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Species-specific traits mediate avian 
demographic responses under past  
climate change

Ryan R. Germain    1,2,18 , Shaohong Feng3,4,5,6,18, Guangji Chen    7,8, 
Gary R. Graves    1,9, Joseph A. Tobias    10, Carsten Rahbek    1,10,11,12, Fumin Lei    13, 
Jon Fjeldså1,14, Peter A. Hosner1,11,14, M. Thomas P. Gilbert    15,16, 
Guojie Zhang    2,3,4,6,17  & David Nogués-Bravo    1 

Anticipating species’ responses to environmental change is a pressing 
mission in biodiversity conservation. Despite decades of research 
investigating how climate change may affect population sizes, historical 
context is lacking, and the traits that mediate demographic sensitivity to 
changing climate remain elusive. We use whole-genome sequence data to 
reconstruct the demographic histories of 263 bird species over the past 
million years and identify networks of interacting morphological and life 
history traits associated with changes in effective population size (Ne) in 
response to climate warming and cooling. Our results identify direct and 
indirect effects of key traits representing dispersal, reproduction and 
survival on long-term demographic responses to climate change, thereby 
highlighting traits most likely to influence population responses to ongoing 
climate warming.

Human-induced changes to the global environment are affecting bio-
diversity at an unprecedented rate, with animal populations having 
declined drastically since 1970 (refs. 1–4). Despite efforts to quantify 
contemporary population trends and disentangle the effects of dif-
ferent drivers of global change, we currently lack historical context 
as to whether similar declines have occurred before and whether 

species-specific traits influence long-term demographic sensitivity 
to environmental challenges such as climate change5–7. In particular, 
identifying common demographic patterns over evolutionary time 
scales, and before the Anthropocene epoch, can reveal how life history 
strategies influence population dynamics during periods of widespread 
climatic stress8–10. Explaining these strategies will aid conservation 
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geographic realm and allocation to a given demographic cluster group 
(Supplementary Fig. 21). Overall, we detected minimal variation in 
demographic trends among realms (Supplementary Fig. 22), indicating 
little effect of geographic variation on overall patterns of demographic 
change over time.

We used linear mixed-effect models (Gaussian distribution) to first 
identify the set of morphological and life history traits most likely to 
be associated with overall Ne dynamics in response to climate change, 
for use in downstream analyses (that is, those explicitly considering 
phylogenetic and trait interactions, below). For this variable selection 
step, we designated two periods of relatively recent warming (roughly 
147–123 kya) and cooling (roughly 122–65 kya), which represent some 
of the most dramatic changes in global climate (that is, Δ of roughly 
8 °C in global average surface temperature in less than 60,000 years) 
over the past million years (Supplementary Fig. 8), and are within the 
time window (roughly 30–200 kya) in which PSMC-based estimates 
of Ne are most precise20). We quantified demographic sensitivity to 
climate change as the relationship between species-specific Ne and 
global average surface temperature during these two periods via Pear-
son correlation coefficients, and designated these relationships as 
‘climate warming’ and ‘climate cooling’ responses. Of eight initial 
traits (body mass, brain–body ratio, tarsus length, bill length, egg 
mass, clutch size, incubation duration and hand–wing index (HWI, a 
metric of dispersal ability)) expected to influence these estimates of 

efforts through identifying species with characteristics prone to  
demographic decline under current and future challenges.

Climate change is regarded as a key environmental regulator 
of demographic change. It is proposed to affect demography via its 
effects on reproduction, survival and/or growth and dispersal11,12. 
However, responses to climate change can vary dramatically among 
even closely related or co-occurring species because of differing life 
history traits and strategies13–15. Theoretical predictions and empiri-
cal evidence suggest that larger-bodied, slower-reproducing species 
with limited dispersal capacity are more sensitive to sustained climate 
change (Supplementary Table 11) because of reduced adaptive poten-
tial and/or limited ability to exploit climate refugia. However, evalua-
tion of the role of traits in demographic sensitivity to climate change is  
typically tested only with contemporary data over shorter ecological 
time scales. Because additional environmental stressors such as land 
use change and overexploitation may mask or confound demographic 
responses9,16–18, the ability to identify relationships between life his-
tory traits and demographic sensitivity to climate change remains 
constrained when limited to contemporary data.

Periods of climate warming and cooling over the Earth’s history 
offer a unique opportunity to quantify effects of species-specific traits 
on demographic sensitivity to climate change in the absence of con-
founding anthropogenic stressors5,6. We use whole-genome sequence 
(WGS) data19 and pairwise sequential Markovian coalescent (PSMC) 
analysis20 to reconstruct the long-term (roughly 1 million years) demo-
graphic histories of 263 bird species, representing 39 orders distributed 
from the poles to the tropics. We then quantify demographic responses 
to the most recent warming and cooling periods before widespread 
human activity and identify network effects of morphological and life 
history traits related to survival and/or growth, reproduction and dis-
persal that influence overall demographic sensitivity to climate change.

