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ABSTRACT

Aim To understand how the integration of contextual spatial data on land

cover and human infrastructure can help reduce spatial bias in sampling effort,

and improve the utilization of citizen science-based species recording schemes.

By comparing four different citizen science projects, we explore how the sam-

pling design’s complexity affects the role of these spatial biases.

Location Denmark, Europe.

Methods We used a point process model to estimate the effect of land cover

and human infrastructure on the intensity of observations from four different

citizen science species recording schemes. We then use these results to predict

areas of under- and oversampling as well as relative biodiversity ‘hotspots’ and

‘deserts’, accounting for common spatial biases introduced in unstructured

sampling designs.

Results We demonstrate that the explanatory power of spatial biases such as

infrastructure and human population density increased as the complexity of the

sampling schemes decreased. Despite a low absolute sampling effort in agricul-

tural landscapes, these areas still appeared oversampled compared to the

observed species richness. Conversely, forests and grassland appeared under-

sampled despite higher absolute sampling efforts. We also present a novel and

effective analytical approach to address spatial biases in unstructured sampling

schemes and a new way to address such biases, when more structured sampling

is not an option.

Main conclusions We show that citizen science datasets, which rely on

untrained amateurs, are more heavily prone to spatial biases from infrastruc-

ture and human population density. Objectives and protocols of mass-partici-

pating projects should thus be designed with this in mind. Our results suggest

that, where contextual data is available, modelling the intensity of individual

observation can help understand and quantify how spatial biases affect the

observed biological patterns.

Keywords

biodiversity hotspots, citizen science, conservation priority, point process

model, species richness, volunteer.
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INTRODUCTION

The engagement of volunteers in data collection (i.e. citizen

science) has the potential to provide unparalleled amounts of

data over large temporal and spatial scales, as well as help

encourage the public to participate in the scientific process

(Tewksbury et al., 2014; Bela et al., 2016). Today, as much

as 45% of the ca. 570 million records housed in the Global

Biodiversity Information Facility (2015) have been collected

by volunteers. Moreover, it has been estimated that the

majority of existing natural history data has been collected

by amateur volunteers who are not employed at universities

or natural history museums (Bell et al., 2008; Mackechnie

et al., 2011; Preston, 2013; Roy et al., 2014). Many citizen

science projects have a long history (e.g. bird ringing), with

data historically stored in personal or society logs. This has

made them difficult to access for scientific and management

purposes. However, the development of web-based recording

with a user-friendly interface and associated databases has

resulted in data being increasingly consolidated and available

to the research community (Dickinson et al., 2012). Like-

wise, tools such as Google Earth and dedicated smartphone

applications (APPs) using internal clocks and GPS to record

time and place have encouraged an even larger group of peo-

ple to engage in the collection of potentially useful data

(Wiggins & Crowston, 2011; August et al., 2015). Where

these datasets have a sufficient spatial and temporal

resolution, they represent a cost-effective tool for monitoring

biodiversity (Schmeller et al., 2009). This has led to volun-

teer-based data increasingly being used as part of the

national reporting towards international targets (Gregory

et al., 2005; Tulloch et al., 2013) as well as in research (Pow-

ney & Isaac, 2015).

However, the inclusion of citizens in data collection does

not come without a cost, and most data collected by volun-

teers violate one or more fundamental principles of sound

experimental design. Isaac et al. (2014) identified four cate-

gories of sampling biases related to variation in recorder

activity: (1) uneven recording intensity over time, (2) uneven

spatial coverage, (3) uneven sampling effort per visit and (4)

variable abilities to detect species among volunteers. If not

addressed, these can lead to unsubstantiated estimates of spe-

cies richness or changes in abundance, overwriting any real

signal in the data, and leading to biased results or in worst

cases false conclusions. However, appropriate analysis of vol-

unteer-collected data can help overcome much of this bias

(Schmeller et al., 2009; Bird et al., 2014; Powney & Isaac,

2015). Traditionally, sampling biases have been addressed

using methods to exclude (filter) and/or standardize subsets

of the data, keeping only the reliable observations (e.g. Hick-

ling et al., 2006; Van Calster et al., 2008; Carvalheiro et al.,

2013) but at the cost of losing substantial amounts of data

(Isaac & Pocock, 2015). Likewise, methodological advances

have allowed for modelling species distribution patterns

while accounting for uneven detectability (Bird et al., 2014;

