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ABSTRACT

Aim We aim to characterize the macroecological patterns in the structure of
mutualistic seed-dispersal networks. Tropical areas hold more species than temper-
ate ones. This difference in species number may favour ecological processes that
minimize interspecific competition in species-rich areas. There is theoretical evi-
dence that both modularity (i.e. the presence of semi-independent groups of highly
interacting species) and nestedness (i.e. specialists interact with a subset of the
species interacting with generalists) reduce the effects of competition. Thus, we
expect high degrees of modularity or nestedness at low latitudes in seed-dispersal
networks. Moreover, we test whether climate, topography and human impact influ-
ence network structure.

Location Thirty-four qualitative and 21 weighted seed-dispersal interaction net-
works located world-wide.

Methods We related the degree of modularity and nestedness of seed-dispersal
interaction networks with latitude. To disentangle the macroecological drivers of
network structure, we also associated modularity/nestedness with species richness,
altitudinal range, human impact and an array of climate predictors: precipitation,
temperature, precipitation/temperature seasonality and historical climate-change
velocity and anomaly.

Results Binary networks showed stronger macroecological patterns than
weighted networks. Latitude was unrelated to the structure of seed-dispersal net-
works, but more nested assemblages were species rich and were located in areas
with a high degree of human impact, high temperature seasonality, low precipita-
tion, and, especially on the mainland, high stability in precipitation. Modular
networks were species rich and found in areas with low human impact. For both
nestedness and modularity, the effects of species richness and human impact were
especially strong and consistent.

Main conclusions As for previous macroecological studies of mutualistic net-
works, we found that the structure of seed-dispersal assemblages was related to
current and historical climate. The largest influences on nestedness and modularity,
however, were the number of competing species and the degree of human impact.
This suggests that human disturbance, not just climate, is an important factor
determining the structure of a seed-dispersal network.
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INTRODUCTION

During the last decades, several studies have revealed the network

structure of mutualistic interactions (Olesen & Jordano, 2002;

Bascompte et al., 2003; Vázquez et al., 2009). The network

organization of mutualisms may have implications for the con-

servation of the species involved because it affects the persistence

of species within communities (Bascompte & Jordano, 2007;

Thébault & Fountaine, 2010; Passmore et al., 2012) and the

co-evolutionary dynamics of interacting species (Guimarães

et al., 2011). A next step in the analysis of mutualistic networks is

to identify the extrinsic factors that affect the patterns of interac-

tion of component species. In this sense, the identification of

macroecological patterns in mutualistic interaction networks,

and the factors driving these patterns, may be useful both for

conservation biology and for better understanding the

co-evolution of interacting species (e.g. Dalsgaard et al., 2011,

2013; Schleuning et al., 2012, 2014a; Dáttilo et al., 2014).

Network structure has been described using various metrics

such as modularity (i.e. the presence of semi-independent

groups of highly interacting species) and nestedness (i.e. spe-

cialists interacting with a subset of the species interacting with

generalists). For pollination networks, Olesen & Jordano (2002)

and more recently Dalsgaard et al. (2011, 2013), Schleuning

et al. (2012), and Trøjelsgaard & Olesen (2013) have already

identified macroecological patterns in specialization, modular-

ity and nestedness. Most studies found a more specialized and

modular structure in the interaction pattern towards the tropics

(but see Schleuning et al., 2012), and an effect of current pre-

cipitation on the structure of pollinator networks (Dalsgaard

et al., 2013; Trøjelsgaard & Olesen, 2013). Moreover, Dalsgaard

et al., (2011, 2013) found Quaternary climate-change velocity to

decrease specialization and modularity, but increase nestedness

of pollination networks.

Several studies have detected latitudinal trends in commu-

nities of fruit-producing plants and their frugivorous animals

(Fleming & Kress, 2013). For example, Moles et al., (2007)

found an increasing gradient in the proportion of plant species

dispersed by animals from high to low latitudes, and Kissling

et al. (2009) found that avian frugivory is more common in

tropical than temperate areas. However, few studies have exam-

ined the macroecological patterns of seed-dispersal networks.

Focusing on avian seed-dispersal networks, Schleuning et al.

