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SESAM – a new framework integrating
macroecological and species distribution
models for predicting spatio-temporal
patterns of species assemblages

Antoine Guisan1* and Carsten Rahbek2*

SETTING THE SCENE

Explaining the spatial and temporal distribution of biological

diversity on Earth has been a research focus since the days of

Alexander von Humboldt, Augustin Pyramus de Candolle,

Alfred Russel Wallace and Charles Darwin, and it remains one

of the major focuses in biogeography and macroecology.

Understanding the processes governing the distribution and

assembly of biological communities has become a prerequisite

for successfully predicting how the world will look in the wake

of global environmental changes. Currently, two distinct

predictive spatial modelling approaches prevail (Ferrier &

Guisan, 2006), which rely on two theoretical paradigms. The

first paradigm focuses directly on realized properties of species

assemblages (e.g. Brown, 1995), such as richness, and the

methods used include macroecological modelling (MEM; see

Gotelli et al., 2009). The second paradigm focuses on aggregate

properties of individual constituent species, used to reveal the

properties of assemblages (e.g. Lortie et al., 2004; Ackerly &

Cornwell, 2007) and applies species distribution modelling

(SDM; see Guisan & Thuiller, 2005; Elith & Leathwick, 2009)

to a spatial stack of species. The properties of species

assemblages include the number of co-occurring species

(richness), inter-specifc abundance patterns, and composi-

tional (e.g. community types), functional and structural

characteristics. Hereafter, all of our examples use species

richness, the simplest measure of biodiversity and the most

commonly considered property of species assemblages (Whit-

taker et al., 2001).

In MEM, species richness is predicted directly, either based

on theoretical expectations or from various factors thought to

control the number of species able to coexist in a geographical

unit (Fig. 1, top). The main controlling factors are typically

hypothesized to be available energy, environmental heteroge-

neity, disturbance or history, with scale effects and some level

of stochasticity (Whittaker et al., 2001; Currie et al., 2004;

Mittelbach et al., 2007; Field et al., 2009; Gotelli et al., 2009).

The same approach can be used to model any other property of

communities, although different hypotheses and explanatory

variables are likely to apply to each property. MEM is typically
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ABSTRACT

Two different approaches currently prevail for predicting spatial patterns of

species assemblages. The first approach (macroecological modelling, MEM)

focuses directly on realized properties of species assemblages, whereas the second

approach (stacked species distribution modelling, S-SDM) starts with constituent

species to approximate the properties of assemblages. Here, we propose to unify

the two approaches in a single ‘spatially explicit species assemblage modelling’

(SESAM) framework. This framework uses relevant designations of initial species

source pools for modelling, macroecological variables, and ecological assembly

rules to constrain predictions of the richness and composition of species

assemblages obtained by stacking predictions of individual species distributions.

We believe that such a framework could prove useful in many theoretical and

applied disciplines of ecology and evolution, both for improving our basic

understanding of species assembly across spatio-temporal scales and for antic-

ipating expected consequences of local, regional or global environmental changes.

In this paper, we propose such a framework and call for further developments and

testing across a broad range of community types in a variety of environments.
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applied using either a curve-fitting correlative approach, a

predictive simulation or other modelling techniques (Hawkins

et al., 2003; Currie et al., 2004; Rahbek et al., 2007; Gotelli

et al., 2009). These approaches have been widely used in the

last two decades (e.g. Pausas & Austin, 2001; Currie et al.,

2004; Thuiller et al., 2006; Rahbek et al., 2007; Currie & Kerr,

2008; Algar et al., 2009).

By contrast, the stacked SDM approach (S-SDM) first

predicts the distribution of a suite of individual species in a

given study area and then assembles them to reconstruct

community properties in each geographical unit (Ferrier &

Guisan, 2006). Here, species richness is simply predicted by

stacking presence–absence predictions of all species. This

approach thus relies on our ability to model the distributions

of individual species, a field that has greatly matured over the

last two decades (see Guisan & Zimmermann, 2000; Guisan &

Thuiller, 2005; Elith & Leathwick, 2009; Franklin, 2010). Thus,

in SDMs, the main factors are those controlling individual

species distributions and purely abiotic variables are often used.