Isaac et al., 2014). These include using species accumulation

curves to address uneven sampling (Heilmann-Clausen &

Læssøe, 2012; Eskildsen et al., 2015), inferring sampling

effort from the number of species recorded at individual vis-

its (Barnes et al., 2015) or occupancy modelling, where the

same sites are visited multiple times (Kery et al., 2010; van

Strien et al., 2013). Such analyses offer a powerful toolbox

for addressing the various biases inherent in volunteer-col-

lected data. However, these approaches are based on assump-

tions about the behaviour of the collectors and are extracted

from the species recording scheme itself. Thus, these analyses

do not incorporate independent contextual data linked to

expected spatial biases in the intensity of observations. Spa-

tial patterns in observation intensity originate from two well-

known conditions. One, individuals of any species are not

randomly distributed across the landscape (Peterson et al.,

2011; Erb et al., 2012). Two, the collectors’ observations are

not randomly distributed in space (Isaac et al., 2014; Powney

& Isaac, 2015). Both sources are of concern for the validity

of collection schemes based on presence-only data from vol-

unteers (Crall et al., 2011; Bird et al., 2014). When secondary

data on sources of bias are available, a posteriori expectation

of how they impact the behaviour of volunteers can be used

to improve current models. This allows for filtering out the

effect of such biases rather than filtering the observations.

We know that people tend to record close to where they live

(Luck et al., 2004; Luck, 2007), in places they enjoy spending

time (H€ornsten & Fredman, 2000), and in places known for

their biodiversity value (Prendergast et al., 1993). Also, land-

scape properties, making some areas more accessible and

other impenetrable, affect people’s behaviour leading to dif-

ferences in observation intensity. For example, roads have

been shown to affect the frequency of plant observations, so

that the number of records increased as distance to roads

decreased (Kadmon et al., 2004; McCarthy et al., 2012). Sim-

ilar patterns have been observed for birds (Hanowski &

Niemi, 1995; Keller & Scallan, 1999). While such biases are

intuitive and acknowledged, existing analyses of volunteer-

collected data do not explicitly quantify and incorporate

them (Isaac et al., 2014). Thus, including contextual data on

well-known biases in models of unstructured volunteer data

represents a novel and important contribution to citizen

science and can help better utilize existing and new data on

species occurrence.

To address this gap in modelling volunteer-collected data,

we use a point process model (PPM) to investigate how dif-

ferences in land cover and spatial bias from human infras-

tructure affect the distribution of observations across citizen

science projects. We examine the intensity of observations

(i.e. sampling effort), which is fundamentally different from

modelling species richness or abundance. We use these

results to investigate how the design and implementation of

citizen science schemes affect the observed spatial bias, by

examining four citizen science projects, which vary in (1)

taxonomic breadth, (2) complexity of the design and (3)

number of participants. To our knowledge, this is the first

analysis to quantify how variability in sampling design,
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ranging from untrained amateurs with no prior training to

highly specialized amateur experts, affects the contribution of

spatial bias. Finally, we use this information to assess areas

of under- and oversampling based on the correlation

between corrected sampling effort and recorded species rich-

ness. Such maps, while not a direct measure of species rich-

ness, can provide a powerful and novel tool for conservation

managers who need to make real-time decisions with imper-

fect data.

METHODS

Study area

Our study was conducted in Denmark, located between

Fennoscandia and mainland Europe. Denmark has an esti-

mated species richness of 35–40,000 multicellular species.

The total land area is 42,916 km2 with a total population of

5.6 million people (population density: 131 people km�2).

