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The Eastern Arc Mountains of Tanzania show exceptional endemism that is threatened by high anthro-
pogenic pressure leading to the loss of natural habitat. Using a novel habitat conversion model, we pres-
ent a spatially explicit analysis of the predictors of forest and woodland conversion in the Eastern Arc
over 25 years. Our results show that 5% (210 km2) of evergreen forest and 43% (2060 km2) of miombo
woodland was lost in the Eastern Arc Mountains between 1975 and 2000. Important predictors of habitat
conversion included distance to natural habitat edge, topography and measures of remoteness. The main
conservation strategy in these mountains for the past 100 years has been to develop a network of pro-
tected areas. These appear to have reduced rates of habitat loss and most remaining evergreen forest
is now within protected areas. However, the majority of miombo woodland, an important source of eco-
system services, lies outside formal protected areas, where additional conservation strategies may be
needed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Forest area in Africa decreased by an estimated 34–41 thousand
km2 per year during the 1990s and 2000s (FAO, 2010). Tropical
moist forests are amongst the most species-rich terrestrial habitats
on Earth, making deforestation a crucial issue for biodiversity con-
servation (Joppa and Pfaff, 2011; Pimm et al., 2001). Furthermore,
they sequester and store large amounts of carbon; tropical defores-
tation is estimated to contribute 7–14% of global carbon dioxide
emissions, resulting in accelerated climate change (Harris et al.,
2012; IPCC, 2007). Given forests’ crucial role in conserving biodi-
versity and mitigating climate change, as well as in sustaining local
livelihoods, understanding the drivers and threat mechanisms of
forest conversion and finding ways to reduce rates of loss is high
on the conservation agenda (Balmford et al., 2009).

An increasing research focus on the rates and predictors of hab-
itat conversion has been aided by the advent of satellite remote
sensing technologies (DeFries and Townshend, 1999). Regression
models have been widely used to identify predictors of habitat
conversion and previous studies have investigated the impact of
market access (e.g. distance to roads and population centres) and
topography (e.g. slope and elevation) at study scales ranging from
sub-national (Patarasuk and Fik, 2013; Serneels and Lambin, 2001;
Vuohelainen et al., 2012) to regional (Pfeifer et al., 2012; Portillo-
Quintero et al., 2012) and global (Scrieciu, 2007). These models
have been used to elucidate threat mechanisms of habitat conver-
sion and to investigate the effectiveness of conservation efforts to
prevent it. Predictive models have more recently been proposed as
a tool for protected area planning: by assessing threats spatially
and designating protected areas accordingly the potential impact
of reserves can be maximised (Joppa and Pfaff, 2009). Predictive
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models can also help in conservation resource allocation by sug-
gesting different levels of investment required in different parts
of a protected area network (Andam et al., 2008). Lastly, an inter-
national scheme to decrease the amount of carbon released into
the atmosphere (Reduced Emissions from Deforestation and Deg-
radation; REDD) requires an assessment of baseline (current) levels
of habitat conversion and the future trajectories of loss to be esti-
mated (Brown et al., 2007).

Much of our current knowledge of the causes and mechanisms
of habitat loss is based upon research undertaken in Latin America
and Asia, where deforestation is driven by agricultural exports and
urban population growth, largely mediated through agricultural
expansion, infrastructure development and resource extraction
(DeFries et al., 2010; Geist and Lambin, 2002). However, the drivers
and extent of deforestation have been found to vary between con-
tinents and Africa, in particular, has had few studies devoted to
spatial modelling of habitat loss (Achard et al., 2002; DeFries
et al., 2010; Fisher, 2010; Geist and Lambin, 2002; Pfeifer et al.,
2012). We focus on the Eastern Arc Mountains in Tanzania where,
although anthropogenic pressures are high, they vary across the
landscape (Brooks et al., 2002; Burgess et al., 2006). Our objectives
are to develop the first spatially explicit, high-resolution model of
past evergreen forest and miombo woodland change in the Eastern
Arc Mountains, based upon potential predictors of habitat loss and
retention. We then use this model to predict likely future changes
and to consider how habitat loss varies between protected and
non-protected areas.

2. Study area

The Eastern Arc Mountains are a chain of ancient crystalline
mountain blocs in East Africa under the climatic influence of the
Indian Ocean (Lovett, 1985; Platts et al., 2011). In Tanzania, the
range consists of 12 blocs running from the southern highlands
to the northeast border with Kenya and covering over
50,000 km2. The forests of the Eastern Arc are important centres
of biodiversity and the mountains host 400–500 strictly-endemic
vascular plant species, around 20% of which are trees (Platts
et al., 2010, 2011), and at least 96 endemic vertebrate species (Bur-
gess et al., 2007a). The Eastern Arc Mountains also support millions
of people as they are a major source of water for drinking, agricul-
ture, hydropower and industrial use while their forests and wood-
lands provide fuelwood, construction poles, charcoal and
medicines (Burgess et al., 2007a; Swetnam et al., 2011).