Results and discussion
Effective population sizes (Ne) varied substantially across avian species 
and over time and space (Supplementary Note 1 and Supplementary 
Table 1). Demographic clustering revealed seven main demographic 
patterns, inferred from temporal patterns of Ne over the past million 
years (Fig. 1 and Supplementary Table 3). Overall position of each spe-
cies in the avian phylogeny did not explain the observed differences 
among demographic patterns (Supplementary Fig. 7). Passerines (order 
Passeriformes, which represent more than half of all extant bird species 
globally21; here n = 123 species) and Non-Passerines (n = 140 species) 
were unequally distributed among the demographic clusters (Χ2 = 23.81, 
d.f. = 6, P < 0.001), where Passerines were most heavily represented 
in clusters 1, 3, 4 and 7 (that is, demographic peaks in the more recent 
Upper to Middle Pleistocene; Fig. 1 and Supplementary Table 3). In 
contrast, Non-Passerines were most represented in clusters 5, 6 and 7,  
depicting demographic peaks during the more ancient periods of 
the Middle and Lower Pleistocene (Fig. 1 and Supplementary Table 3). 
These results were further reflected in lower mean Ne values for Pas-
serines in the more distant past, despite Passerines exhibiting consist-
ently higher mean Ne than Non-Passerines over the past million years  
(Fig. 2a). Species currently classified as ‘threatened’ or ‘near-threatened’ 
(IUCN Red List; here n = 34 species) were evenly distributed among 
the seven main demographic patterns (Χ2 = 5.77, d.f. = 6, P = 0.45) and 
exhibited varying demographic trends over time (Fig. 2b), indicating 
that current conservation status is unlikely to be the result of long-term 
demographic variation.

Globally, mean normalized Ne for all 263 species increased from 
1 Mya to roughly 500–600 kya, after which it steadily declined (Fig. 3,  
‘global average’). Across the Earth’s major zoogeographic realms (Sup-
plementary Note 1), species differed only slightly in when they reached 
their mean demographic peaks. Most species followed similar pat-
terns of higher mean Ne in more ancient periods and lower Ne values 
closer to 30 kya (Fig. 3), and there was little concordance between 
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Fig. 1 | Demographic histories of 263 avian species from 30 thousand years 
ago (kya) to 1 million years ago (Mya) (x axis presented on the log10 scale). 
Cluster analysis of normalized Ne values revealed seven main demographic 
patterns over the Upper/Middle/Lower (L) Pleistocene. Clusters designating 
groups 1–7 (see Supplementary Table 1 for species included in each group) were 
based on overall similarity of long-term Ne patterns but can be distinguished by 
when most species reached their relative peak (Supplementary Table 3).
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demographic sensitivity to climate change (Supplementary Note 2), six 
were identified as key potential influencers (that is, retained in a subset 
of ‘best-fitting’ models, Table 1) for climate warming and/or climate 
cooling responses, and retained in subsequent analysis. Of these six 
traits, longer incubation durations and larger clutch sizes were most 
closely associated with increasing Ne during climate warming, whereas 
shorter incubation duration, lower HWI and longer bill lengths were 
most closely associated with increasing Ne during climate cooling 
(Table 1). While goodness of fit for these models were low (R2 = 0.06, 
0.05), given the low expectation of variation in a single trait directly 
influencing Ne responses to climate over evolutionary time scales22, 
these results reveal the suite of key traits among our initial candidate 
traits that are most likely to be associated with long-term demographic 
variation under climate change.

Using these six key traits, we further characterize the phylogeneti-
cally explicit interacting trait network of influences on demographic 
sensitivity to climate change. We categorized each species by their 
combined climate warming and climate cooling responses and used 
phylogenetic path analysis (PPA). PPA is a hypothesis-driven framework 
for assessing direct and indirect effects of each trait on differentiat-
ing defined species categories, independent of their phylogenetic 
relationships (Supplementary Fig. 10). Species exhibiting decreasing 
Ne under climate cooling and increasing Ne under climate warming 

were categorized as ‘warming positive’ (Fig. 4 and Supplementary 
Table 5). Those exhibiting increasing Ne under climate cooling and 
decreasing Ne under climate warming were categorized as ‘warming 
negative’, a scenario expected for many temperate and cold-adapted 
species during the twenty-first century. We quantified the network of 
trait effects on differentiating warming positive species from all other 
species in our analysis, and repeated this process for warming negative 
species. Further, we evaluated species that exhibited overall sensitivity 
to climate warming or cooling (that is, warming positive + warming 
negative responses, hereafter ‘climate sensitive’) versus those with con-
sistent Ne increases or decreases, and those that exhibited consistent  
decreases in Ne for both the climate warming and climate cooling 
responses (categorized as ‘consistent Ne decrease’) versus remaining 
species (Supplementary Table 5).

PPA revealed that warming positive species were best differ-
entiated by direct effects of reproductive, survival and/or growth 
and dispersal traits (Supplementary Table 6 and Core Model D in  
Supplementary Fig. 10). Averaging the best-performing models from 
this comparison indicates that Ne of species with larger body masses, 
lower HWI, and smaller egg masses were more likely to increase under 
climate warming and decrease under climate cooling (Fig. 4a). Body 
mass also had indirect effects on differentiating warming positive 
species from remaining species via its significant positive influence 
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Fig. 2 | Demographic histories of different avian groups from 30 kya to 
1 Mya (all x axes presented on the log10 scale). a, Mean log Ne values (±s.d.) of 
Passerine and Non-Passerine species. Passerines exhibited consistently higher  
Ne values (mean sample difference 9.21) across 120 equally spaced (log linear) 
time points from 30 kya to 1 Mya (paired two-sided t-test, t119 = 27.9, P = 2.2 × 10−16). 