The population is primarily urban with 87.5% living in cities

(Danmarks Statistik, 2015). The country is one of the most

intensely farmed in the world with more than 62% of the

total land area devoted to agriculture (primarily high inten-

sive practices). Forests cover 12% with more than 95% being

production forest and < 2% is set aside as non-intervention

reserves. Cities and roads make up 10%, while grassland and

heaths cover around 9% (Normander et al., 2009). Denmark

has a large network of protected areas covering 18% (IUCN

and UNEP-WCMC, 2015); however, the vast majority are

seminatural or culturally important habitats. Natural habitats

are extremely patchy with very few larger connected areas,

and across all ecosystems, the state of Danish nature is pre-

dominantly poor or unknown (Ejrnæs et al., 2011).

Volunteer biodiversity datasets

To assess the spatial biases in data collected by volunteers,

we compiled point-based biodiversity data from four major

citizen science projects in Denmark: two taxon-specific

schemes recording all species of birds (Bird atlas III) and

macrofungi (Svampeatlas), respectively, an all-taxon species

recording scheme (Naturbasen) and a simpler scheme cover-

ing 30 specific indicators (Biodiversitet Nu). Together, these

represent four different participant recruitment strategies,

with huge variation in taxonomic breadth and complexity of

the sampling design (Table 1).

‘Svampeatlas’ henceforth referred to as ‘Fungal atlas’

(www.svampeatlas.dk) ran from 2009 to 2013 with the aim

to collect data (distribution and ecology) of all fruit body

forming Basidiomycota in Denmark. The project was a col-

laboration between the Natural History Museum of Den-

mark, the Danish Mycological Society and MycoKey (http://

www.mycokey.com/). The project attracted a variety of vol-

unteers, from trained biologists with specific training in

mycology to eager amateurs primarily interested in edible

fungi. All records were validated by paid experts, either

through photographic documentation or when needed by

examination of physical specimens. Two field camps were

organized annually based on data gaps to improve coverage,

and volunteers were encouraged by competitions to collect

in areas with low coverage. Data were recorded via a data-

entry portal on the project website.

Bird atlas III henceforth referred to as ‘Bird atlas’

(www.dofbasen.dk/atlas), the third Danish breeding Bird

atlas, runs 2014–2017 and aims to collect data on the distri-

bution of all breeding birds in Denmark at a 5 9 5 km grid.

The project is managed by Dansk Ornitologisk Forening

(DOF) – BirdLife Denmark, and the fieldwork is carried out

by volunteer amateur ornithologists. Observations are

recorded online, per grid cell or point locations. Data used

in this article cover only the latter, corresponding to 43% of

the data collected in the first two breeding seasons, 2014

and 2015. In this period, three atlas camps were held to

cover gaps in the coverage. Data are recorded via a data-

entry portal on the project website (compatible with mobile

devices) and are validated on several scales by experienced

volunteers.

The database ‘Naturbasen’ henceforth referred to as ‘All

species’ (www.fugleognatur.dk) was established in 2001 as

the first online, countrywide database for the collection of

biodiversity data in Denmark. Citizens can report more than

39,000 species using a dedicated APP (since 2012), which

automatically records location and time of an observation, or

alternatively through a web-based module at a home com-

puter (since 2001). Records are continually validated by the

aid of photographic documentation and a panel of mainly

amateur experts. Participants are not encouraged to collect

any specific data.

Table 1 Overview of individual datasets.

Dataset Years # of obs # of species # of recorders Mean records Median records

Fungal atlas 2009–2013 292,022 3934 445 657 8

Bird atlas 2014–2015 92,200 207 1061 87 20

All species 2009–2014 429,300 11,581 3682 117 2

Common indicators 2015 46,018 30 6090 8 3

Years refer to the number of years for which data were extracted. This is not always the same as the duration of the citizen science project. For

the Common Indicator, scheme number of species refers to the number of indicators which in some cases cover multiple species. Mean and med-

ian records refer average number of records per recorder estimated as the mean or median, respectively.
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‘Biodiversitet Nu’ henceforth referred to as ‘Common indi-

cators’ (www.biodiversitet.nu) was designed for volunteers

with no prior species identification skills. It is based on 30

selected indicators, which are professed to be unmistakable

[e.g. a hare (Lepus europaeus), any true dragonfly (Anisoptera

sp.)]. Guidance is given to the recorder in the form of short

text and pictures of the target species and potential confu-

sion species. There is no verification of observations. Data

are collected using a dedicated APP which records both loca-

tion and time or alternatively through a web-based module

where the recorder subsequently can record their observa-

tions on their home computer.