Hereafter, the terms ‘habitat’ and ‘environment’ always refer to

the abiotic environment (although we are aware that habitat

may be used elsewhere to refer to some biotic properties).

Estimating species richness using S-SDMs (e.g. Guisan &

Theurillat, 2000; Lehmann et al., 2002; Wisz et al., 2007; Algar

et al., 2009) is more recent than the MEM approach. It

originated from the many attempts to map current patterns of

species richness for reserve design (e.g. Young et al., 2009) and

to forecast the likely impact of climate or land-use change on

biodiversity (e.g. Guisan & Theurillat, 2000; see Ferrier &

Guisan, 2006). This approach of stacking single-species

predictions arose from the view that species respond individ-

ualistically to environmental changes and that the structure of

future communities may differ from present-day ones (Hunt-

ley, 1991; Williams & Jackson, 2007), in turn yielding different

spatial patterns of diversity (Stralberg et al., 2009).

Currently, the two approaches can be used separately to

make the same prediction (Figs 2 & 3). Although the two

approaches build on different philosophies, both can poten-

tially use similar environmental factors (e.g. climatic) but with

different hypotheses. For instance, in S-SDM, climate con-

strains the boundaries of ranges, whereas in MEM, climate

constrains the number of species that can coexist in an area. In

contrast, environmental heterogeneity has a recognized effect

on species richness (Gaston, 2000) but is a less meaningful

predictor of single species distributions.

MEM and S-SDM both have strengths and limits for

predicting the patterns of species assemblages. A strength of

the MEM approach is that it forces us to seek general rules

driving ecosystem functioning (e.g. energetics) and constrain-

ing the assemblage of species. A major drawback is that it

cannot derive any information about the composition of

species assemblages and the biotic interactions that shape

them from the predicted patterns of species richness. For

example, a geographical unit may experience a complete

turnover (i.e. a change of all species) but maintain the same

value of species richness, as revealed by analyses of change in

assemblage composition (see Ferrier & Guisan, 2006). In

contrast, the S-SDM approach can predict which species

co-occur in a given unit or area. However, the SDM approach

is limited because: (1) without adding a dispersal filter it may

Figure 1 Illustration of the two approaches – macroecological controls and individual species assembly – used to predict species richness

(first-level predictions) and how they may be combined (second-level predictions) using the former to constrain the latter. MEM,

macroecological modelling; S-SDM, stacked species distribution modelling.
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incorrectly predict species in areas that appear environmen-

tally suitable but that are outside their colonizable or historical

range (Wisz et al., 2007); (2) it does not consider any

constraints based on the carrying capacity of the local

environment that determine the maximum number of species

that may co-occur (e.g. species–energy or metabolic theory;

Brown et al., 2004; Currie et al., 2004); and (3) it does not

explicitly consider any rules based on biotic interactions that

control species co-occurrences and can exclude species from a

community (e.g. through competitive exclusion; Anderson

et al., 2002). Due to these three issues, too many species can

easily be predicted by S-SDMs to occur in a geographical unit

(e.g. Graham & Hijmans, 2006; Pineda & Lobo, 2009; see also

Figs 2 & 3).

The best way to understand differences between MEMs and

S-SDMs is to examine possible mismatches between their

predictions using real datasets. Surprisingly, however, predic-

tions by MEM and S-SDM have so far been mainly used and

discussed separately, rather than being compared or integrated

(but see Guisan & Theurillat, 2000; Ferrier et al., 2002; Algar

et al., 2009; see table 2 in Ferrier & Guisan, 2006).