b, Examples of differing demographic histories of species currently designated 
as ‘threatened’ under IUCN Red List status, where species arriving at similar 
Ne values at roughly 30 kya follow differing demographic patterns over time 
(illustrations by J.F.).
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on egg mass and its indirect correlation with a lower HWI (Fig. 4a). 
These results highlight potential trade-offs between the influences of 
reproductive, survival and growth and dispersal traits on changes in 
population size under climate warming, where the positive effects of 
larger body mass are offset by the associated increase in egg mass or 
decrease in HWI. Warming negative species were also best differenti-
ated via the direct effects of reproductive, survival and/or growth and 
dispersal traits, but in the opposite directions compared with what 
we found in warming positive species (Supplementary Table 6 and 
Core Model D in Supplementary Fig. 10). Model averaging further 
revealed that smaller-bodied species with larger eggs, longer incuba-
tion durations and greater HWI were more likely to exhibit decreasing 
Ne under climate warming and increasing Ne under climate cooling, and 
again highlighted potential trade-offs between body mass and HWI  
(Fig. 4b). Trait-network effects on differentiating all climate sensi-
tive species were less defined, where no traits were found to have 
significant, direct effects on differentiating both warming positive and 
warming negative species from remaining species (Fig. 4c). However, 

species with consistently decreasing Ne tendency for both the climate 
warming and climate cooling responses were differentiated by smaller 
clutch sizes and tended to have shorter incubation durations than 
remaining species (Fig. 4d), providing additional evidence for the 
directional role of these key traits in mediating demographic responses 
under climate change.

Our observations of trait-network influences on long-term demo-
graphic sensitivity to climate change agree with theoretical expecta-
tions that larger-bodied, slower-reproducing species with limited 
dispersal capacity are likely to respond strongly to changing climate 
(Fig. 4). However, they also suggest that such traits may not necessar-
ily lead to population declines under warming climate conditions as 
predicted from some empirical observations in contemporary popula-
tions12,13,15,23–25 (Supplementary Table 11). A lower HWI typical of species 
with limited dispersal ability was the only predictor found to signifi-
cantly influence both un-networked (Table 1) and networked (Fig. 4a,b) 
responses to climate change, where such species tended to increase in 
abundance under climate cooling and decrease under climate warming. 
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Fig. 3 | Mean change in normalized Ne from 30 kya to 1 Mya for 263 avian 
species, summarized by zoogeographic realm. For each panel, the number of 
species representing each realm is given in parentheses. Coloured dots depict 
mean normalized Ne at 120 equally spaced (log linear) time points from 30 kya to 

1 Mya, while the shaded area depicts s.d. at each point. Full demographic curves 
of each species are provided in the background (grey) to show overall variation 
within each realm. Top: Zoogeographic realms following Holt et al.59.
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We further found that larger body mass had direct and indirect effects 
on increasing Ne under climate warming and decreasing Ne under cli-
mate cooling (Fig. 4a,b), contrary to results from contemporary studies 
(that is, over ecological time scales, Supplementary Table 11). Such 
differences are probably due to the much longer (evolutionary) time 
scales investigated here via our PSMC analysis (below).

If morphological and life history traits play a central role in demo-
graphic responses to climate change, as determined from our historical 
Ne analyses, they may also be reflected in the contemporary global dis-
tributions of species. Specifically, trait effects leading to an increasing 
Ne trend under the climate warming period may be similar to those of 
species found in tropical locations today, under the assumption that 
such species are adapted to warmer climates. Using all available mean 
trait and breeding and resident range information for 2,745 avian spe-
cies sampled from around the world, we found that species in tropical 
latitudes tend to have longer incubation durations and longer bills, but 
smaller clutch sizes, smaller eggs, lower HWIs and lower body mass 
(Supplementary Note 3 and Supplementary Figs. 23 and 24). Thus, 
our findings of historical responses to periods of climate warming do 
partially explain contemporary biodiversity patterns. Specifically, 
tropical species exhibit lower HWIs, in concordance with species exhib-
iting such traits showing increasing Ne trends under climate warming 
(Supplementary Figs. 11e and 12e). However, the opposing findings of 
smaller clutch sizes among tropical species and the tendency towards 
larger clutch sizes among climate warming responses (averaged model, 
Supplementary Fig. 12e), as well as the remaining traits having no 
significant direct effect among climate warming responses, indicate 
that historical responses to climate change alone are only partially 
predictive of contemporary distributions.

Our study reveals seven main demographic patterns among a 
broad geographic (Fig. 3) and phylogenetic (Supplementary Fig. 7) sam-
ple of birds over the past million years, and a key trait-adaptive network 
associated with population responses to long-term climate change in 
the absence of additional human effects. Unlike short-term responses to 
climate change (for example, studies listed in Supplementary Table 11)  
where single traits dictate adaptive functions under strong natural 
selection12,15, long-term adaptation (that is, over evolutionary time 
scales) is influenced by overall genomic variation within species, where 
the effects of individual traits become saturated and diminish over 

time22,23,26,27. This is reflected both in the very low goodness of fit associ-
ated with individual trait effects (that is, un-networked) models (Table 1)  
and in trade-offs among several traits in PPA analysis of responses to 
periods of climate warming and cooling (Fig. 4 and Supplementary  
Figs. 11 and 12). Over hundreds of thousands of years, interacting trait 
networks and trade-offs among survival and/or growth and reproduc-
tive traits may develop that potentially mask direct trait effects identi-
fied in studies of contemporary populations. Reconstructing long-term 
population dynamics from genomic data is thus a crucial component 
of revealing how past climatic events influenced the genetic makeup of 
contemporary populations over time, and for providing demographic 
baselines before the Anthropocene5,6. Such analyses across the tree of 
life will provide unique insight into the natural variability of long-term 
demography, and help direct conservation efforts towards species 
more sensitive to broad-scale global environmental change.