However, the Eastern Arc Mountains have also experienced his-
torically high rates of habitat loss that, in concert with their excep-
tional biodiversity, have led to their recognition as part of a
globally-important biodiversity hotspot (Burgess et al., 2007a; Mit-
termeier et al., 2004; Myers et al., 2000). It is estimated that the
Eastern Arc Mountains have lost 80% of their total preclearance for-
est extent, with 75% occurring before 1955 (Hall et al., 2009). The
main reported threat mechanisms are conversion to agriculture,
logging for timber, fire, and the collection of woody biomass for
firewood and production of charcoal (Burgess et al., 2007a;
Schaafsma et al., 2012). The slowdown in deforestation since
1955 is thought to be due to the fact that much of the remaining
forest is in rugged terrain at high altitudes, and because most
remaining forest lies within some form of protected area (Hall
et al., 2009). Approximately 20% of the total area of the Eastern
Arc Mountains falls within protected areas, which set restrictions
on permitted extractive activities (Green et al., 2012; IUCN and
UNEP-WCMC, 2010). Most of the protected areas are national for-
est reserves that were established prior to the 1970s for logging
(banned in 1985), the conservation of water flow regimes, and
the prevention of erosion (Haule et al., 2002; Neumann, 2002).
3. Materials and methods

3.1. Quantifying habitat loss

Woody vegetation in the Eastern Arc falls into two very distinct
habitats. The first is closed canopy evergreen and semi-evergreen
vegetation growing up to 40 m tall and with exceptional biodiver-
sity value. The other is closed to nearly-closed canopy deciduous
vegetation, known as miombo woodland, growing up to about
30 m tall and with lower biodiversity values (Burgess et al.,
2004). Throughout this paper, we refer to these two habitat types
as ‘‘forest’’ and ‘‘woodland’’, respectively. The distinction between
these habitat types is common in East Africa and is important. As
well as differing in their biodiversity, forest and woodland also dif-
fer in the types and amounts of ecosystem goods, such as timber,
charcoal and medicinal plants, that they provide and their likely
exposure to threats (Burgess et al., 2010; Swetnam et al., 2011);
we therefore modelled forest and woodland loss separately.

We investigated habitat loss over the 25-year period prior to
the year 2000. Given the relatively small amounts of forest con-
verted over recent years, it is advantageous to consider a relatively
long time period. This gives a greater number of conversion events
upon which statistical models of habitat loss can be built and
thereby improves projection accuracy (Sloan and Pelletier, 2012).
Although it is possible that drivers of habitat loss have changed
since the mid-1970s, several studies suggest that this is not the
case for East Africa (DeFries et al., 2010; Fisher, 2010; Rudel
et al., 2009). To assess land cover change we used published data
from the Forestry and Beekeeping Division of Tanzania’s Ministry
of Natural Resources and Tourism (Table 1; Hall et al., 2009; Mbil-
inyi et al., 2006). These data map the changes in the extent of forest
and woodland at 30 m resolution between two points in time,
1975 and 2000 (or as close to these years as possible, subject to
the availability of cloud-free images; 1975 data were resampled
to 30 m to allow pixel by pixel comparison to 2000).

Land cover change was assessed using Landsat MSS and Landsat
ETM+. Images were obtained from the long dry season (July–
November) or from the middle of the short dry season (January–
February) to minimise cloud cover and seasonal differences.
Images were rectified and enhanced (bands 4, 5, 3; contrast
stretched using a Gaussian distribution function) using ERDAS
IMAGINE software (ERDAS, 1999). Land cover classification, based
on the methods described in Harper et al. (2007), was done using
a supervised maximum likelihood classifier. Training was semi-
automated and iterative: signatures of each land cover were
created based upon a minimum of 30 pixels per land cover class,
generated by on-screen digitising of selected areas for each land
cover class derived from composite. Photo elements such as tex-
ture, colour, and local knowledge were used to guide land cover
identification. The Signature Alarm command (ERDAS, 1999) was
used to classify every pixel in the landscape according to the
decision rule. The output was checked against both images in the sa-
tellite image pair. Errors were corrected through the creation of addi-
tional signatures and by editing the training sites of existing
signatures (Hall et al., 2009; Harper et al., 2007; Mbilinyi et al.,
2006). Only once visual inspection of the classification showed no
further obvious errors did this iterative process stop. Maps were then
verified by key informants from the Tanzania Forest Conservation
Group, United Nations Development Programme-Global Environ-
ment Facility, World Wildlife Fund, Wildlife Conservation Society,
CARE, Frontier-Tanzania, University of Copenhagen, and Museum
of Trento, Italy. Multiple classified scenes were then mosaicked using
ERDAS IMAGINE software to produce one change map for the East-
ern Arc Mountains. Full details of image selection, processing, clas-
sification and verification are given in Mbilinyi et al. (2006).



Table 1
Description and sources for spatial data their derived products. Unless stated, reference year is 2000. Land cover change is described between 1975 and 2000, so variables used as
predictors in our models of habitat loss that are expected to have changed over this period were also estimated for 1975 where possible (asterisk). Reasons for exclusion of
predictor variables from the full model are also given.