CONTRASTING MEM AND S-SDM:

ASSUMPTIONS AND EXAMPLES

What differences should we expect between MEM and S-SDM

predictions? Given that constraints exist on the maximum

number of species that can coexist in a given geographical

y = 0.41 z + 13.86

y = 0.82z + 37.32

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

y = 0.43z  

Figure 2 Predicted and observed plant species richness (SR) at 912 plots in open habitats in the western Swiss Alps (260 species) at a

resolution of 25 · 25 m. (a) Estimated richness by macroecological modelling (MEM) using five variables – growing degree-days above

0 �C, moisture index, global solar radiation, slope and topographic position – and the average of four modelling techniques [generalized

linear modelling (GLM), generalized additive modelling (GAM), gradient boosting model (GBM) and random forest (RF)]; see Dubuis

et al. (in press). (b) Estimated richness by stacked species distribution modelling (S-SDM) using the same five variables and generating

species distributions for each species using the average of the same four techniques used for MEMs. (c) Observed richness. (d) Scatterplot of

MEM versus observed richness. (e) Scatterplot of S-SDM versus observed richness. (f) Scatterplot of MEM versus S-SDM richness. In

scatterplots (d) to (f), the dotted red line represents the 1:1 relationship, and the plain blue line represents the regression line of a

standard ordinary linear squares (OLS) regression across the cloud of points. (g) Histogram of MEM minus observed richness values.

(h) Histogram of S-SDM minus observed richness values. (i) Histogram of S-SDM minus MEM richness values. In histograms (g) to (i), the

vertical red line represents zero difference. Maps were generated and provided by Anne Dubuis (Dubuis et al., in press).
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unit but that no macroecological constraints have been set on

the realized assemblage, the pool of species predicted by the

S-SDM approach should generally tend to exceed the actual

number of species found in each unit of analysis. We expect

this overprediction of species richness by S-SDMs to occur at

any spatial resolution, from fine to coarse scales, whether a

geographical unit encompasses a single community or several;

if overprediction occurs for one community it should

logically be observed for several. In contrast to S-SDM, the

MEM approach should predict values around the actual

number of species in the unit, by modelling species richness

directly.

Therefore, the following assumption can be made: in an

integrated modelling framework, MEM predictions should

allow the maximum number of species predicted by the

S-SDM approach in each spatial unit to be constrained. For the

integrated modelling framework to be valid, the S-SDM-based

predictions should, on average, overpredict species richness

compared with observations (as found in Algar et al., 2009;

Pineda & Lobo, 2009) and significantly exceed the MEM-based

predictions of species richness.

We examine this assumption with two representative exam-

ples. The first uses a large dataset at high resolution and local

extent to assess assemblages of c. 300 plant species in the

western Swiss Alps (see Dubuis et al., in press), whereas the

second uses a dataset at coarse resolution and continental extent

to assess assemblages of c. 4000 bird species throughout the

New World (Diniz-Filho et al., 2009). Here, we only provide

information useful for discussing our assumption. Details of

methods and results are provided in the respective papers.

In the Swiss Alps plant study, MEM and S-SDM predictions

were strongly correlated with observed species richness, but

the S-SDM approach consistently overpredicted species rich-

ness (Fig. 2e), whereas the MEM approach better approxi-

mated SR values around the observed mean (Fig. 2d). Thus, as

expected, species richness predictions from S-SDM largely

exceeded those from MEM (Fig. 2f). Similarly, in the New

World birds example (Fig. 3), both MEM and S-SDM
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Figure 3 Empirical and estimated levels of species richness of New World birds (3837 species) at a resolution of 1� · 1� latitude/longitude

across the whole New World (all cells). (a) Estimated richness by macroecological modelling (MEM) using four variables: mean annual

maximum and minimum temperature, mean annual precipitation and range in precipitation. (b) Estimated richness by species distribution

modelling (SDM) using the same four variables generating species distributions for each species combined into 15 models (different variable

combinations) and extracted from five different global circulation models (GCMs; current climate) using seven SDM techniques. (c)

Observed species richness. (d) Scatterplot of MEM versus observed richness. (e) Scatterplot of stacked species distribution modelling

(S-SDM) versus observed richness. (f) Scatterplot of MEM versus S-SDM richness. In scatterplots (d) to (f), the dotted red line represents

the 1:1 relationship, and the plain blue line represents the regression line across the cloud of points. Maps were generated and provided by

J.A.F. Diniz-Filho, Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Biologia Geral. See Diniz-Filho et al.

(2009) for details on data and modelling.