Methods
SNP calling and mutation rate estimation
WGS data for 345 bird species were collected by Feng et al.19 and 
released as genomic resources of the Bird 10,000 Genomes (B10K) 
Project Phase II (https://b10k.genomics.cn). Genomes for each spe-
cies were generated under a standardized protocol of library build-
ing, sequencing and assembly as part of this previous study, thereby 
minimizing potential bioinformatic artefacts that could affect our 
analyses and interpretations. We inferred heterozygous information 
of each species using BWA + GATK pipeline20,28. Four filtering steps 
were applied to obtain high-quality single-nucleotide polymorphisms 
(SNPs)29: (1) removing homozygous SNPs (that is, those where the 
genotype was encoded as ‘Minor/Minor’ in the variant call format 
file) and SNPs with more than two alternative alleles, (2) removing 
SNPs with an interval below 10 bp, (3) removing SNPs with a read 
depth below one-third or over twice the average read depth across 
the genome and (4) removing SNPs with a root-mean-square mapping 
quality lower than 25.

We used branch-specific estimates of the substitution rate per site 
(R) from a dated phylogeny provided by the latest B10K family-phase 
phylogenetic study as proxies for mutation rate (μ). This latest topology 
was inferred based on WGS data of 363 species, assumed to be the most 
effective in addressing deep evolutionary relationships30–32. Divergence 

Table 1 | Parameter estimates, standard errors (s.e.) and upper and lower 95% confidence intervals (UCI, LCI) from averaged 
two-sided linear mixed models (random effect equal to Passerine/Non-Passerine) evaluating the relative effects of 
morphological and life history traits on demographic responses to climate warming and cooling (measured as correlation 
coefficient between Ne change and climate change)

Estimate s.e. z value P LCI UCI

Climate warming (R2 = 0.06)

 Intercept 0.0003 0.07

 Incubation duration 0.15 0.08 1.92 0.06 −0.003 0.30

 Clutch size 0.13 0.07 1.91 0.06 −0.004 0.27

 Egg mass 0.12 0.08 1.61 0.11 −0.03 0.27

 HWI −0.09 0.07 1.34 0.18 −0.22 0.04

 Body mass 0.05 0.07 0.82 0.41 −0.08 0.19

Climate cooling (R2 = 0.05)

 Intercept −0.0005 0.08

 Incubation duration −0.14 0.07 1.93 0.05 −0.28 0.002

 HWI −0.14 0.07 2.00 0.05 −0.28 −0.003

 Bill length 0.05 0.07 0.70 0.49 −0.09 0.18

Values marked in bold highlight statistically significant predictors (that is, confidence intervals do not overlap zero). For each response, we ran 256 models involving all possible combinations 
of eight predictor variables (body mass in g, ratio of brain size to body mass, tarsus length in mm, HWI, bill length in mm, egg mass in g, incubation duration in days and clutch size; all z scaled 
to remove the effects of measurement scale), selected a ‘best models’ subset (ΔAIC ≤ 5 from the best-fitting model) and averaged parameter estimates within this subset. R2 represents the 
goodness of fit of the global model (including all explanatory variables) for each response.
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times (t) were estimated by MCMCTree33 with a large number of fossil 
records to provide by far the best calibration information34,35. Both of 
these measures ensure the highest-possible accuracy of species-specific 
substitution estimates, as well as divergence times. To further convert 
the unit of mutation rate from per site to per site per generation, we 
scaled the species-specific mutation rates (μ) as μ = R

t
× T , where T is 

the generation time for each species.

Demographic reconstruction over the last million years
We used the PSMC method20 to reconstruct long-term changes in Ne 
for each species. Diploid genomes consist of thousands of independ-
ent loci; the coalescent approach underlying PSMC estimates the 
time to the most recent common ancestor of the two alleles at each 
locus, creating an overall the most recent common ancestor distri-
bution across the genome. The rate of coalescent events is inversely 
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a, Comparison of warming positive responses (n = 33) versus all remaining species 
(n = 230) reveals that larger body masses, smaller egg masses and lower HWI are 
associated with demographic increases during climate warming and decreases 
during climate cooling (statistical significance of trait effects in all panels 
assessed by whether s.e.s overlap zero). b, Comparison of warming negative 
responses (n = 29) versus all remaining species (n = 234) reveals that smaller body 
masses, larger egg masses, greater HWI and longer incubation (Inc.) durations 

are significantly associated with demographic increases during climate cooling 
and decreases during climate warming. c, Comparison of all species that 
exhibited sensitivity to climate warming or cooling (n = 33 + 29) versus those with 
consistent Ne increases or decreases (n = 98 + 55) reveals no traits significantly 
influenced overall species sensitivity to changing climate conditions.  
d, Comparison of species with consistent Ne decreases during climate warming 
and climate cooling (n = 98) versus all remaining species (n = 165) again reveals 
no significant influences, although species with smaller clutch sizes, higher HWI 
and shorter incubation durations did tend to exhibit demographic decrease 
during both climate warming and climate cooling. For all left panels, dashed lines 
represent standardized regression coefficients with an absolute (Abs) value < 0.1.
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proportion to Ne, therefore the PSMC method can identify periods 
of changing Ne over time (for example, if many loci were observed to 
coalescent at a given time point, it would indicate a lower Ne at that 
time)20. To ensure reliability of PSMC analyses, we removed 20 spe-
cies with lower-quality heterozygosity information (that is, less than 
18× genome-wide coverage or more than 25% missing data, as rec-
ommended by Nadachowska-Brzyska et al.36). For the remaining 325 
qualified species (Supplementary Table 1), we used the PSMC settings 
‘-N30 -t5 -r5 -p 4 + 251*1 + 4 + 6 + 10’ with a reduced dataset, and then 
scaled results to real time using estimated mutation rate (above) and 
generation time37. This set of parameters had an increased number of 
free atomic intervals (-p) on the basis of previous study29, which could 
generate more PSMC estimates without changing the shape of the 
PSMC curves (Supplementary Fig. 1). Data representing Ne estimates 
(×104) scaled to real time via PSMC for all 325 species are available 
online38. Because recent and drastic population bottlenecks, and asso-
ciated severe inbreeding, can lower PSMC-based estimates of Ne in 
more recent time periods and erase information regarding ancient Ne 
dynamics, we restricted downstream analyses to the 263 species with 
full demographic coverage over the focal time period (30 kya–1 Mya) 
for which we had the most confidence in PSMC-based estimates of 
effective population size. Of the 62 species excluded via this step for 
which conservation status was available, 19 are currently listed as 
‘threatened’ or ‘near-threatened’ (IUCN Red List; www.iucnredlist.org),  
indicating a tendency (Χ2 = 10.78, P = 0.001) towards such species to 
have limited polymorphism information needed to quantify long-term 
demographic history, once again probably due to recent population 
bottlenecks.