Variable Description Exclusion from full model

Land use change (1975–2000) We used a Landsat (MSS and ETM+) derived product that maps changes in forest and
woodland extent between 1975 and 2000 for 30 m by 30 m pixels (Mbilinyi et al.,
2006). These data are detailed in Section 3.1. These were resampled (nearest
neighbour) to 25 m resolution and then aggregated to 500 m pixels of habitat loss
(>50 % of 25 m pixels deforested) or retention (<50 % of 25 m pixels deforested). This
made analyses more computationally tractable and gave greater consistency
between the resolution of the response variable and predictor datasets

–

Distance to edge (m)⁄ Forest and woodland was mapped based on land use change map at 30 m resolution
(see previous). The land cover types (woodland and forest) are combined for this
measure so that the nearest edge to a patch of forest could be the far side of a piece of
adjoining woodland (and vice versa). Euclidean distance to habitat edge was then
calculated at 500 m resolution both for 1975 and for 2000, so that core forest or
woodland areas received highest values, whilst areas that were not forest or
woodland were set at zero. This measure was used because it is expected that natural
resource extraction will be higher at the edges of natural habitat

–

Travel time (min) Estimated travel time (min) to nearest city with a population greater than 50,000 in
the year 2000 (Nelson, 2008). This derived product is provided at 30 arcsecond
resolution and is based upon populations centres, transport networks, political
boundaries, land cover and topography and full details can be found at http://
bioval.jrc.ec.europa.eu/products/gam/sources.htm. Layer was resampled (bilinear
interpolation) to 500 m

–

Distance to roads (m) Main roads in the year 2000 (paved or are high quality gravel) were mapped by the
Valuing the Arc project (see Swetnam et al., 2011 for details). Euclidean distance to
main roads was then mapped at 500 m resolution

–

Distance to markets (m) Village and town population data were compiled as part of the Valuing the Arc
project (Burgess et al., 2009; http://www.valuingthearc.org/). Settlements with over
5,000 people were classed as markets and Euclidean distance to these towns was
mapped at 500 m resolution

In forest analyses, it correlated with
population pressure (>0.7), which
was a better predictor of forest loss. It
was included in woodland models.

Altitude (m.a.s.l.) Digital elevation data were from the Shuttle Radar Topographic Mission, processed to
fill data voids (Jarvis et al., 2008). Data are provided at 90 m resolution and can be
accessed at http://srtm.csi.cgiar.org/. Layer was resampled (bilinear interpolation) to
500 m

–

Slope (�) Slope was calculated using the Slope tool in the Spatial Analyst toolbox of ArcGIS
using the altitudinal data (Jarvis et al., 2008; see previous), at 90 m resolution, as
input. Layer was resampled (bilinear interpolation) to 500 m

–

Land value (USD ha�1 y�1) Potential land value was estimated using data on maize and bean yields from
Thornton et al. (2009), combined with survey data on crop values and input costs.
Full details of the input data and methods for creating this layer are given in the S1
and in Green (2012). Layer was provided at 10 arcminutes and resampled (bilinear
interpolation) to 500 m

–

Distance to water (m) Rivers were mapped using the digital elevation model (see altitude layer below),
using the methods described in S1. Euclidean distance to rivers was then mapped at
500 m resolution

–

Annual precipitation (mm) Annual precipitation data are from the Tropical Rainfall Measuring Mission (1997–
2006), processed by Mulligan (2006) to derive 1 km monthly grids of surface-
received orographic rain. Mean monthly values were summed to give average yearly
totals and resampled (bilinear interpolation) to 500 m

Excluded because it correlated with
Water deficit, which was a better
predictor

Water deficit (days) Water deficit is a proxy for dry season length and severity. It is calculated as the
highest cumulative deficit in mean monthly rainfall (derived data from Mulligan,
2006), where deficit <30 mm per month (Platts et al., 2010). Data are at 1 km
resolution, and resampled (bilinear interpolation) to 500 m

–

Population density⁄

(people km�2)
Human population density was estimated using the derived product LandScan 2008
(Bright et al., 2009). This layer is a modelled surface, based upon administrative
boundaries, land cover data, topography, roads and population centres. It has been
further modified to exclude populations from National Parks and Game Reserves and
to match ward-level census data for the year 2002 (NBS, 2002; Platts et al., 2011).
Population density was also estimated for 1975 using ward-level population growth
rate data (NBS, 2002). LandScan 2008 is provided at 1 km resolution and resampled
(bilinear interpolation) to 500 m

Highly correlated with population
pressure (>0.7), but a poorer
predictor. Therefore, population
pressure layers were used instead

Population pressure⁄ (people
equivalents)

Population pressure was calculated from population density data according to the
methods described in Platts (2012) and in S1. This variable was also calculated based
upon the population density data that were hindcast to 1975 based on ward-level
population growth rates (see previous). Layer was resampled (bilinear interpolation)
to 500 m