A. Guisan and C. Rahbek

1436 Journal of Biogeography 38, 1433–1444
ª 2011 Blackwell Publishing Ltd



predictions had a very tight relationship with observed species

richness (Fig. 3d, e), but while the MEM predicted species

richness values around the mean (Fig. 3d), the S-SDM

dramatically overpredicted species richness in most units

(see Fig. 3e). In fact, S-SDM overpredicted species richness in

98% of all grid cells, with an overprediction of ‡ 100% in 25%

of cells. In comparison, MEM over- or underpredicted species

richness by 100% in a total of only 3% of cells. These two

examples thus support the assumption outlined above, and

pave the way towards a new framework combining the

strengths of S-SDM and MEM to predict spatial patterns of

species assemblages.

TOWARDS A NEW FRAMEWORK FOR

PREDICTING SPATIAL PATTERNS OF SPECIES

ASSEMBLAGES

Identifying the components of assemblage

predictions

We propose a new modelling framework – spatially explicit

species assemblage modelling (SESAM) – integrating MEM

and S-SDM by using MEM to set a limit to the number of

species predicted by S-SDM. Adding this macroecological

constraint is expected to increase the prediction success of

realized species richness. However, because historical and

biotic factors also play a role in shaping the distribution of

species (MacArthur, 1972; Pulliam, 2000; Soberón, 2007) and

communities (Ricklefs & Schluter, 1993; Leibold et al., 2004;

Lortie et al., 2004), applying environmental filtering only (i.e.

using simple SDMs) is not sufficient; two other filters –

dispersal and biotic interactions – are also needed. To our

knowledge, these four components have never been fully

integrated in the same modelling framework.

We have previously seen that environmental filtering may be

achieved for multiple species using S-SDMs and that the

macroecological constraint can be addressed using MEM.

Dispersal filtering (i.e. removing species outside their historical

range) can most adequately be addressed by defining the

appropriate species source pool (SSP) and biotic filtering by

defining ecological assembly rules (EARs) (see below). The

four steps of our SESAM framework can now be defined

(Fig. 4). Note that early ideas on this framework are outlined

in Ferrier & Guisan (2006, in their perspectives and fig. S1 in

Supporting Information).

Formalizing the SESAM framework

To illustrate the framework, let us first assume that species data

are a set of geographical units (e.g. quadrats, plots, grid cells)

that each have an exhaustive species list for the group(s)

considered and that all species are included in a larger regional

species pool (i.e. aggregated across all geographic units). The

domain used for our predictions is a grid of units (i.e. raster

Figure 4 The proposed unified framework for spatial modelling of realized species assemblages (extant communities). The initial pool

of species is successively filtered to account for dispersal limitation, habitat suitability and species interactions up to a value determined for

the geographical analytical unit by a macroecological model (MEM). Dispersal filtering can be done through dispersion fields or inter-

polations to define the species source pool for each analytical unit. Habitat filtering is performed by spatial stacking of predictions of

individual species distribution models (S-SDM). Biotic filtering requires ecological assembly rules (EARs) to be developed and applied.

All steps need to be critically assessed and the entire framework needs to be tested with independent data. See main text for detailed

explanations.
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maps) or possibly a set of irregular units (vector map, such as a

set of islands) with environmental information covering the

area of interest.

The SESAM framework unifies the four independent

approaches to biodiversity prediction, i.e. SSP, S-SDM, MEM

and EARs, by a process of four main steps (Fig. 4) that

sequentially filter, for each analytical unit, the species assem-

blage from the initial regional species pool to the local source

pool (Step 1), to the environmental pool (Step 2) and finally to

the realized species assemblage (Steps 3 and 4). The difference

between the successive species pools can be substantial at

different stages of the filtering process. The steps and filters

between the successive species pools are:

Step 1. Dispersal filtering – SSPs. This step consists of defining

the local SSP from the regional source pool as a way to account

for historical and current dispersal limitations. Using an

empirical approach, this aims to determine which species in

the regional source pool could have dispersed to a given unit,

ignoring species interactions and species-specific abiotic hab-

itat conditions that are considered in the next steps. This step

can be ignored if the same regional source pool can reasonably

be applied to all modelled units (i.e. in the absence of evidence

of dispersal limitation within the study area).