Spatial data describing spatial bias in effort

Three features were used to account for spatial bias in sam-

pling effort: (1) roads, (2) human population density and

(3) land cover. Data on roads were extracted from the

National Survey and Cadastre of Denmark (Geodatastyrelsen

og Danske kommuner, 2014) as line segments using ARCGIS

10.2. Separate layers were generated for (1) highways, (2)

roads broader than 6 m across, (3) roads smaller than 6 m

across and (4) footpaths, as these types of roads are expected

to influence recording activity differently. A total of

1,630,528 line segments of roads were extracted. For all four

types, the shortest Euclid distance between any observation

point and the nearest road segment was calculated, generat-

ing four distance maps. Human population density at a reso-

lution of 100 9 100 m was extracted from the national

database. As this layer was created based on register data

from all Danish municipalities, it is extremely accurate. Land

cover types were classified using a map consisting of 36 pri-

mary land cover classes at a 10 9 10 m resolution (Jepsen &

Levin, 2013), which we reclassified in to 18 classes to reduce

redundancy and increase clarity (see Fig. S1 and Table S1 in

Supporting Information). This map was based on source

data from five different geo-datasets for Denmark, ranging

from land use types, through maps of agricultural land use

to national topographic data (For detailed information on

data sources, types and methods, see Jepsen & Levin, 2013).

The 18 categories cover 10 different categories of natural

habitats, four urban, three classes of agriculture as well as

undefined pixels. All datasets were projected using UTM

zone 32N, which is the zone covering the majority of Den-

mark.

Analytical framework

The statistical analyses by PPMs were conducted in R 3.2.2

(R Development Core Team, 2015) using the ‘Spatstat’ pack-

age (Baddeley & Turner, 2005). PPMs describe the number

of points in a given area as an outcome of a Poisson dis-

tributed random process with the intensity given as the area

integral of the underlying intensity field (Baddeley et al.,

2015). This intensity field may be related to spatial covari-

ates, and conditional on these covariates, the points are

stochastically independent. Thus, this class of models is use-

ful where the object of interest is the location of a point (e.g.

measures of abundance or density of records per unit area)

in relation to spatial covariates (Baddeley et al., 2015; Renner

et al., 2015). Further, it has been argued that PPMs are less

sensitive to the effect of scale than analysis based on a prede-

fined grid size (Warton & Shepherd, 2010; Renner et al.,

2015). However, while PPMs can be extremely powerful, they

are not without their limitations. K�ery & Royle (2016) cau-

tion the use of PPMs in particular in cases where measure-

ment errors (false positives and false negative) are large or

where points represent a moving object. While both of these

issues at first glance seem relevant to our data, it is impor-

tant to distinguish between the ‘observation event’ and the

‘information’ such an observation event represents. In this

study, we model the intensity of observations (e.g. the aim is

to investigate what spatial factors determine where people

record). The information recorded in the observation can be

wrong (e.g. a misidentified butterfly or a missed hare), but

that does not affect whether or not an observation event did

occur, nor that the intensity of observation events has a spa-

tial pattern related to contextual factors. Likewise, while an

observation may seek to record a mobile object, the observa-

tion itself is not mobile. PPMs therefore represent a powerful

tool for understanding the spatial patterns that determines

the likelihood of an observation as a function of a series of

covariates. The Poisson intensity k of a point pattern (l) is

modelled as

kðlÞ ¼ b1LCðlÞ þ b2logðHPDðlÞÞ þ b3RhwðlÞ þ b4RlargeðlÞ
þ b5RsmallðlÞ þ b6RpathðlÞ;

where bs represent the effect of the six covariates: (1) land

cover LC, (2) human population density HPD, (3) distance

to highways Rhw, (4) distance to roads > 6 m Rlarge, (5) dis-

tance to roads 3–6 m Rsmall and (6) distance to foot paths

Rpath. A best fit model was selected based on Akaike’s infor-

mation criterion (AIC) using a stepwise reduction from the

full model (Burnham & Anderson, 2002). Models were

inspected using a Pearson residual field and influence plot.