–

Protected areas Shapefiles were from the World Database on Protected Areas (WDPA; IUCN and
UNEP-WCMC, 2010), modified to include recently designated protected areas (MNRT,
2010) and correct spatial errors (see Larrosa, 2011 for detailed description). Data
included information on 142 protected areas and were rasterised at 500 m resolution
(maximum combined area in Polygon to Raster tool in ArcGIS)

N/A: protected area status was not a
potential predictor. It was used to
identify non-protected sites, upon
which the models were based

Bloc The mountain blocs were defined using shapefiles provided by Platts et al. (2011).
Data were rasterised at 500 m resolution (maximum combined area in Polygon to
Raster tool in ArcGIS)

–

All variables were projected using WGS 1984, Zone 37S.
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Pixels were aggregated to 500 m resolution by summing the
area of forest retained, forest degraded, woodland retained and
woodland degraded within each 500 m analysis unit (ArcGIS Spa-
tial Analyst toolbox). Using 500 m resolution allowed for analysis
at the fine-scales needed by conservationists in the region (median
protected area size is 8.8 km2; Green et al., 2012) and is consistent
with the resolution of other spatially explicit data used in these
analyses (Table 1). This resolution is also computationally tractable
for the construction of non-parametric models over a large area.

We calculated rates of habitat loss as the total decrease in hab-
itat (woodland or forest) between 1975 and 2000, divided by the
area of habitat in 1975. We converted compound losses over
25 years into annual rates of loss using the equation
r = 1 � (1 � A)(1/t), where r is the proportion lost per annum and
A is the total proportion lost over the 25 year time period, t.
3.2. Potential predictors of change

We obtained spatially explicit data for 12 potential predictor
variables chosen for an a priori expectation of their effect on the re-
sponse variable (Lukacs et al., 2010; see Table 1 for data sources
and definitions): distance to natural habitat edge, travel time to
large cities, distance to main roads, distance to markets, and topog-
raphy (which was included as a smoothed interaction between
altitude and slope) were all chosen because they are related to
the amount of time that is required to access the land and to trans-
port goods to markets. Land value, distance to water, annual pre-
cipitation, and water deficit are all related to the potential
productivity of the land under agriculture.

In addition to these variables we used two population-based
measures of local demand for agricultural land or natural re-
sources. Population density data came from LandScan 2008
(Bright et al., 2009), which were corrected to match the absolute
numbers reported in Tanzania’s 2002 National census (NBS,
2002) according to methods in Platts et al. (2011). We also used
these population density data to derive estimates of population
pressure, a measure which recognises that anthropogenic pres-
sure accrues not just from the population at a given location
but also from nearby populations (Ban et al., 2009; Green
et al., 2012; Platts, 2012). The method is described in detail in
Appendix S1.

Where data for potential predictors were available for 1975 (see
Table 1), we used these to build models of habitat loss over the fol-
lowing 25 years, otherwise data were from 2000. All geographic
information was processed in ArcGIS 10 (ESRI, 2010).
3.3. Model construction

We used generalised additive logistic models to predict habitat
loss (binomial response) between 1975 and 2000, where loss was
defined as areal reduction of at least 50% in a given 500 m pixel.
Generalised additive models are based on general linear models,
but they are able to incorporate non-parametric relationships be-
tween the explanatory and response variables, so are not con-
strained by assuming a particular functional form (Brown et al.,
2002; Hastie and Tibshirani, 1990; Mendes and Junior, 2011; Ruth-
erford et al., 2008; Wood, 2006). We only used cells with P50%
forest or woodland at the start of the period. Importantly, we built
our models using only forest and woodland outside of protected
areas as such land tenure systems might be expected to reverse
trends found in unprotected areas. Protected area data are from
World Database on Protected Areas (IUCN and UNEP-WCMC,
2010), modified to include recently designated protected areas
and to correct spatial errors (Table 1; MNRT, 2010; see Larrosa,
2011 for details).
When potential predictor variables were intercorrelated by 0.7
or more (Spearman rank correlation coefficient) just one was used
in the full model (Table 1). Initially, we constructed a full model
containing all remaining potential predictors (Lukacs et al.,
2010). To arrive at a minimal adequate model, we assessed terms
by looking at their estimated degrees of freedom, whether the con-
fidence region includes zero throughout the scale of the potential
predictor and whether their deletion led to an increase in Akaike’s
Information Criterion (AIC) or General Cross Validation (GCV) score
(Wood and Augustin, 2002). In order to avoid over fitting, we took
three precautions. First, in estimating the generalised cross valida-
tion score, we increased the penalty term (gamma) for using an ex-
tra degree of freedom from 1 to 1.4 (Wood, 2006). Second, we set
the maximum number of allowed basis dimensions for smoothed
terms (not including tensor products) to four (Platts et al., 2008).
Third, smooth relationships were visually examined to check for
overfitting. Where smooth terms were not realistic, the degrees
of freedom were reduced.