Step 2. Abiotic habitat filtering – S-SDM. This step consists of

using SDMs to model the suitability of the abiotic habitat

(hereafter simply ‘habitat’) for all species in the previous local

source pool (Step 1) across the study area and stacking

predictions to define the environmentally filtered species pool

in each unit.

Step 3. Biotic filtering – MEM constraints. This step consists of

predicting the distribution of assemblage properties, such as

species richness, from macroecological modelling and using

these predictions as constraints on the community to be

assembled from the species habitat pool. To predict the species

richness of each geographical unit (e.g. grid cell), this step

determines what controls the number of species expected to

co-occur within each unit as a way of imposing a constraint

based on the resources or environmental heterogeneity char-

acterizing the unit (i.e. environmental carrying capacity) and

without which no biotic interaction can take place. This step

thus defines how many species will be allowed in each unit but

does not define which ones.

Step 4. Biotic filtering – EARs. This step consists of using EARs

to select which species from the environmentally filtered pool

will be able to coexist in each unit, conditional to the value (e.g.

maximum value of species richness) defined in Step 3. It requires

that EARs have been previously developed. This step yields the

final species assemblage predictions for each unit (Fig. 4).

Summarizing the SESAM framework, Steps 1 and 2 filter

the global species pool down (in each unit) to a pool of

potential species for a given region and abiotic habitat. Step 3

then tells us how many species must be filtered out to end up

with a fairly realistic number of species (or any other

community property) that makes ecological sense within each

mapping unit (i.e. for which there is support from a well-

formulated macroecological model). Finally, Step 4 simply

filters which of the species from the larger habitat species pool

yielded in Step 2 can co-occur in each unit based on pre-

defined rules to end up with the right number of species (or

the right community property) defined in Step 3. Applying

this sequence of steps should allow a more accurate prediction

of the realized species assemblage in each geographical

analytical unit (Fig. 4).

An essential additional step to validating the framework is of

course the comparison of the final assemblages predicted after

Step 4 with actual assemblages from an independent dataset

that was not used for fitting any stage of the framework (see

later section on testing the framework).

THE COMPONENTS OF THE FRAMEWORK:

CURRENT KNOWLEDGE AND FUTURE NEEDS

The four components of the proposed SESAM framework are

all anchored in robust and tested bodies of ecological theory,

but the practical formulation of predictive models based on

these theories varies among them. Here we discuss current

understanding and identify future needs with regard to each

step of the suggested framework, with a view to the application

of SESAM.

Defining the SSP (Step 1)

The size of the SSP ultimately constrains the number of species

expected in a given unit (Ricklefs & Schluter, 1993; Valone &

Hoffman, 2002; Graves & Rahbek, 2005). Thus, it is important

to determine a meaningful source pool for each unit to

generate realistic expected values of, for example, the number

of species given certain environmental conditions. The best

design of a source pool is case-specific and often varies with

the spatial extent and grain size of the analyses. For analyses

covering a small spatial extent, the source pool for the units of

analysis is most often assumed to be the total number of

species occurring within the study area and is thus the same for

all modelled units. However, for analyses covering larger

spatial extents, units of analysis within the modelled area may

vary significantly in their potential SSP as a result of divergent

histories of speciation, extinction and colonization (Graves &

Gotelli, 1993; Lyons, 2003). Hence, at a large geographical

extent, the composition of the source pool may have to be

defined separately for each analytical unit using, for instance,

smoothed distribution data and/or the dispersion field

approach (e.g. Graves & Rahbek, 2005). This per-unit source

pool issue has a clear biological foundation (e.g. in historical

biogeography) and should not be viewed only as a technical

problem.