(2012, 2014a) found specialization and modularity to be higher

in temperate regions, possibly because of higher temperature

seasonality and higher seasonal partitioning of fruits and birds

in temperate regions than in the tropics. As both mammals and

birds disperse fruits (e.g. Mello et al., 2011) and nestedness is a

pervasive pattern of these networks (Bascompte et al., 2003),

further community-wide research is needed to completely

understand the latitudinal patterns and underlying factors

determining the structure of seed-dispersal networks.

Furthermore, human disturbance is known to affect species

interactions in general (Tylianakis et al., 2007, 2008) and

mutualisms in particular (e.g. Kearns et al., 1998). For seed dis-

persal, hunting and selective logging may reduce the number of

seeds removed by animals (Markl et al., 2012) or change the

patterns of seed dispersal (Galetti et al., 2013). The removal of

smaller numbers of seeds may be related to a reduction in the

number of interactions and the number of seed dispersers,

which in turn may affect species interaction patterns and pro-

cesses. Also, Menke et al. (2012) found that plant–frugivore net-

works were more connected, more nested and more robust

against species extinctions at forest–farmland edges than in the

forest interior. This could perhaps be caused by the most fragile

and specialized species going locally extinct in areas of high

human impact. Despite this documented effect of human

impact on seed dispersal, previous macroecological studies have

focused on the effects of climate and overlooked the possible

importance of human impacts on network structure.

The study of how structural patterns change across space may

provide indirect evidence for the role of biotic interactions in

shaping the organization of interacting assemblages. For

example, interspecific competition is likely to affect network

patterns. Because tropical communities are species rich (Pimm &

Brown, 2004) it is expected that competition for resources may

favour high modularity and specialization in tropical areas,

leading to niche partitioning (Trøjelsgaard & Olesen, 2013). In

addition to niche partitioning, some network patterns may be a

consequence of the minimization of effects of interspecific com-

petition. For example, multiple ecological and evolutionary pro-

cesses may lead to nestedness (Bascompte et al., 2003) and theory

predicts that nestedness minimizes the effects of interspecific

competition and favours species persistence (Bastolla et al., 2009;

Thébault & Fountaine, 2010; but see Allesina & Tang, 2012).

Moreover, modularity may be favoured by evolutionary con-

straints (Lewinsohn et al., 2006) and can limit the effects of

interspecific competition to subsets of the network, minimizing

the destabilizing effects of mutualisms (Allesina & Tang, 2012).

We characterize the structure of mutualistic seed-dispersal

networks using a network approach for 34 qualitative and 21

weighted datasets from a wide range of geographical areas: they

included not only birds, but also mammals and other vertebrate

seed dispersers. As tropical areas are richer in species, we expect

that mutualistic assemblages in tropical ecosystems may also

show higher nestedness and/or modularity as a consequence of

processes minimizing interspecific competition and favouring

coexistence (Bastolla et al., 2009; Allesina & Tang, 2012). We also

test the effect of taxonomic diversity and site characteristics,

both altitudinal range and putative climate predictors used in

previous studies (i.e. precipitation, temperature, precipitation/

temperature seasonality, historical climate-change velocity and

anomaly). Finally, for the first time, we assessed the potential

additional role that human impact may have on the structure of

seed-dispersal interaction networks.

METHODS

Interaction matrices

We used a global dataset consisting of 34 frugivory interaction

networks (Fig. 1; Appendix S1 in Supporting Information)
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coming from already published studies, mainly from Rezende

et al. (2007), Mello et al. (2011) and the Interaction Web Data-

base (http://www.nceas.ucsb.edu/interactionweb/index.html).

From each study we collected qualitative information about the

interactions between plants and animals. The included studies

presented data on frugivory by many animal species, all identi-

fied at least to genus level, and presented data from at least two

seasons in the year.

Networks of species interactions can be characterized in the

form of matrices where species are represented by rows and

columns and the interaction between an animal i and a plant j is

depicted by the element aij. Twenty-one of our networks were

quantitative, where aij represents the number of times an inter-

action was observed. We also conducted analyses on the full set

of 34 datasets, treating them as qualitative matrices (aij = 1 when

the two species interact and 0 otherwise). Our networks are

two-mode as rows and columns represent species from two dif-

ferent groups (i.e. plants and animals).