To estimate the variance partitioning between the full model

and models only containing either land cover or roads and

human population density, a McFadden’s pseudo-R2 was cal-

culated for each of the four datasets (McFadden, 1974).

For the Fungal atlas, Bird atlas and All species datasets, we

ran five submodels for each set using 46,018 randomly

selected observations to assess potential effects of the variable

size of the datasets across the four schemes. Results from

submodels were consistent with the full models (see

Appendix S1 in supporting information online material).

Point process model assumes independence among the

points conditional on the covariates. This assumption may

be violated in two ways. One, observations from the same

human observer may be correlated, for example some obser-

vers may report more observations than other. Two, observa-

tions may be spatially correlated, for example some areas
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may be richer in species and/or more frequently visited.

Although the first violation might be modelled using a ran-

dom effect of observer, this will be ignored due to computa-

tional limitations. The second violation was investigated by

spatially aggregated residuals. Species richness was calculated

in 5 9 5 km grid cells for each of the three datasets which

recorded all species within their respective taxa (i.e. Fungal

atlas, Bird atlas and All species). To assess how spatial biases

in sampling efforts affect species richness measures, we inves-

tigated the correlations between the residuals of the full

model (see Fig. S2) and the species richness for the four

datasets (see Fig. S3) in each 5 9 5 km cell. This gives us a

measure of the correlation between sampling efforts and

observed species richness. We used these maps to access

potential biodiversity hotspots (i.e. areas with high species

richness measures despite undersampling) as well as places of

potentially low species richness (i.e. areas with low species

richness despite extensive sampling).

RESULTS

Agriculture affected the intensity of observations negatively,

with more intensive agriculture having a larger negative

impact for all four datasets (Table 2). Human-modified land

cover classes consistently increased the likelihood of observa-

tion, except for areas of resource extraction, where results

varied between datasets. For all land cover types classified as

natural habitat, the signal was more variable between data-

sets. As expected, the Fungal atlas, collected by a smaller

group of specialized volunteers, showed a stronger increase

in the intensity of observations in most natural habitats

compared to the other datasets, while the common indicator

dataset and the Bird atlas more often experienced decreasing

intensities in natural land cover classes, suggesting that they

were more heavily affected by sampling bias or that

recorded species had lower affinities for specific habitat

types (Fig. 1).

Intensity of observation was significantly affected by

human population density for all datasets. The All species

and common indicator datasets experienced the largest

increases in observation intensity with increasing human

population density, while the Fungal atlas decreased in

observation intensity with increasing human population

density (Fig. 2). Effects of roads were more equivocal

between datasets (see Fig. S4). For all datasets, highways had

a small but significant effect, so that intensity decreased with

increasing distance to highways while the intensity increased

with increasing distance to roads between 3 to 6 m, the

effect being strongest for the Fungal atlas followed by the

Bird atlas, All species and the common indicator dataset (see

Fig. S4).

We calculated McFadden’s pseudo-R2 for the full model,

as well as a model containing only the land cover variable

(henceforth referred to as nature) and a model containing

only roads and population density alone (henceforth referred

to as bias). Total R2 values were highest for the Fungal atlas

followed by the Common indicators, All species and the Bird

atlas (Fig. 3a). When partitioning the explained variance

between nature and bias, the contribution of spatial bias

increased as the complexity of the volunteer scheme

decreased. When relating this to the number of participants

contributing observations to the individual schemes, we

found that the spatial bias increased significantly with an

increasing number of participants (estimate = 0.007,

t = 6.34, P = 0.02; Fig. 3b).

We investigated areas of high and low sampling effort by

comparing the residuals of the intensity of observation (e.g.

over- or undersampled areas) with the uncorrected species

richness for the All species, Bird atlas and Fungal atlas data-

sets. Patterns varied between the three datasets. However, for

all datasets, areas around major cities showed a combination

of very high sampling effort and high species richness

(Fig. 4). The Bird atlas had higher homogeneity between

sampling effort and species richness, while both the Fungal

atlas and the All species datasets had more areas of low sam-

pling effort and low species richness, which suggest areas

where more resources are needed to assess the true species

richness (Fig. 4).