Although already useful, the species pool concept requires

further development for optimally defining the set of species

that can occur in a given geographical unit and for linking

species pools at different scales. Furthermore, local source

pools may be appropriately set by dispersion fields (Graves &

Rahbek, 2005; see also Arita et al., 2008), but delimiting the

geographical extent of the latter remains unresolved.
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Defining environmental suitability (Step 2)

SDMs essentially perform abiotic environmental filtering

(Guisan & Zimmermann, 2000; Guisan & Thuiller, 2005; Elith

& Leathwick, 2009; Franklin, 2010). SDMs statistically relate

mapped environmental characteristics of the abiotic habitat

with observed occurrences, presence–absence, abundance or

fitness of the species, thus giving an approximation of its

ecological niche (i.e. the realized envelope of all suitable abiotic

habitats). Using the quantified species–environment relation-

ship combined with environmental maps then allows predic-

tion of the potential distribution of the species across the

whole area or in a different area for which the same

environmental information is available (e.g. to predict biolog-

ical invasion or to test model transferability). Changing the

input maps using different scenarios (e.g. for land use or

climate change) allows future projections of species range

changes to be derived (e.g. Engler et al., 2009) and thus

theoretically allows the framework to be used for global change

applications. Factors identified as possibly influencing the

accuracy of SDMs include, in order of importance, the quality

of predictors, intrinsic properties of species (e.g. successional

status), modelling techniques and data properties such as

sample size, location error or scale (Austin, 2007; Guisan et al.,

2007; Elith & Leathwick, 2009; Franklin, 2010).

The following improvements to SDMs are particularly

challenging: (1) adding more ecological realism and mecha-

nistic explanation (Guisan & Thuiller, 2005; Austin, 2007) (2)

using multi-technique ‘ensemble modelling’ approaches and

associated probabilistic predictions (Araújo & New, 2007;

Diniz-Filho et al., 2009) to better handle model uncertainty

(related to data, resolution, techniques etc.) and improve

predictions of rare species (Lomba et al., 2010) – the latter can

prove important components of diversity (Sizling et al., 2009)

but are currently difficult to model with SDMs due to their low

prevalence in datasets (Stockwell & Peterson, 2002); and (3)

assessing what probability threshold should be used for

converting predicted species probabilities into presence–

absence information (Pineda & Lobo, 2009), and its implica-

tions for defining the species pool or developing approaches to

use probabilistic predictions to reconstruct community prop-

erties directly.

Defining macroecological constraints (Step 3)

Defining a species source pool for each modelled unit could be

a way to account for dispersal limitation. However, besides

dispersal and environmental filtering, we know little about

how individual species assemble from a species pool to form a

community. Macroecological models may be used to impose a

limit on the number of species that can theoretically co-occur

in a given unit based on the space and/or resources available

(often interpreted as a rough expression of the environmental

carrying capacity of a unit, determining the level of commu-

nity saturation; Loreau, 2000; see also Currie et al., 2004). The

existence and conditions of such a theoretical limit still need to

be assessed. Additional insights may come from studies of

biological invasions because community saturation may be an

important factor preventing invasions from occurring. How-

ever, contrasting evidence exists for and against saturation,

depending on the ecosystem type and organism being studied

(Sax et al., 2007). Assuming that one can successfully use, for

example, MEM to determine the limit to the number of species

that can co-occur in an area, the next step is to select which

species are most likely to coexist in each geographical unit and

corresponding species pool. This essentially means incorpo-

rating the potential effect of biotic interactions in predicting

the composition of species assemblages (Lortie et al., 2004;

Gotelli et al., 2010). This may be achieved by quantifying EARs

(see the next section).

Traditionally, MEMs have been based on correlative models

that did not explicitly incorporate the mechanisms responsible

for the distributions (see discussion in Colwell et al., 2004).

Recently introduced spatially explicit Monte Carlo models of

the placement of geographical ranges in an environmentally

heterogeneous landscape (Rahbek et al., 2007; Gotelli et al.,

2009) can potentially overcome some of the major obstacles of

the correlative approach. However, the major challenge

remains to define more precisely whether MEM (or alternative

model) predictions can be used to constrain the assembly of

species into realized communities and, if so, how.