Measuring network structure

Several measures have already been used to characterize the

structure of mutualistic networks, such as nestedness

(Bascompte et al., 2003) and modularity (Olesen et al., 2007;

Donatti et al., 2011; Mello et al., 2011). These metrics are useful

tools because they allow a comparison of the patterns of inter-

actions in communities that differ greatly, and provide ways to

quantify and compare the structure of networks across commu-

nities (Bascompte & Jordano, 2007). These metrics were first

created for qualitative datasets that showed whether an interac-

tion between two species occurred or not. In recent years, gen-

eralizations of these metrics to quantitative matrices (i.e. those

that also indicate the intensity of the interaction) have also been

developed. In this study we use both quantitative and qualitative

metrics to characterize both nestedness and modularity.

The qualitative degree of nestedness was calculated for each

matrix using the metric NODF (nestedness overlap and decreas-

ing fills; Almeida-Neto et al., 2008), while quantitative

nestedness was calculated using WNODF (weighted NODF;

Almeida-Neto & Ulrich, 2011). These metrics estimate the

degree of nestedness of the matrix and measure the contribution

of the different interacting species to the general pattern. Since

the variation in the number of interactions across species could

also influence the degree of nestedness, we compared the

observed value for nestedness of each matrix with the nestedness

values of 1000 matrices constructed following a null model. The

null model for NODF keeps the heterogeneity in the number of

interactions across species (null model 2; Bascompte et al.,

2003). In the null model for WNODF, the species-specific prob-

abilities are proportional to the species relative number of inter-

actions (Vázquez et al., 2007). We calculated the NODF values

and null model analysis using ANINHADO (Guimarães &

Guimarães, 2006) and the WNODF values with the Bipartite

package in R (Dormann et al., 2009). Both values of nestedness

were standardized as Z-scores to allow comparisons among

matrices. The Z-NODF was calculated as:

Z-NODF NODF NODF SDnullmodel nullmodel= −( )

where NODFnullmodel is the mean of all the NODF values of null

model matrices and SDnullmodel is its standard deviation. The

WNODF value was standardized using the same formula.

The second pattern investigated was modularity. A network is

considered modular if it is formed by cohesive subgroups of

closely connected species. We estimated the degree of modular-

ity of each qualitative (i.e. binary) dataset using the metric M

(Newman & Girvan, 2004; Olesen et al., 2007). Because M

cannot be computed analytically, we used the simulating anneal-

ing algorithm introduced to modularity analysis by Guimerà &

Amaral (2005) to estimate it. We used the program modular

(Marquitti et al., 2014) to make the calculations. The simulating

annealing algorithm attempts to maximize the number of links

between nodes belonging to the same module and to minimize

the number of links between nodes belonging to different

Figure 1 World map showing the approximate location of the 34 studies. Each point represents one seed-dispersal network.
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modules. The quantitative modularity metric Q was calculated

using the new algorithm developed by Dormann & Strauß

(2013) called QuanBiMo. This algorithm uses the hierarchical

random graph approach of Clauset et al. (2008), which organ-

izes interacting species in a graph so that close species are more

likely to interact. Then it swaps branches at different levels ran-

domly and reassesses the modularity of the network, selecting

the more modular organization. We calculated Q using the

Bipartite package in R. Both M and Q vary from 0 to 1, and large

values of M/Q are characteristic of networks with a large

number of modules and/or very isolated modules (see Olesen

et al., 2007, for additional details). To test the significance of the

modularity, we generated 100 random networks fixing the prob-

ability that two species interact, based on that observed in the

real networks. We then calculated the modularity of the net-

works and evaluated whether observed modularity fell within

the 95% confidence interval calculated from the randomized

matrices. We finally standardized the modularity by calculating

the Z-score of M and Q (ZM, ZQ), as we did with nestedness.

Many studies have found that modularity and nestedness are

negatively correlated, with more nested communities presenting

less modular patterns (e.g. Dalsgaard et al., 2013). However, in

our dataset, qualitative nestedness and modularity showed a

non-significant positive correlation (r = 0.299, P = 0.086), while

the weighted measures showed a non-significant negative asso-

ciation (r = –0.342, P = 0.129).