DISCUSSION

Simplicity amplifies the effect of noise

Our results demonstrate a clear trade-off between the num-

ber of participants involved in collecting data and the magni-

tude of spatial biases: data from citizen science projects with

a low number of participants were less affected by roads and

human population density than schemes with many partici-

pants. This is likely because the All species dataset and in par-

ticular the Common indicator datasets have a higher

proportion of ephemeral participants who are more likely to

report in areas where they live or commute. Further, these

Table 2 Overview of model results for the four datasets.

Dataset

R2

full

R2

nature

Mean

intensity

(km�2)

Most likely

land

cover

Least likely

land

cover

Fungal

atlas

0.297 0.285 6.81 Forest Intensive

agriculture

Bird atlas 0.168 0.155 2.11 Lakes Intensive

agriculture

All species 0.148 0.133 9.71 Dry

grassland

Intensive

agriculture

Common

indicators

0.209 0.183 1.07 Parks and

sports

Intensive

agriculture

R2 is the McFadden R2 value for the best fit model (full) and the

model only containing the land cover variable (nature). Mean inten-

sity represents the mean number of observations per km2. Most

likely land cover describes the land cover class with the highest

intensity of observations, while least likely land cover represents the

land cover class with the lowest intensity.
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two schemes are less explicitly aiming to achieve a thorough

coverage or assess species richness of particular taxa but

encourage people to report whenever they see something of

interest. Conversely, the Bird atlas and Fungal atlas have

been created to explicitly assess the species richness of their

respective taxa engaging a smaller group of core participants.

Our results caution against the use of mass-participation

schemes without consideration of the trade-offs between

increased amounts of data and the value of the individual

observation. To what extent these biases undermine the use

of volunteer-collected data depends greatly on the objectives

of the individual study. For example; studies of phenology or

range shifts over time related to climate change may be less

affected by over- and underreporting (Dickinson et al., 2012)

and thus less sensitive to the participants’ skill levels. Like-

wise, selection of species indicators included in projects can

help reduce biases related to misidentification and observ-

ability (Gardiner et al., 2012). More importantly, we show

that where secondary data on biases exist, their effects can be

modelled and parameterized. This allows for using data from

unstructured volunteers, by quantifying the spatial patterns

of observer behaviour, to achieve better estimates of species

richness, abundance, etc., without excluding large amounts

of observations.
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Figure 2 Partial effect of human population density measured

as log(number of people per 100 m2) on the four datasets.

Increased human population density affected the density of

observations negatively for the Fungal atlas, while the three

others increased with human population density. Error bars are

standard errors.
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Figure 1 The effect size of the modeled intensity for different land cover classes for the Fungal atlas (green), Bird atlas (blue), All

species (orange) and Common indicators (yellow). Positive values indicate increased observation intensity, while negative values indicate

decreased observation intensity. Error bars are standard errors.
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Improving decision-making for conservation

planning

An adequate and uniform sampling effort with sufficient spa-

tial coverage and resolution is preferable when estimating

species richness patterns (Woolhouse, 1983). However, this is

often difficult to achieve in citizen science projects where

data collection is based on volunteers (Boakes et al., 2010).

A few previous studies have shown that if indicators are

selected carefully and if the amount of data is ample, even

untrained volunteers can reach comparable or even more

reliable species richness estimates than trained experts

(Danielsen et al., 2005; Goffredo et al., 2010; Holt et al.,

2013), often at much larger spatial scales (Holt et al., 2013).

But most often, complete knowledge of all biodiversity values

is not realistic or necessary to direct conservation action.

Complete inventories may even skew the balance between

resources spend on monitoring, and evaluation as opposed

to resources allocated for conservation actions (Salzer &

Salafsky, 2006). In this study, we identify areas of relative

under- and oversampling based on land cover and infrastruc-

ture and combine these measures with estimates of species

richness. We use this approach to map areas where the

observed species richness is high or low compared to the

intensity of sampling in the same area, correcting for spatial

covariates. While such estimates should not be viewed as

direct measures of true species richness, they may be used to

guide conservation planning. In the absence of complete

knowledge on species richness, the likelihood of an area

being species rich given the available sampling effort could

serve as a proxy for where to direct limited conservation

resources. For example, in our study, sampling intensity of

the Fungal atlas was strongly skewed towards forests. This

could potentially pose a problem for species richness esti-

mates as results could be an artefact of oversampling. How-

ever, accounting for spatial biases, our results show the

opposite, with areas of Denmark that contain large amounts

of forest having higher species richness than expected even

after controlling for higher sampling effort (Figs 4a & S4).

