varying GCMs enabled us to retain

information about the full variability of projections,

Fig. 6 Projected late-century species turnover rate (%) for amphibian, snake, mammal and bird species under the alternative emissions

scenarios (A2, A1B and B1) and general circulation model clusters (Clusters 1, 2 and 3). Data refer to the ensemble median of all biocli-

matic envelope model projections.

Fig. 7 Percentage of species predicted to retain climatic suitabil-

ity under each emissions scenario. The proportion of the total

numbers of species of amphibians (n = 284), snakes (n = 310),

mammals (n = 623) and birds (n = 1506) that are projected to

retain climatic suitability in each location are shown for the

median ensemble of all bioclimatic envelope models and for the

‘maximum consensus’ general circulation model cluster under

the A2, A1B and B1 emissions scenarios.
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including those that are extreme, and minimize the

effect of combining often divergent precipitation projec-

tions. In face of the wealth of climate simulations avail-

able, this approach might prove increasingly useful in

ecological modelling studies.

How alternative methodologies to combine BEMs

affect forecasts of species bioclimatic envelopes has

rarely been investigated (but see Araújo et al., 2005b,

2006; Marmion et al., 2009). Measurements of model

accuracy in the baseline context do not necessarily pro-

vide an indication of the models’ ability to transfer into

future conditions (Araújo et al., 2005a). However, in the

absence of independent data for evaluation of the mod-

els, they can be used as benchmark for verification of

the consistency of alternative consensus methodologies.

Using a variety of methodologies, we found that con-

sensus projections displayed greater consistency in

accuracy for amphibians and snakes. Whereas the three

consensus methodologies averaging the full ensemble of

BEM projections were generally consistent for all taxa,

for mammals and birds they diverged from those meth-

odologies combining only preselected models (Fig. 4a).

This distinction across taxa resulted from the greater

spread of projection accuracy from the seven BEMs for

mammals and birds. For all taxa, however, the ‘central

cluster’ methodology stood out as the most accurate

projection. In the case of amphibians and snakes, accu-

rate and constrained baseline ‘central cluster’ projec-

tions led to higher species turnover rates than the

remaining consensus methodologies (Appendix S11).

Interpreting BEM outputs

The climatically suitable areas identified in this study

are areas where the exposure of species to climatic

changes can potentially allow the persistence of verte-

brates through time. Assessing the potential response

of species to these changes would necessitate mechanis-

tic information about their sensitivity and adaptive

capacity. Correlative studies have used such informa-

tion as a source of data to infer absence (Elith et al.,

2010) or presence points (Hijmans & Graham, 2006), as

model predictors (Rödder et al., 2009), or as comple-

mentary information (Morin & Thuiller, 2009), but simi-

lar applications to large datasets like ours are limited

by data availability. Information on species’ dispersal

capacity, for example, would determine whether

projected new suitable climate space is accessible to

species. Given the known variation in dispersal capac-

ity among the four taxa, effective range shifts would

diverge more across taxa than the projected gains of

suitable climate (Fig. 1). Mapping areas that remain cli-

matically suitable for most species through time reflects

potential persistence of species in situ (Fig. 7), whereas

integrating dispersal rate estimates in BEMs (Midgley

et al., 2006) or combining BEM and migration model

projections (Iverson et al., 2004) would indicate poten-

tial range shifts. Biotic factors such as habitat structure

further limit the response of vertebrates. African habi-

tats are controlled by the interaction among climate,

atmospheric CO2 and disturbances like fire (Scheiter &

Higgins, 2009). In the case of grass-dominated savan-

nas, the low levels of CO2 that triggered their develop-

ment during the last glacial are clearly being surpassed,

with expected changes in tree cover (Bond et al., 2003;

Kgope et al., 2010) and associated fauna (Sirami et al.,

2009). The use in BEMs of vegetation predictors derived

from mechanistically based dynamic vegetation models

(Triviño et al., in press) could capture these effects and,

to some extent, reduce uncertainties arising in nonana-

logue situations.

Exposure of species to climatic changes was measured

in our study by three climatic variables. The realism of

our models thus depends on the relationship between

species distributions and these variables. This relation-

ship is unlikely to be constant through time, not only for

its complexity but also for the changing correlations

among climatic variables (Morin&Lechowicz, 2008). De-

coupling of patterns of covariance betweenpredictor and

proximal variables may undermine the value of BEMs

when extrapolating in time (Jackson et al., 2009; Elith

et al., 2010). Our variables also discount climatic variabil-

ity nested across temporal and spatial scales.Multi-deca-

dal climatic means fail to capture fluctuations and rapid

transitions between climate states (Jackson et al., 2009).

Projected changes in mean precipitation in Southern

Africa, for example, differ between seasons and do not

always parallel those in extreme precipitation (Shongwe

et al., 2009). However, it is the interplay between tempo-

ral variability and species survival thresholds that deter-

mines the effects on species (Jackson et al., 2009). By the

same token, the coarse spatial resolution used here over-

looks microclimates provided by topographical or vege-

tation features (e.g. Shoo et al., 2011).

BEM outputs need to be interpreted in the light of

the methodological uncertainty explored and the bio-

logical limitations discussed above. If carefully imple-

mented, BEMs can, therefore, provide a first-order,

parsimonious assessment of the changes in the distribu-

tion of suitable climate for species (Thuiller et al., 2008;

Jackson et al., 2009; Chevin et al., 2010; Huntley et al.,

2010). A new generation of models that couple correla-

tive with mechanistic approaches (Keith et al., 2008;

Anderson et al., 2009; Brook et al., 2009; Huntley et al.,

2010) is required to allow predictions of population

persistence that have direct relevance to local or regio-

nal conservation (Jackson et al., 2009; Chevin et al.,

2010). Yet our ensemble forecasting implementation of

© 2011 Blackwell Publishing Ltd, Global Change Biology, 18, 1253–1269
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BEMs provides general insights into the potential expo-

sure of sub-Saharan African vertebrates to climate

change at the continental scale, as well as a critical

background for those seeking to interpret these results

and use them as the basis for decision-making at this

large scale.
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Araújo MB, Pearson RG, Thuiller W, Erhard M (2005a) Validation of species–climate

impact models under climate change. Global Change Biology, 11, 1504–1513.
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Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles

of forecasts of species turnover under climate change. Ecography, 32, 897–906.

Diniz-Filho JAF, Nabout JC, Bini LM, Loyola RD, Rangel TF, Nogues-Bravo D, Araújo
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Thuiller W, Araújo MB, Pearson RG, Whittaker RJ, Brotons L, Lavorel S (2004a) Bio-

diversity conservation: Uncertainty in predictions of extinction risk. Nature, 430,

145–148.
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