To account for the effect of spatial autocorrelation in our mod-
els, we included in all models mountain bloc as a random effect
(see Table 1; Platts et al., 2011) and the interaction of latitude
and longitude as a smoothed term. We also tested models to check
for any unexplained spatial clustering at local scales: spatial
autocovariate terms were constructed by calculating, for each pix-
el, a distance-weighted mean across model predictions in neigh-
bouring cells (Platts et al., 2008). Seven autocovariate terms were
calculated for each model using increasing neighbourhood sizes
(range: 1.5–10.5 km2). We then added each of these in turn to
our model to test which gave the greatest increase in explained
deviance.

We conducted all statistical analyses in R 2.13.1 (R Develop-
ment Core Team, 2009) using the package ‘mgcv’ to construct gen-
eralised additive models (Wood, 2011).
3.4. Goodness of fit

We assessed goodness of fit using receiver operating character-
istic curves. Calculating the area under the curve (AUC) gives an
estimate of the fit of the model to the data, with values varying be-
tween 1, a perfect model, and 0.5, a model that is no better than
random. We used the ‘pROC’ package in R to plot the fraction of
true positives against the fraction of false positives for a series of
possible thresholds (Robin et al., 2011). The AUC estimate was
cross-validated by partitioning the dataset into five equal-sized,
stratified groups, such that each contained similar proportions of
habitat loss and retention (Platts et al., 2008). The model was
parameterised using four of the five partitions, leaving out one par-
tition as pseudo-independent test-data. Repeating this procedure
five times, each time retaining a different test set, produced the fi-
nal cross-validation index.
3.5. Protected area effectiveness

Although we can compare rates inside and outside of protected
areas, this does not account for spatial variation in value and cor-
responding likelihood of conversion. In particular, protected areas
may be biased towards being located in areas that are unlikely to
be converted even in the absence of such protection (Joppa and
Pfaff, 2009). In order to control for this, we fitted the models using
pixels that were not protected in 2000 (see Section 3.3), and then
extrapolated to protected area pixels. Comparing these estimated
rates (in the absence of protection) to the observed levels of con-
version then provided a measure of protected area effectiveness,
which controls for variation in exposure to threat (Vuohelainen
et al., 2012). Thus, if re is the expected rate of loss and ro is the
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observed rate, we calculated effectiveness (E) as the percentage de-
crease in habitat loss: E = (re – ro)/re � 100.

3.6. Predicting future habitat conversion rates and mapping areas
under threat

For all cells with at least 50% forest or woodland cover in the
year 2000, we predicted annual rates of habitat loss by incorporat-
ing up-to-date information on predictors. We then considered how
the threat of habitat conversion has changed between 1975 and
2000 by comparing modelled average annual rates of habitat loss
for 1975–2000 with those predicted for the period 2000–2025.
4. Results

4.1. How much habitat conversion has occurred in the EAM in the last
25 years?

We estimate that 26% (2274 km2) of forest and woodland was
lost between 1975 and 2000 in the Eastern Arc, with the rate of
habitat conversion lower in forest (5%/25 y) than in woodland
(43%/25 y; Fig. 1a and b; Table 2). There was marked contrast be-
tween rates of loss in protected and unprotected areas: forest in
protected areas was lost at approximately one third of the rate
found outside protected areas (4% and 11% respectively), while
woodland in protected areas was lost at approximately two thirds
of the rate found in unprotected areas (33% and 45% respectively;
Fig. 1 and Table 2). Of the remaining forest area, 74% is within pro-
tected areas, compared to 32% for woodland.

4.2. What predicts spatial variation in conversion rates?

Our models showed high cross-validated goodness of fit with an
AUC of 0.85 (forest) and 0.84 (woodland). Although the smoothed
interaction of longitude and latitude was an important predictor
(reduction in deviance explained was 5% and 7% for forest and
woodland respectively), its removal did not alter the direction of
the relationships observed, which is evidence that its inclusion is
Fig. 1. Forest and woodland loss in the Eastern Arc Mountains. (a) The area of forest (left
protected areas, the mean (±2 standard errors) expected (hatched bars) and observed (w
shown as a percentage of the area in 1975. Effectiveness scores (E) are shown within da
not masking or altering the effect of important environmental or
socio-economic gradients. When we tested for residual spatial
autocorrelation at local scales, we found minimal effect: For forest
loss, the highest increase in explained deviance was obtained from
an autocovariate term based on a neighbourhood size of 1.5 km2,
which increased the percentage of explained deviance from
30.4% to just 31.1%. For woodland, the greatest increase was when
an autocovariate term based on 17 km2 was used but the increase
in explained deviance was minimal (from 28.3% to 28.9%).
4.2.1. Forest model
The latitude:longitude interaction was the most important pre-