This would confirm that forests are good candidates for

fungi biodiversity hotspots (Heilmann-Clausen et al., 2015).

In the other end of the spectrum, we see that agricultural

landscapes have disproportionately low species richness even

when accounting for the low number of observations

(Figs 4a–c & S4). However, using expectations based on

existing sampling structure can also enforce existing aggre-

gated survey pattern where volunteer experts continue to

survey areas expected to have higher biodiversity (Dennis

et al., 2006; Sastre & Lobo, 2009). In such cases, simpler vol-

unteer schemes targeting all people have an advantage as

they are less biased towards a posteriori expectations of where

to search. Thus, mass-participating schemes such as our All

species may be used to challenge presumptions about biodi-

versity that expert-driven datasets with limited coverage can-

not.

Keeping to the point

Species records, whether collected by volunteers or profes-

sionals, can be described as the documentation of a biologi-

cal phenomenon experienced at a given point. Such point

observations often have a suite of information related to

them, including exact time and place, observer ID and

potentially metadata describing the purpose and extend of

the observation effort. Such information is lost when points

are aggregated into localities or a grid (Renner et al., 2015).

PPMs model how the observed intensity of points differs

from a random point pattern. This has two overarching

advantages, which are not possible in other models. First, it

allows for modelling spatial covariables in a way that more

closely resembles the expected underlying causal effect com-

pared to a grid or locality-based approach. For example, we

would expect the likelihood of observing a species to be a

function of its distance to a road (Hanowski & Niemi, 1995;

Keller & Scallan, 1999; Kadmon et al., 2004; McCarthy et al.,
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2012) or whether it is in a highly human populated area

(Luck et al., 2004; Luck, 2007). A grid- or polygon-based

analysis reduces such an effect to a correlation between the

number of observations and the total length of roads inside

a grid cell, whereas PPMs allow us to model the effect in an

exact spatial context. Likewise, the likelihood of observing a

particular species is better described by whether an observa-

tion falls inside or outside an optimum habitat than the total

area of that habitat within a given unit of analysis. A second

advantage, which we do not explore in this study, is each

point carries with it a suite of information which can be

used to understand the intensity of observation. For example,

weather can have an effect on both target taxa and volunteer

behaviour both in time and space (Bas et al., 2008), which

can be easily captured by point-based analysis where such

data can be attributed directly to the individual observation.

Similarly, information linked to the species (e.g. red list sta-

tus, size, daily rhythm) or the observer (e.g. skill level, num-

ber of records, sex) represents further important covariates

(Kelling et al., 2015). PPMs, unlike any other model

approach, are able to address these factors, thus presenting a

powerful approach where data on biases are available.

CONCLUSION

We show that volunteer-collected datasets that are more

dependent on untrained amateurs are more heavily affected

by spatial bias from infrastructure and human population

density. Objectives and protocols of mass-participating citi-

zen science projects should therefore be designed with this in

mind. However, we also show that where data on spatial

covariates are available, such data can be utilized to explicitly

address biases. Thus, appropriately designed objectives, pro-

tocols and analyses of mass-participation schemes can pro-

duce results useful for management and research. Our results

suggest that PPMs are a valuable amendment to a growing

tool-case of advanced statistical tools for analysing unstruc-

tured volunteer-collected data. In areas with good contextual

data, PPMs allow for understanding the effect of spatial bias

at the level of individual observation, thus getting closer to

the actual effect than classical grid-based analyses. Further,

we suggest that PPMs allow for integrating more information

related to the observation, which is currently often underuti-

lized. Thus, while PPMs are currently not commonly used to

analyse citizen science data, we see great potential in this

approach for utilizing the enormous potential in volunteer-

collected data.
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