Since its initial development20, the PSMC method has been 
widely applied across taxa to detect changes in Ne on the basis of WGS 
information. Because PSMC does not rely on population data and 
can straightforwardly construct historical Ne dynamics over time, 
it is favoured among de novo genome projects for its accuracy and 
precision39, particularly regarding demographic changes in the more 
distant past40–43. Although there are some generally accepted filtering 
strategies for sequence data to improve the accuracy of demographic 
reconstructions36, potential biases in PSMC output can be the result of 
both scaling parameters (for example, mutation rate) and population 
structure. For the former type, changes in the scaling parameters cause 
the PSMC curve to move along the axes while maintaining the overall 
curve shape29. To account for this, we performed a robustness test of the 
PSMC curves in terms of sampling mutation rates from the posterior dis-
tributions on a dated phylogenetic tree (below, Supplementary Fig. 1).  
For the later type of bias, theoretical work has shown that the accuracy 
and interpretation of PSMC results can be affected by population 
structure, in that changes in connectivity among subpopulations may 
influence overall patterns of demographic change44–46. While we have 
no a priori information on changes in connectivity over the last million 
years for our 263 species, we assume that the patterns observed are 
probably the result of a combination of changes in both population 
size and a degree of changes in population connectivity, both of which 
would be mediated by the effects of trait networks under periods of 
climate change (that is, species with stronger dispersal ability (HWI) 
maintaining greater connectivity during periods of extreme environ-
mental change). Thus, while not infallible, our analyses and results 
present a key step forwards in our understanding of how trait networks 
can mediate demographic responses to periods of acute climate warm-
ing and cooling over the past million years.

Cluster analysis of demographic patterns and robustness tests
To investigate patterns in overall demographic fluctuations among the 
263 bird species, we applied clustering analysis based on normalized 
Ne values. We first selected 121 time points with equal time intervals 
(after log10 transformation) from 30 kya to 1 Mya. For each species, we 
extracted the corresponding Ne values for these 121 time points along 

the species-specific Ne trajectory and used min-max normalization to 
rescale values between 0 and 1. These normalized Ne values resulted in 
a 263 × 121 matrix, which was then used as the input for a hierarchical  
clustering analysis based on the Euclidean distance performed in 
pheatmap (with ‘cluster_row = T’). Clustering methods aim to define 
clusters such that the total intragroup variation is minimized. In this 
instance (for example, Fig. 1), species with similar Ne trajectories are 
found closer together on the clustering dendrogram. To summarize the 
major demographic patterns among species for the past million years, 
we used the ‘cutree’ function in the R package dendextend47 to split 
the resulting clustering dendrogram into 3, 4, 5, 6 and 7 groups (that 
is, k = 3–7), respectively (Supplementary Figs. 2–5). Compared with a 
lower value of k (for example, k = 3, Supplementary Fig. 2), dividing the 
dendrogram into k = 7 subtrees (Fig. 1) made the species contained in 
each subtree more compact in terms of Ne pattern consistency and was 
sufficient to clearly identify the major fluctuation patterns.

Different methods of data transformation can lead to different 
interpretations of both the appropriate number and organization of 
clusters. The minimum and/or maximum normalization approach 
used here focuses on the mode of demographic fluctuations, whereas 
other methods (for example, rescaling the mean) take into account 
both the mode and degrees of change. Because our analyses centre 
on the positive versus negative relationships between demographic 
change and climate change during periods of warming and cooling, 
our normalization method should likewise focus on the modes of 
positive or negative demographic responses, rather than the degrees 
of change. However, to examine the robustness of our clustering analy-
sis to the choice of data transformation, we used the ‘TreeDistance’  
function in the R package TreeDist48 to calculate the distance (0–1, 
where higher values indicate more similarity) between the output clus-
tering trees generated after the minimum and/or maximum normaliza-
tion approach and three other data transformation methods (rescaling 
the mean, Z transformation and coefficient of variation).The distance 
value between the minimum and/or maximum normalization normali-
zation and Z transformation was 0.83, and the distance value between 
the minimum and/or maximum normalization normalization and the  
coefficient of variation was 0.82, indicating that the cluster designations 
from these three separate methods were relatively consistent. While 
the distance value between minimum and/or maximum normalization 
normalization and rescaling the mean was relatively lower (0.66), indi-
cating less consistency between clustering results, this was expected 
given the points made above (rescaling being based on combining the 
modes and degrees of fluctuations). We further used Rezende’s ‘phylo.
signal.disc’ algorithm49 to examine the phylogenetic signal underlying 
cluster designations from these four data transformation methods 
(see below for full results from minimum and/or maximum normaliza-
tion normalization). For rescaling the mean, the observed number of 
transitions was 153, which was not significantly different from what 
was expected by chance (randomized mean transitions 154, P = 0.46), 
indicating that phylogeny alone did not explain the observed differ-
ences among demographic patterns. Similarly, observed transitions 
for the Z transformation and coefficient of variation methods did not 
significantly differ from chance (P = 0.21 and 0.99, respectively). Thus, 
in terms of phylogenetic signal testing, all alternative normalization 
methods investigated returned consistent results and conclusions  
to the minimum and maximum normalization we used throughout 
our analyses.