Macroecological variables

We analysed how aspects of the site are associated with patterns

of interaction at the community level. Based on the site descrip-

tion in each article where the interaction data were published,

we extracted latitude, mean annual temperature and mean

annual precipitation of the area. When information about pre-

cipitation and temperature was unavailable from the articles, we

used estimated values extracted from WorldClim (Hijmans

et al., 2005). We also extracted the temperature and precipita-

tion seasonality from WorldClim. For temperature, seasonality

was calculated as the standard deviation of the temperature

values, while for precipitation we used the coefficient of vari-

ation of the precipitation (SD/mean).

We described long-term climate stability at each site by cal-

culating climate-change anomaly and velocity since the Last

Glacial Maximum (LGM; Loarie et al., 2009; Sandel et al., 2011).

Climate anomalies at each site are simply the difference between

current and LGM climate conditions, whereas climate-change

velocity estimates the displacement rate of climate isoclines by

scaling the temporal climate gradient against the spatial climate

gradient. The temporal climate gradient was calculated as

current temperature or precipitation minus LGM temperature

or precipitation. Current climate was represented by 2.5′
WorldClim (Hijmans et al., 2005) data, while LGM climate was

statistically downscaled outputs from two models, CCSM3 and

MIROC 3.2 (K-1 Model Developers, 2004; Braconnot et al.,

2007). The spatial gradient was calculated as the local slope of

the current climate surface at the study site.

We characterized other attributes of the study areas that could

be affecting the organization of interactions. For each site, we

extracted the human influence index, a composite score which

integrates information on human population density, land-

cover change, accessibility and electrical infrastructure

(Sanderson et al., 2002). We also calculated topographic hetero-

geneity as the standard deviation of elevation values within a

0.2° (roughly 20 km) window around each site, using the

WorldClim digital elevation model (1 km resolution). Finally, as

the amount of shared evolutionary history in the community

may also influence network configuration, we also calculated the

number of animal subfamilies in each of the communities as a

measure of taxonomic diversity.

Statistical analyses

We first related the characteristics of the study sites to the

network metrics using generalized linear models (GLMs) in R

2.1.1 (R Development Core Team, http://www.r-project.org)

and model averaging functions as implemented in the ‘MuMIn’

package (version 1.9.5; Barton, 2013). For each network metric,

we fitted models including all the possible combinations and

subsets of the predictor variables. As climate velocity and

climate anomaly are correlated, we computed two sets of models

– one with velocity and the rest of the variables, and one with

anomaly and the rest of the variables. We averaged the param-

eter estimates across all considered models where the respective

parameter appeared, weighted by the relative importance of

each model (Johnson & Omland, 2004). The number of families

and the climate-change velocities were log-transformed for all

the analyses. As species richness (S, defined as the number of

animal and plant species) may influence the metrics calculated

at the network level and because we want to explore network

patterns that goes beyond species richness, we included it in all

the models. We estimated the relative importance of each pre-

dictor variable by summing the weights of the Akaike informa-

tion criterion (AIC) across all models in the set where a given

variable occurred (Burnham & Anderson, 2002).

Then, using the ‘ncf ’ package in R (Bjornstad, 2014), we

examined if the residuals of the best model for each variable

were spatially autocorrelated. We explored the autocorrelation at

10 different distances. When the residuals of the model were

spatially autocorrelated (Z-NODF and ZM), we performed a

spatial eigenvector mapping (SEVM) modelling approach

removing spatial autocorrelation in the model residuals. We did

this by calculating the linear combination of the detected spatial

filters, and using it as a covariable in an ordinary least-square

framework (Diniz-Filho et al., 2008).

As mainland communities may be more affected by historical

climate change than island communities (Dalsgaard et al., 2013,

2014), and as the structure of mutualistic interaction networks

may differ between continental and insular communities (e.g.

Olesen & Jordano, 2002; Dalsgaard et al., 2013; Schleuning et al.,

2014b), we repeated all the analyses using only the continental

assemblages. Ideally we would also like to have conducted the

analysis only on islands, but there were too few island networks
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to allow this analysis. Moreover, as one other macroecological

studies on seed-dispersal networks focused on communities

formed only by avian dispersers (Schleuning et al., 2014a), for

comparative purposes we also repeated all the analyses using just

those communities that included only birds.