dictor of forest loss, which suggests that spatial autocorrelation is
high (Table 3). Topography was the next most important predictor.
The relationship shows that habitat conversion peaked around
1000–1200 m.a.s.l., particularly in flatter terrain. In the steepest
terrain habitat conversion appeared consistently low across the
altitudinal range (Fig. 2a). Distance to the habitat edge (‘habitat’ in-
cludes both forest and woodland) was also an important predictor,
with the likelihood of habitat conversion decreasing rapidly as dis-
tance to edge increases. However, at distances of more than 1.5 km,
the relationship levelled out (Fig. 2a). In addition, the probability of
habitat conversion declines rapidly when travel time to large cities
exceeds 12 h. The relationship with distance to main roads showed
an initial decrease in probability of conversion with distance, fol-
lowed by an increase. Increased distance to water was associated
with lower habitat conversion probabilities; however, there was
a humped relationship between land value and habitat conversion,
showing an initial increase in habitat conversion with land value,
followed by a decrease (Fig. 2a).
4.2.2. Woodland model
Topography and distance to habitat edge were the most impor-

tant predictors of woodland loss after latitude:longitude and
mountain bloc (Table 3). Woodland loss decreased with increasing
altitude, except for a marked hump at mid-elevations (around
1100 m.a.s.l.) in less rugged terrain, while woodland loss showed
an almost linear relationship with distance to edge (Fig. 2b). In-
hand group) and woodland (right hand group) is shown for 1975 and 2000. (b) For
hite bars) rates of forest and woodland loss per pixel between 1975 and 2000 are
shed boxes.



Table 2
Deforestation in the Eastern Arc Mountains by protection status (in year 2000) for
forest and woodland. In total, 26.2% of forest and woodland was lost between 1975
and 2000; however, this varied considerably by habitat type and protected area
status. For both woodland and forest cells, mean modelled losses for the period 1975–
2000 (assuming no effect of protection) are shown in grey. These are slightly higher
than mean observed loss per cell for protected areas and slightly lower than mean
observed loss per cell for unprotected areas (upon which models are based).

Protected areas Unprotected Total

Forest
Area 1975 (km2) 2889 1040 3928
Area 2000 (km2) 2787 928 3715
Average loss (% y�1) 0.1 0.5 0.2
Observed 25-year loss (%) 3.4 10.1 5.1
Modelled 25-year loss (%) 5.7 7.4 6.1

Woodland
Area 1975 (km2) 1521 3222 4743
Area 2000 (km2) 1049 1633 2682
Average loss (% /y) 1.5 2.7 2.3
Observed 25-year loss (%) 28.3 46.2 39.8
Modelled 25-year loss (%) 33.5 44.7 40.7
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creased remoteness, in the form of distance to markets and main
roads showed a generally negative correlation with conversion
likelihood. Lower water deficit – a proxy for higher productivity
– appeared to be associated with greater probability of conversion;
however the association with land value was less clear (Fig. 2b) –
an initial sharp increase was followed by a decrease, which then
tailed off.

4.3. Conservation effectiveness

Observed levels of habitat loss were considerably lower inside
protected areas than in non-protected cells (Fig. 1a). After account-
ing for underlying spatial variation in conversion probability using
modelled estimates, observed rates were still 40% lower than ex-
pected for forest and 16% lower for woodlands (Fig. 1b).

4.4. Where is pressure likely to be highest from 2000 to 2025?

If forests and woodlands continue to be lost at the same rates
that we observed between 1975 and 2000, then our models predict
that by 2025 we can expect to have lost a further 5% (197 km2) of
forest and 42% (1130 km2) of woodland. However, these absolute
rates are likely to change; extraction of natural resources will be-
Table 3
Predictor variable contribution to models. Variables that were dropped from the minima
variables was assessed through calculating the percentage decrease in deviance explained
minimal model (if the term was kept in the minimal model) or from the full model (if the te
in the minimal adequate model was 30.4% (forest model; n = 3919) and 28.3% (woodland

Forest model

Predictor EDF DGCV DD2 DAIC

Distance to habitat edge 1.9 �347.6 �2.6 51.1
Travel time 2.6 �5.4 �1.6 28.8
Distance to road 2.1 �97.9 �0.5 6.1
Distance to market* – – – –
Population pressure (r = 25) [0.5] [�18.4] [0.0] [�0.4]
Population pressure (r = 50) – – – –
Land value 2.5 �281.4 �1.8 31.5
Distance to water 1.8 5.5 �0.5 15.1
Water deficit [1.1] [56.8] �0.1 [�0.1]
Altitude:Slope 6.5 �300.9 �5.6 88.9
Latitude:Longitude 11.9 �124.3 �5.2 95.7
Random Effect: Bloc 7.3 �358.3 �2.1 36.6

* In the forest dataset, distance to market correlated with population pressure (>0.7) and
the full model (Table 1). EDF: Estimated Degrees of Freedom; DGCV: change in Generalis
change in Akaike’s Information Criterion score.
come more difficult as remaining forest and woodland will be
the least accessible (perhaps limiting supply) whilst population
growth is likely to increase demand. When mapped across the
Eastern Arc Mountains, annual probabilities of conversion for
2000 showed substantial spatial heterogeneity (Fig. 3; S2). In par-
ticular, areas on the edge of mountain blocs (closer to markets and
generally with higher population pressure) were likely to come un-
der higher conversion pressure. The East Usambara Mountains
experienced the highest levels of habitat loss over our 25-year
study period and also have amongst the highest levels of threat
predicted for 2000–2025 (S2). For forests, the West Usambaras,
Ukugurus and Rubehos show the highest levels of future pressure,
whilst for woodlands, the South Pares, Ukagurus and Rubehos
show highest future threat (Fig. 3b; S2). In addition, woodlands
of the southeastern flanks of the Udzungwas are also expected to
face high pressure to 2025 (Fig. 2b).
5. Discussion