Considering that transforming PSMC outputs into real time is 
sensitive to the value of mutation rates20, we let the species-specific 
mutation rates vary within a reasonable range to generate random 
input matrixes and assess the robustness of the above clustering result. 
As a time-estimation algorithm based on Bayesian theory, MCMCTree 
provides the posterior age distributions for each node33. Therefore, 
we first randomly sampled 100 estimates of the divergence time from 
the posterior distribution of nodes corresponding to each species. 
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With the fixed substitution rates and generation times, 100 mutation 
rates were calculated for each species using these random values on 
the basis of the formulas provided above and then used to scale the 
PSMC output from the coalescent unit to the real time unit. This gave 
100 Ne trajectories per species on the basis of varying mutation rates. 
Next, we randomly selected one of these trajectories from each spe-
cies and extracted the same 121 time points as before to form a new 
263 × 121 matrix. This step was repeated 100 times and the resulting 
100 matrixes were next used to produce the clustering results, as well 
as the split results under different number of groups (k). When k = 7, 
we first randomly selected 500 pairs of species and obtained the infor-
mation on whether each pair of species belonged to the same group in 
the clustering dendrogram shown in Fig. 1. Then, for the same pair of 
species, we checked how many times the clustering results obtained 
from 100 random matrixes are consistent with the Fig. 1 clustering 
dendrogram, in terms of the group information. For example, species 
A and species B were from the same group in Fig. 1, and they were also 
considered to be from the same group in 100 random clustering results. 
The consistency ratio for these two species was then calculated as a 
percentage. The average consistency ratio for all 500 pairs of species 
was used to represent the robustness value for k = 7, and we repeated 
this process for all other k values (Supplementary Table 2). Robustness 
values increased with the number of clustering groups used, and was 
83.49% when k = 7. A higher k value indicates higher intragroup simi-
larity and lower intergroup similarity. Thus, a pair of species from the 
same group at k = 7 is more likely to have the sufficient similarity of Ne 
trajectories to be clustered together even when there is some estima-
tion bias in the mutation rate, compared with species from the same 
group at k = 4. Given that the major fluctuation patterns are identified 
and the robustness is over 80% at k = 7, we used splitting results from 
this grouping number in subsequent analysis (Fig. 1).

We next ran a Chi-square test to examine whether the splitting 
pattern for k = 7 could be explained in part by when species within 
each cluster group reached their maximum effective population size 
(here, normalized Ne value greater than 0.9 is considered as a maximum 
value; Supplementary Table 3). Compared with expected background 
patterns, the Ne fluctuations of species in groups 1, 3 and 4 tended to 
reach their maximums during the Upper Pleistocene (30–129 kya), 
while those of groups 6 and 7 reached their maximums in the Middle 
Pleistocene (129–774 kya) and those of species in group 5 reached their 
maximums during the Middle and Lower Pleistocene (774 kya–1 Mya; 
Supplementary Table 3). Unlike these groups, group 2 did not show 
significant differences from expected background patterns during 
any of the time periods. To further determine the association between 
clustering and mean effective population size, we averaged Ne values 
over 30 kya–1 Mya for each species and quantified intra- and intergroup 
differences (analysis of variance) on the basis of the k = 7 clustering 
groups. From these comparisons, we detected significant differences 
in mean Ne between groups 5 and 1 and between groups 5 and 3, where 
individuals clustered in group 5 had lower mean Ne over time than those 
in groups 1 and 3, but where all other pairwise comparisons revealed 
no significant differences in mean Ne over time (Supplementary Fig. 6).

To analyse how lineages may resemble each other in overall demo-
graphic fluctuations (that is, whether phylogenetically related species 
are classified into the same cluster groups), we used Rezende’s ‘phylo.
signal.disc’ algorithm49. This algorithm compares the minimum num-
ber of character-state transitions at each node that account for the 
observed character distribution in the phylogeny, assuming maximum 
parsimony with the median of a randomized distribution (1,000 ran-
domizations were used). If the observed evolutionary transitions are 
significantly less than the randomized median, a phylogenetic signal is 
inferred. The observed transitions were 171 when k = 7, which were not 
significantly lower than expected by chance (the randomized median 
transitions were 175, P = 0.21, Supplementary Fig. 7a). Even when some 
phylogenetically related lineages were observed to have similar Ne 

trajectories under k = 4 (red background in Supplementary Fig. 7b), 
the similarities were still not significant (observed transitions 123, 
randomized median transitions 128, P = 0.13; Supplementary Fig. 7b). 
These results indicates that there are factors other than phylogeny that 
contribute to the convergent patterns of demographic fluctuations.