Methodological limitations of the study

The patterns of interaction between plants and birds are not

constant throughout the year. Some fruits are only available

during a specific period of the year and some avian species may

migrate from the study site for a period of time. In this study we

only included the networks that presented data from at least two

seasons in the year. However, the fieldwork in some of the

studies did not include a complete year, thus it is likely that some

interactions were not observed because they occurred in the

non-surveyed period. Moreover, when the data were taken from

a complete year, the results from different seasons were pooled.

Thus, some species that may not coexist temporally were repre-

sented together in the same network. Previous studies have

already shown that the number of interaction records in

mutualistic networks is correlated with the length of the obser-

vation period (Schleuning et al., 2012, 2014a), but in general

their conclusions were unchanged when accounting for differ-

ences in sampling duration.

We also made a substantial effort to cover as many geographi-

cal regions as possible, but our dataset is nevertheless unbal-

anced across space (as in Schleuning et al., 2012, 2014a). We

could not find studies that fitted our requirements from conti-

nental Asia (we only have one from Japan), from western North

America or from North Africa. In contrast, there is an

overrepresentation of networks in some areas (e.g. four sites in

Spain). However, this is the best representation currently avail-

able on a world-wide scale for frugivory networks, making the

study comparable to that of Schleuning et al. (2012, 2014a). It is

also important to underline that the spatial scale of the study

sites was not always clear. Finally, some studies included all the

possible animal dispersers at the study area, while others focused

on a specific group and ignored alternative dispersers from dif-

ferent animal groups (e.g. studying only the avian seed dispers-

ers and not the mammals).

RESULTS

From 34 seed-dispersal interaction networks, we analysed 5665

interactions between animals and plants. Of the 34 networks, 21

were weighted networks totalling 56,968 interactions. Our pre-

diction of increasing nestedness and modularity in the tropics

was not corroborated as the structure of the networks (i.e.

nestedness and modularity) was non-significantly related to lati-

tude for both the qualitative and quantitative metrics studied

(Tables 1 & S1). However, the macroecological patterns in quali-

tative networks, especially nestedness, were associated with the

predictor variables that were included (Tables 2–4, S2 & S3).

Climatic conditions affected the nested structure of seed-

dispersal communities. In general, models including historic

climate anomalies performed better than those including

climate-change velocities, and models for nestedness had a

better fit than those for modularity (Tables 2–4). Nestedness was

high where precipitation was low, precipitation anomaly high

and temperature anomaly low (Tables 2–4, Fig. 2). Moreover,

communities located in areas with high temperature seasonality

also had more nested and less modular structures, while high

human impact was related to more nested and less modular

assemblages (Fig. 2). Finally, the number of species in the

network was also related to the structure of the seed-dispersal

assemblage, increasing both nestedness and modularity (Fig. 2).

The continental assemblages showed similar macroecological

patterns to the global dataset (Tables S4 & S5) although some of

the variables lost their significance, for instance, precipitation

anomaly was unimportant on the mainland (Table S4). The

analyses including the networks that presented only avian

species revealed larger changes in the significance of the vari-

ables (Tables S6 & S7). For nestedness, many of the climatic

variables lost their significance, while both climate-change

velocity variables gained significance, reducing nestedness as for

the continental-focused analysis. Moreover, networks that

included more animal families (i.e. taxonomic diversity) showed

more nested patterns. Human impact also decreased modularity

and increased nestedness when analysing the continental com-

munities, but for the avian-dispersed assemblages, qualitative

modularity was never affected and the quantitative one lost its

effect when accounting for the spatial autocorrelation of the

models (Tables S4–S7).

The weighted structure of the seed-dispersal networks

showed weaker macroecological patterns (Tables 2 & 3), which

were almost entirely lost when accounting for spatial

autocorrelation in SEVM models (Tables S2 & S3). Both conti-

nental and avian networks showed the same structure as the

global dataset, i.e. the significance of the macroecological vari-

ables explaining their structure was lost when including the

spatial filters in the SEVM analyses (Tables S4–S7).