Conservationists are justifiably concerned about forest loss in
the Eastern Arc Mountains due to their exceptionally high levels
of biodiversity (Burgess et al., 2007a; Hall et al., 2009). However,
our results point to another important habitat within the Eastern
Arc Mountains. Although less biodiverse (Burgess et al., 2004),
woodlands are undergoing far greater rates of conversion than for-
ests, both inside and outside of protected areas (see also Mbilinyi
et al., 2006). This should be of interest from both conservation
and development perspectives. Woodlands provide ecosystem ser-
vices whose utilisation at unsustainable rates is likely to be a cause
of the observed losses (e.g. charcoal use in Ahrends et al., 2010).
The current use of woodlands by local communities for ecosystem
goods, particularly charcoal and firewood (Schaafsma et al., 2012),
may also have the effect of buffering adjacent forests from higher
rates of extractive use. For example, pressure in woodlands along
the southeastern Udzungwas is many times greater than that in
the forests that lie adjacent to them farther into the mountains.
The woodlands also contribute to the conservation of ecological
processes, such as the annual migrations of elephant and buffalo
between protected areas (Jones et al., 2009). It is of concern, there-
fore, that just 32% of remaining woodland extent (22% of 1975 ex-
tent) falls within protected areas.

The forests of sub-Saharan Africa are expected to retain histor-
ical patterns of conversion with forest loss largely driven by small-
l adequate model are indicated with square brackets. The contribution of predictor
and the absolute change in AIC and GCV scores when the term was dropped from the
rm was dropped to reach the minimal model). The total percentage deviance explained
model; n = 10,362).

Woodland model

AIC rank EDF DGCV DD2 DAIC AIC rank

3 2.3 276.4 �1.6 221.7 3
6 [1.7] [�49.1] [�0.1] [7.3] [11]
8 2.9 �74.7 �0.5 63.3 6
– 2.0 �120.6 �1.1 149.1 5
[9] – – – – –
– [1.3] [�133.1] [0.1] [�12.9] [10]
5 3.9 87.0 �0.4 51.9 7
7 [0.3] [�104.1] [0.1] [�15.6] [9]
[8] 1.6 �114.1 �0.2 30.7 8
2 14.3 140.8 �1.2 144.8 4
1 18.2 �275.5 �7.0 956.9 1
4 9.5 486.1 �3.6 496.4 2

water deficit (>0.5), but was a poorer predictor than either, so it was excluded from
ed Cross-Validation score; DD2: change in percentage of Deviance explained; DAIC:



Fig. 2. The relationships between continuous predictors and habitat conversion are plotted (solid lines) for forest (a) and woodland (b). Dashed lines indicate approximate
95% confidence intervals.
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scale conversion for subsistence agriculture (Fisher, 2010). Our
spatially explicit models found that forest and woodland loss is
well predicted by relationships with local socio-economic factors,
particularly accessibility. For forest, highest conversion rates are
found at mid elevations with low ruggedness, suggesting that
topographic accessibility and potential for farming could be impor-
tant considerations. However, there are also topographically-
accessible locations where levels of forest loss have been relatively
low. Whilst counter-intuitive, this could be explained if the
remaining forests in these locations are subject to some other lim-
itation. For example: they may have already been heavily utilised
for timber so that high value species are largely absent (Ahrends
et al., 2010); they may occur in areas unsuited to agriculture (karst
limestone for example); or they may have protection from local
communities.

For woodland, habitat loss is highest at low and mid-elevations
in relatively flat areas. Above an elevation of around 1100 m, the
likelihood of woodland loss decreases sharply. Again, this could



Fig. 3. Annual probability of forest (a) and woodland (b) conversion across the Eastern Arc Mountains. Predictions are based data for the year 2000 and are only mapped for
pixels that are 50% forested in that year. Insets show close up of Usambara (i) and Uluguru (ii) Mountains. Locator map shows location of Tanzania and the Eastern Arc
Mountains within East Africa.
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be due to a number of reasons. For instance, there is less woodland
at higher altitudes, perhaps making it less worthwhile to invest
time and resources in charcoal production. In addition, trees in
high altitude woodland may be smaller and it is likely that trans-
porting harvested goods, especially charcoal bags to markets in
the lowlands, becomes harder if routes cross rugged mountain ter-
rain. For both forest and woodland, the strong relationship with
distance to habitat edge also highlights the danger of increased
fragmentation of forests, which may greatly increase levels of
threat.