Quantifying demographic responses to recent periods of 
climate warming and cooling
The last one million years of the Earth’s history is punctuated by  
periods of abrupt climate warming and cooling50, the most dramatic 
of which have occurred in relatively recent paleo-ecological time 
(cooling from roughly 122–65 kya; warming from roughly 147–123 kya; 
Supplementary Fig. 8). Such periods of more recent paleo-ecological 
time also correspond to when PSMC-based estimates of Ne provide 
more detailed representations of demographic fluctuations within a 
defined window of time, and thus allow for the most accurate quan-
tification of the relationship between climate change and changing 
Ne for each species.

To quantify the effects of climate warming and cooling on 
species-specific demographic trends over time, we first obtained the 
real time points and Ne values scaled from PSMC estimates for each 
individual within these two climate periods, and inferred the climate 
values for these time points from Snyder50. Snyder50 presented climate 
data over the last million years (and beyond; estimated from a spa-
tially weighted, multi-proxy database of more than 20,000 sea surface 
temperature reconstructions) as the change in global average surface 
temperature (one value 1,000 years), for example −6.12 in 65 kya and 
−5.99 in 66 kya. Thus, we could infer the climate value corresponding 
to any time point between two adjacent time points on the basis of the 
slope of the line between them. For example, on the basis of the above 
values, the climate value of 65.70 kya is calculated as −6.029. We then 
quantified overall Ne responses to warming and cooling (hereafter 
designated ‘climate warming’ and ‘climate cooling’) via Pearson cor-
relation coefficients for two variables: Ne estimate and climate value. 
Following David51, the recommend sample size for running Pearson’s 
r is 25, or higher. In our study, the sample size is the number of corre-
sponding Ne estimates and climate values for each individual during 
climate warming or climate cooling. Under the PSMC settings ‘-N30 -t5 
-r5 -p 4 + 251*1 + 4 + 6 + 10’, the average sample size in climate cooling 
was 26.91, while climate warming only contained 8.60 Ne estimates in 
average due to a shorter period. To avoid the under-powered calcula-
tions caused by such a small sample size in climate warming, we reran 
the PSMC analysis with the settings ‘-N30 -t5 -r5 -p 4 + 800*1 + 4 + 6 + 10’. 
These modified parameter settings allowed us to increase the average 
number of samples to 26.03 in climate warming, without changing the 
shape of the PSMC curves (Supplementary Fig. 1). In addition, we used 
0.55 as the threshold for correlation coefficient to indicate statistical 
significance of a correlation, on the basis of the algorithm described 
by Guenther52 with a power of 80%, alpha at 0.05 and sample size of 
25. Guenther’s algorithm also allowed us to determine whether the 
correlation coefficients calculated for individuals with sample sizes 
less than 25 were significantly different from zero. If the sample size of 
such species is smaller than the minimum sample size estimated from 
its correlation coefficient based on Guenther’s algorithm, we consider 
this correlation coefficient to be 0. For example, the minimum sample 
size is 13 for Pearson’s r = 0.7, when power was 80% and alpha was 0.05. 
Therefore, if there were only ten Ne estimates for a species, we cannot 
accept the correlation between Ne estimates and climate values even 
if its Pearson’s r was as high as 0.7. After passing the above criteria, a 
positive correlation (at P < 0.05) corresponded to Ne tendency track-
ing changing temperature (that is, increasing Ne under increasing 
temperature or decreasing Ne under decreasing temperature). All sig-
nificant positive and/or negative correlations were visually inspected 
to ensure they represented a predominantly linear relationship. The 
above analysis criteria are outlined visually in Supplementary Fig. 9.
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To test the robustness of our estimated demographic responses 
to climate change, we randomly generated 1,000 mutation rates for 
each individual using the same strategy as the clustering robustness 
analysis (above). This gave 1,000 Ne trajectories per species on the 
basis of changes in mutation rates. By using the same quantitative 
criteria as our observed response results (Supplementary Fig. 9),  
we further assigned response labels to the estimated 1,000 trajecto-
ries per individual during the climate warming and climate cooling 
periods, respectively. On the basis of these response labels, we used 
the confidence level to represent the robustness, which is the percent-
age of response labels obtained from 1,000 random sampling events 
that are consistent with the observed response results for each indi-
vidual. For example, for a species exhibiting a positive correlation in 
our observed results, if its response labels inferred from the random 
sampling were 950 positives and 50 negatives, its confidence level was 
0.95. In summary, the mean confidence level is 0.90 during climate 
warming, and 0.92 during climate cooling, which indicated strong 
confidence in our observed demographic response estimates. Three 
types of demographic response (‘increase’, ‘decrease’ and ‘unrelated’; 
determined by the strength of positive and/or negative correlations at 
different confidence levels) are summarized in Supplementary Table 4.

For later inclusion in PPA (below), we categorized each species 
by their combined climate warming and climate cooling responses. 
Species that exhibited decreasing Ne under climate cooling and increas-
ing Ne under climate warming were categorized as warming positive 
(n = 33), while those with the opposite response (Ne increase under 
climate cooling and decrease under climate warming) were categorized 
as warming negative (n = 29; Supplementary Table 5). There were 48 
species where demographic change was not correlated with chang-
ing temperature during either climate warming or climate cooling 
(categorized as ‘Ne independent of climate change’). The remaining 
153 species either showed consistent Ne increases under both climate 
warming and climate cooling (n = 55), or consistent Ne decreases under 
both these periods of climate change (n = 98; Supplementary Table 5).