DISCUSSION

Our study on seed-dispersal networks adds to the discussion

about whether mutualistic networks are more – or less – spe-

Table 1 Generalized linear models relating the nestedness and
modularity of the networks with latitude. We show the results
including all the study sites. For each test we present the
coefficient of the model, the t-value and the P-value. Z-NODF
and ZM are qualitative nestedness and modularity; Z-WNODF
and ZQ are weighted nestedness and modularity.

n Coefficient t-value P-value

Z-NODF 34 0.007 0.232 0.818

ZM 34 −0.013 −0.908 0.371

Z-WNODF 21 0.115 1.745 0.097

ZQ 21 −0.061 −0.745 0.465

Macroecological trends in seed-dispersal networks
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cialized, modular and nested in the tropics (Olesen & Jordano,

2002; Ollerton & Cranmer, 2002; Dalsgaard et al., 2011;

Schleuning et al., 2012, 2014a; Trøjelsgaard & Olesen, 2013).

Whereas pollination networks tend to be more modular in the

tropics (Trøjelsgaard & Olesen, 2013), previous work on

weighted seed-dispersal networks has reported higher degrees of

modularity in temperate regions, not in the tropics (Schleuning

et al., 2014a). We find tropical and temperate seed-dispersal net-

works to be equally modular and nested. These differences

between pollination and seed-dispersal systems may be related

to more relaxed specialization requirements between the inter-

acting species in frugivory than in plant–pollinator networks

(Blüthgen et al., 2007). Many frugivorous birds are able to forage

on the fruits of several plant species (Kissling et al., 2012), while

pollinators often have more specialized morphology and behav-

iour (Stang et al., 2007; Maruyama et al., 2014). For the seed-

dispersal studies, the differences may be related to the use of

different metrics (e.g. qualitative versus quantitative network

metrics) and slightly different datasets. Even though we did not

detect a significant latitudinal trend, species-rich seed-dispersal

communities presented, as expected, both more modular and

more nested patterns. More species in the assemblage indicates

greater competition for the resources (i.e. fruits and dispersers),

but the modular and/or nested structure may minimize

interspecific competition, and hence favour species coexistence

(Bastolla et al., 2009; Allesina & Tang, 2012).

The structure of seed-dispersal networks was also influenced

by current climatic conditions. Our study indicates that

frugivore assemblages in areas with low precipitation are more

nested than assemblages in wetter areas. This suggests that

resource use in dry environments is organized in such a way that

specialist species interact with a subgroup of the interaction

partners of the most generalist species. Rainfall has already been

identified to affect the organization of other mutualistic inter-

actions. For example, high precipitation favours modularity

(Dalsgaard et al., 2013; Trøjelsgaard & Olesen, 2013) and spe-

cialization (Dalsgaard et al., 2011) in pollination networks, and

increases nestedness in ant–plant mutualistic networks

(Rico-Gray et al., 2012). In addition, Schleuning et al. (2014a)

detected a decrease in weighted modularity with an increase in

precipitation for seed-dispersal networks. Climatic seasonality

was also related to the structure of seed-dispersal assemblages in

our study. Nested communities were located in areas with large

seasonal differences in temperature, while the modular commu-

Table 2 Results of the generalized linear
model averaging for the analyses
including climate anomaly variables for
all the study sites. We present the
coefficient (Estimate) and relative
importance of the variable (w) for all the
macroecological variables explaining
modularity (ZM and ZQ) and nestedness
(Z-NODF and Z-WNODF). Variables
with a relative importance higher than
0.8 are presented in bold. See Table 4 for
abbreviations.

Z-NODF ZM Z-WNODF ZQ

Estimate w Estimate w Estimate w Estimate w

(Intercept) 0.842 −1.572 13.053 16.260

Human impact 0.040 0.99 −0.045 0.98 0.125 0.98 −0.291 0.96

# Fam −0.049 0.27 0.617 0.43 −2.311 0.40 2.338 0.34

# Sp 0.076 1.00 0.018 0.89 0.210 0.81 −0.159 0.50

MAP −0.001 0.93 0.000 0.35 −0.002 0.62 0.001 0.49

MAT −0.102 0.45 0.163 0.38 −0.607 0.64 −0.586 0.71

P seasonality −0.008 0.30 −0.030 0.58 −0.258 0.59 0.029 0.54

T seasonality 0.001 0.95 −0.001 0.84 0.002 0.55 −0.001 0.33

P anom. 0.003 0.94 −0.002 0.66 0.008 0.44 0.007 0.38

T anom. −0.036 0.95 0.010 0.34 −0.125 0.64 0.082 0.46

Var. elevation 0.002 0.37 −0.002 0.37 0.019 0.49 −0.024 0.32

Table 3 Results of the generalized linear
model averaging for the analyses
including climate change velocity
variables for all the study sites. We
present the coefficient (Estimate) and
relative importance of the variable (w)
for all the macroecological variables
explaining modularity (ZM and ZQ) and
nestedness (Z-NODF and Z-WNODF).
Variables with a relative importance
higher than 0.8 are presented in bold.
See Table 4 for abbreviations.