Although factors affecting habitat loss are complex and operate
across multiple spatial and temporal scales (Geist and Lambin,
2002), our study has found similar results to those reported in
other regions of the world. For example, topography was found
to be an important predictor of habitat loss in Brazil, Thailand
and East Africa (de las Heras et al., 2012; Patarasuk and Fik, 2013
Pfeifer et al., 2012) and distance to roads and towns is amongst
the most frequently cited predictors of forest loss in spatially expli-
cit deforestation models (e.g. Chomitz and Gray, 1996; Mann et al.,
2010; Patarasuk and Fik, 2013; Pfeifer et al., 2012). Whilst we were
unable to test for the effect of broad scale socio-economic changes
and access to export markets that are important drivers of habitat
loss in South America and Asia (e.g. DeFries et al., 2010; Müller
et al., 2012), their influence is lower in Africa (DeFries et al.,
2010). However, with issues of food security an increasing priority
for national governments, the extent to which rates of habitat loss
in Africa will respond to teleconnections with global agricultural
markets, as found between Amazonian forest loss and interna-



Fig. 3 (continued)
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tional beef and soybean markets (Nepstad et al., 2006) remains to
be seen.

As demonstrated by Pfeifer et al. (2012) observed rates of hab-
itat loss are lower in protected areas than outside. More impor-
tantly, however, the observed rates inside protected areas are
also lower than our models indicate would be expected in the ab-
sence of protection. This finding also corroborates a recent global
systematic review of protected area effectiveness, which reports
that, although absolute habitat loss within protected areas contin-
ues, the majority of protected areas are effective at reducing its
rate (Geldmann et al., 2013). In the past half century, probably
the most notable deforestation event in the Eastern Arc followed
the degazettement of Shume-Magamba forest reserve in 1963
(Hamilton and Mwasha, 1990; Hurst, 2003). This degazettement
was enacted due to the high local demand for land and ensuing
political will to meet this need. This event serves to highlight
two things: first, the effectiveness of the forest reserve’s protection
status prior to degazettement and, second, the level of demand for
agricultural land and its potential as a driver of habitat loss into the
future.

Habitat loss is, however, still occurring within protected areas
and effectiveness at reducing woodland loss is particularly low:
protected areas reduce the expected conversion rate by just 16%.
Our estimate of 40% effectiveness for forests is low globally but
typical for Africa (Carranza et al., submitted for publication); how-
ever, an effectiveness score of just 16% for woodland is very low
compared to other estimates for this region. As habitat fragmenta-
tion continues and as protected area boundaries become ‘‘habitat
edges’’, our models also suggest that threat is likely to increase.
It is possible that we have underestimated protected area effective-
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ness, because we assigned areas as protected, or not, based on their
status in 2000, so even if an area was not gazetted until 1999, the
loss it incurred over 25 years was nevertheless attributed to a pro-
tected area. However, this effect is likely to be minor: the vast
majority of the Eastern Arc’s protected areas were gazetted during
colonial times, prior to 1975 (Haule et al., 2002). There are several
recent examples where the protection status of reserves has been
upgraded, but very few examples of new protected areas being
added to the network (Burgess et al., 2007b; Newmark, 2008).

In developing biodiversity conservation plans for the region, the
forests of the East and West Usambaras, the Ulugurus and the
Rubehos are predicted to be the most threatened. This is a partic-
ular worry for almost 450 km2 of unprotected forest that they hold
between them. These four blocs (particularly the Usambaras and
Ulugurus) are also amongst the most biodiverse of the mountain
chain, hosting at least 23 vertebrate species endemic to just a sin-
gle mountain bloc (Burgess et al., 2007a; Platts et al., 2010). The
Udzungwas, also of high biodiversity importance, show a high level
of threat to the woodland along their southeastern edge. This area
is important for animal movements between forest patches (Jones
et al., 2009) and lies adjacent to the highly fertile Kilombero flood-
plain. Our analyses also highlight the particularly high rates of
woodland loss in the South Pares, East Usambaras, Ukagurus and
Rubehos.

Conservation efforts in the Eastern Arc have historically focused
on the forests, due to their biodiversity. However, an increased fo-
cus on the value of woodlands seems desirable, for four reasons.
First, the majority of woodland lies outside protected areas. Sec-
ond, the effectiveness of protected areas at reducing woodland loss
is noticeably poorer than for forests, perhaps because greater rec-
ognition of the importance of forests to biodiversity conservation
has led to greater management effort. Third, both inside and out-
side protected areas, rates of woodland loss are considerably high-
er than those for forests. Fourth, although woodlands may harbour
lower biodiversity than forests, they play a critical role in generat-
ing ecosystem services and in the maintenance of ecological pro-
cesses, such as large mammal migrations (Green, 2012; Jones
et al., 2009). Further teasing apart the drivers of forest and wood-
land loss and investigating the effectiveness of current conserva-
tion strategies is of great practical importance in developing
effective conservation strategies for a region of national signifi-
cance for ecosystem service provisioning and global significance
for biodiversity conservation.
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