Quantifying the relative influence of individual traits on 
population responses to climate change
We used linear mixed-effect models (Gaussian distribution) and 
multi-model inference via the lme4 (ref. 53) and MuMIn54 R packages 
as a variable selection step to identify the set of morphological and life 
history traits most likely to be associated with population responses 
during the periods of climate warming and climate cooling (on the basis 
of Pearson correlation coefficients, above). For each response variable, 
we constructed a set of models with Passerine or Non-Passerine as a 
random effect to account for Passerines exhibiting both greater mean 
and greater variance in Ne values across the full study period (Fig. 2a), 
since we aimed to identify traits linked to demographic responses to 
climate change while reducing the potential effects of broad-scale phy-
logenetic signal on such results (‘PPA to identify trait-network effects 
on demographic responses to climate change’ below). Each global 
(that is, all variables included) model also included eight non-collinear 
morphological/life history traits predicted to influence population 
responses to climate change (Supplementary Note 2) as fixed effects. 
These eight traits (selected from an initial set of 17 candidate traits, 
Supplementary Table 11) were: mean unsexed mass or mean of male 
and female masses (g, ‘body mass’), ratio of brain size to body mass 
(‘brain–body ratio’), mean unsexed tarsus length or mean of male and 
female tarsus length (mm, ‘tarsus length’), mean unsexed bill length 
or mean of male and female bill length (mm of total exposed culmen, 
‘bill length’), mean mass of fresh eggs (g, ‘egg mass’), mean number 
of eggs per clutch (‘clutch size’), duration of clutch incubation (days, 
‘incubation duration’) and ‘HWI’, measured as Kipp’s distance (distance 
in mm between the tip of the first secondary feather to the tip of the 
longest primary feather) divided by total wing chord length (length in 
mm from bend of the wing to the longest primary of the unflattened 

wing) and multiplied by 100. All fixed effects were standardized to 
mean of 0, s.d. of 1 to reduce potential influence of measurement scale 
on results and to allow direct comparison of model coefficients55. We 
further confirmed key model structure assumptions of homogeneity 
of variance (residuals versus predicted values) and normal distribution 
of residuals (QQ plots) for each global model. Goodness of fit (R2) for 
each model was assessed by the conditional coefficient of determina-
tion56. We then ran n = 256 models for all possible combinations of these 
eight fixed effects for each response variable (correlation coefficient 
during climate warming and climate cooling, respectively) and selected 
a subset with a difference in Akaike information criterion (ΔAIC) ≤ 5 
from the best-fitting model. For each response variable, we then aver-
aged parameter estimates for each predictor included in this subset 
of models to create one representative (full-average) estimate of the 
relative effects of each component on Ne responses to climate warming 
and Ne responses to climate cooling (Table 1). Statistical significance 
for each fixed effect was assessed by whether 95% confidence intervals 
overlapped zero.

PPA to identify trait-network effects on demographic 
responses to climate change
We implemented the hypothesis-driven framework of PPA (phylopath 
R package57) to quantify the network of direct and indirect effects of 
key morphological or life history traits (identified via multi-model 
inference; above) on demographic responses to climate change while 
accounting for phylogenetic non-independence of species. PPA allows 
for a large number of models with complex configurations and intercor-
relation of variables. In our study, six continuous variables representing 
our key morphological or life history traits (egg mass, clutch size, incu-
bation duration, body mass, bill length and HWI) and one binary vari-
able representing differing demographic responses to climate change 
(below) were included in each model. A total of 14 core models with dif-
ferent configurations of these variables were evaluated for each of our 
four comparisons using both P values and the C statistic information cri-
terion (CICc) corrected for small sample sizes (Supplementary Fig. 10).  
Models were designed to test all possible networks of the traits and 
their effects on the demographic responses. Since the ‘Reproduction’ 
category contained three traits (egg mass, clutch size and incubation 
duration), core models assuming a direct effect of ‘Reproduction’ on 
demographic responses in fact have seven derived models (that is, at 
least one of the three traits having a direct effect on the demographic 
responses; Supplementary Fig. 10). The same is true for the ‘survival 
and/or growth’ category with two traits (body mass and bill length). 
Thus, depending on the network assumed by each core model, one 
core model would further be modified into 1, 3, 7 or 21 submodels.

In total, we implemented 164 models for four comparisons of the 
overall responses of species to climate warming and climate cooling 
(Supplementary Table 5) at different confidence levels to again assess 
the robustness of our main results (that is, those assessed without 
confidence level restrictions): (1) warming positive responses versus all 
remaining species, (2) warming negative species versus all remaining 
species, (3) species that exhibited overall sensitivity to climate warm-
ing or cooling (that is, warming positive + warming negative species) 
versus species with consistent Ne increases or decreases for both the 
climate warming and climate cooling responses and (4) species that 
exhibited consistently decreasing Ne versus all remaining species. For 
each comparison, PPA provides the number of independence claims 
made by the model, the number of parameters, the C statistic and 
the accompanying P value, where significance (at P < 0.05) indicates 
that the available evidence rejects the model (that is, the model does 
not provide a good fit to the data58). Thus, after discarding rejected 
models we calculated the top-ranked model (on the basis of ΔCICc) 
and the average of the best-performing models (ΔCICc ≤ 2) for each 
comparison. Detailed results of the best-performing models for each 
confidence level are provided in Supplementary Tables 6–10, with 
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their associated directed acyclic graphs and regression coefficients 
provided in Supplementary Figs. 11–20.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data underlying these analyses (including raw Ne estimates over 
time for each species) are available in the Dryad Digital Repository38.

Code availability
All code underlying these analyses is available in the Dryad Digital 
Repository38.
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