Z-NODF ZM Z-WNODF ZQ

Estimate w Estimate w Estimate w Estimate w

(Intercept) 1.490 −0.560 0.345 13.553

Human impact 0.035 0.97 −0.053 0.97 0.116 0.94 −0.273 0.97

# Fam 0.171 0.28 0.643 0.44 −0.168 0.31 3.542 0.37

# Sp 0.076 1.00 0.016 0.85 0.260 0.93 −0.147 0.45

MAP −0.001 0.98 0.000 0.42 −0.002 0.60 0.001 0.53

MAT −0.007 0.30 0.092 0.66 −0.331 0.59 −0.450 0.69

P seasonality −0.009 0.29 −0.015 0.37 −0.124 0.43 −0.068 0.31

T seasonality 0.000 0.36 0.000 0.31 0.001 0.39 0.001 0.30

MAP velocity −0.199 0.31 0.270 0.39 −3.864 0.83 −2.863 0.51

MAT velocity −0.502 0.58 0.219 0.36 −1.196 0.39 2.343 0.51

Var. elevation 0.003 0.43 −0.001 0.31 0.014 0.41 −0.029 0.52
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nities were characteristic of areas with low seasonality in tem-

perature (latter being opposite to the result of Schleuning et al.,

2012). Theoretical studies had identified that evolutionary pro-

cesses in changing environments, such as in seasonal regions,

may lead to modularity (Lipson et al., 2002; Kashtan & Alon,

2005) and our results indicate that nestedness may also be

prominent in such variable conditions.

In addition to current climatic conditions, historic climate

also influenced the structure of seed-dispersal networks. His-

toric temperature instability was in most analyses related to a

decreased level of nestedness; although high precipitation

anomalies increased nestedness for the global dataset, this effect

disappeared when focusing on the mainland, and precipitation

change velocity had a negative effect on nestedness in avian

seed-dispersal communities. Thus, especially for avian seed-

dispersal and mainland communities, climatic temperature sta-

bility seems to lead to more nested networks. On the other hand,

modularity was unaffected in most analyses by historical climate

stability, as also observed by Schleuning et al. (2014a). Interest-

ingly, the increased nestedness in areas with high stability is

opposite to what has been observed for pollination studies

(Dalsgaard et al., 2013). Similarly, Schleuning et al. (2012)

indentified a positive association between historical climate

instability and specialization in frugivore bird–plant networks,

whereas Dalsgaard et al. (2011) observed the opposite for plant–

hummingbird pollination networks. Schleuning et al. (2012)

suggested that pollination systems are more tightly coevolved,

and therefore more negatively affected by changing climate and

species composition, than frugivore systems where multispecies

co-evolutionary selection favours trait convergence. Irrespective

of the exact mechanism, it is noteworthy that seed-dispersal and

pollination systems consistently show opposite effects to histori-

cal climate stability, and that for both systems the effect of his-

torical climate is especially pronounced on the continent. This

indicates that how species interact and form networks are

shaped differently by historical climate stability on the continent

and insular environments (Dalsgaard et al., 2013, 2014).

The structure of our seed-dispersal networks was also

affected by the degree of human impact at the study areas, in

agreement with previous studies suggesting that seed-dispersal

assemblages may be affected by human impact in several ways.

Breitbach et al. (2010) found a reduced number of interacting

species along a human land-use gradient but a maintenance of

the ecosystem function, because the number of seeds removed

per tree in human-affected areas did not decline (see also

Benítez-Malvido et al., 2014). However, Staggemeier & Galetti

(2007) detected that plant species in areas with a high degree

of human impact had fewer visits and lower consumption

rates than more undisturbed areas. In a recent meta-analysis,

Markl et al. (2012) concluded that forest fragmentation,

hunting and selective logging had different effects on visitation

rate, dispersal distance and number of removed seeds. Thus,

the effect of human impact on seed dispersal by birds depends

on the type of affect and the consequences are case specific. In

our work, at network level, the highly human-affected and

transformed environments showed more nested and less

modular structures. Mutualistic networks show a significantly

higher degree of reciprocal specialization than expected under

neutral conditions (Blüthgen et al., 2008). These highly spe-

cialized interactions are more easily lost from the networks

because the extinction of one of the species may have fatal

consequences for its specialist interacting partners (Ollerton

et al., 2006). Thus, highly human-affected communities may

show more nested and less modular structures because

the most specialized interactions have been lost due to human

activities.

Contrary to the study by Schleuning et al. (2014a), who found

that the macroecological structure of seed-dispersal networks

was better described using weighted than binary network

metrics, our binary metrics showed much stronger

macroecological signals than our quantitative analyses. The low

sample size for weighted analyses may cause this contrasting

result, as we could only access weighted information for 21

seed-dispersal networks (16 when considering only continental

or bird-mediated assemblages) while Schleuning et al. (2014a)

studied 18 assemblages. Our results suggest that macro-

ecological studies with small sample sizes should be considered

with caution as the results may change because of a few data

points. This highlights the need for macroecological analysis of

weighted networks using bigger databases.

Table 4 Variables included in the best of all the models (i.e.
model with the lowest Akaike information criterion) for
modularity and nestedness. For each network metric, we show the
best model including historic climate anomaly and climate change
velocity as putative predictors. The sign before each variable is the
sign of the variable in the model. We also include the fit of the
model using the percentage of explained deviance, D.

Network

metric Best model variables D

Z-NODF (+)Human, (–)MAP, (+)# Sp, (+)P anom.,

(–)T anom., (+)T seasonality

86.13

Z-NODF (+)Human, (–)MAT velocity, (–)MAP, (+)# Sp 84.33

ZM (–)Human, (+)MAT, (–)P seasonality,

(–)P anom., (+)# Sp

51.14

ZM (–)Human, (+)MAT, (+)# Sp 42.27

Z-WNODF (+)Human, (–)MAP, (–)P seasonality, (+)# Sp,

(–)T anom., (+)T seasonality

55.90

Z-WNODF (+)Human, (+)MAP velocity, (–)MAT velocity,

(–)P seasonality, (+)T seasonality

18.82

ZQ (–)Human, (–)MAT, (–)Var. elevation, (–)# Sp,

(+)P anom.

35.88

ZQ (–)Human, (–)MAT velocity, (–)MAP velocity,

(–)MAT

32.45

MAT, mean annual temperature; MAP, mean annual precipitation, T
seasonality, temperature seasonality; P seasonality, precipitation season-
ality; Var. elevation, variability in the elevation range; MAT velocity,
historic temperature change velocity; MAP velocity, historic precipita-
tion change velocity; T anom., historic temperature anomaly; P anom.,
historic precipitation anomaly; # Fam, number of animal families; # Sp,
number of animal and plant species.
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In this study on macroecological patterns of seed-dispersal

networks, we analysed a relatively large number of binary net-

works. Our data include seed dispersal mostly by birds but also

bats, non-flying mammals and some species of fish and reptiles,

so the results may be generalizable to most seed-dispersal assem-

blages. Our results complement previous studies on the speciali-

zation and modularity of seed-dispersal assemblages

(Schleuning et al., 2012, 2014a), and can be compared with

similar macroecological studies in other mutualistic interac-

tions, especially pollination (Olesen & Jordano, 2002; Dalsgaard

et al., 2011, 2013; Schleuning et al., 2012; Trøjelsgaard & Olesen,

2013). All these studies suggest that mutualistic assemblages are

not structured randomly and that several factors, notably cli-

matic conditions, are affecting their organization. Our findings

highlight that not only climate, but also human impact, are

important for understanding the processes that shape the struc-

ture of seed-dispersal networks at large spatial scales.
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ing climate change velocity variables for the continental sites.

Table S6 Results of the model averaging for the analyses includ-

ing climate anomaly variables for the sites that presented only
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Table S7 Results of the model averaging for the analyses includ-

ing climate change velocity variables for the sites that presented
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