Defining EARs (Step 4)

EARs are defined as ecological restrictions on the observed

patterns of species assemblages that are based on one or more

other species or groups of species (Diamond, 1975; Wilson &

Gitay, 1995; Götzenberger et al., 2011). The existence of EARs

can be tested through species-based approaches using

co-occurrence data, such as total mutual exclusion of species

pairs (checkerboard patterns) or, conversely, quantification of

species pairwise combinations. In Gotelli & McCabe’s (2002)

meta-analysis of EARs and their null model testing, the

majority of cases strongly supported the existence of EARs. In

cases where the approach proves too difficult (e.g. too many

species, as in some tropical ecosystems), recourse can be made

to functional approaches based on functional groups, guilds or

quantitative traits of species (Graves & Gotelli, 1993; Wilson &

Roxburgh, 1994; Shipley et al., 2006), such as testing for

patterns of species within functional groups (guild propor-

tionality) or patterns of non-similar resource acquisition traits

within communities where high levels of competition are

expected (limiting similarity). Nevertheless, this is a re-

emerging field, and very few examples of studies exist where

communities are recomposed from an abiotic habitat-filtered

species pool using assembly rules (e.g. Mouillot et al., 2007;

Cornwell & Ackerly, 2009; Ingram & Shurin, 2009). Likewise,

documentation of the existence of patterns of species aggre-

gation and segregation at spatial scales larger than local

assemblages (e.g. continental scales at which many MEMs and

SDMs operate) remains relatively rare (Gotelli et al., 1997,

2010). In the context of SDM, the importance of biotic
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interactions in predicting species distributions has been

demonstrated, for example, by incorporating a dominant

species as a predictor in a model for another species

(Leathwick & Austin, 2001; Pellissier et al., 2010).

EARs are certainly the component of the framework that

requires most development, including: (1) identifying key

species traits that play important roles in community assembly

and/or sorting species into (meaningful) functional groups or

guilds; (2) quantifying and defining rules between species or

functional groups and testing them (e.g. McGill et al., 2006;

Ackerly & Cornwell, 2007); and (3) defining how to use EARs

to predict the correct number of species in a community given

the macroecological constraint that has been previously

defined. EARs must not only be considered within a single

taxonomic group but also between distinct groups (e.g. plants

and animals; Bascompte et al., 2003; Sargent & Ackerly, 2008).

As a first approximation, EARs could be developed further

from existing empirical data on species co-existence after

environmental filtering (Peres-Neto et al., 2001). However,

these data need to be complemented with novel data from

well-designed field surveys and from experiments (e.g. to

measure species’ relative competitive ability; Keddy et al.,

2002) with eco-physiological measurements (e.g. to better

assess the fundamental response of species along environmen-

tal gradients in the absence of biotic interactions; Araújo &

Guisan, 2006) and phylogenetic data (e.g. Donoghue, 2008;

Graham et al., 2009). We also need to develop methods to

incorporate identified EARs into the predictive process that

allow, for instance, predictions of the most probable assem-

blage composition (Weiher & Keddy, 1999) or a list of

equiprobable assemblages, possibly resulting in different

assembly endpoints (Law & Morton, 1993). Leaving aside the

heated controversy over EARs that took place two decades ago

(see Gotelli et al., 1997), developing EARs in a broader context

is one of the most promising but also one of the most

demanding directions for spatial ecology research.

CRITICAL ASSESSMENT OF THE SESAM

FRAMEWORK

By suggesting the integration of four main components and

the combination of many analytical approaches, the SESAM

framework is by nature complicated. However, it can be

broken down into each of its constituent steps (none of which

is overly complex, per se), which can be investigated indepen-

dently. Below we discuss the practicalities and limitations for

each of these.

Practicalities of the SESAM framework

In Step 1, the assignment of individual species to the regional

species pool is taken as all species in the area considered under

stable environmental conditions. Historical barriers to migra-

tion or dispersal limitations within the study area can be

elucidated and quantified by spatial autocorrelation analyses

(see Diniz-Filho et al., 2003; Dormann et al., 2007). When

these barriers are considered along with the regional species

pool, the source pool for each unit of analysis can then be

estimated by one of several available methods, including the

dispersion fields approach suggested by Graves & Rahbek

(2005) or by interpolating species occurrences (Wisz et al.,

2007). However, under changing environmental conditions,

such as changing climate, dispersal constraints also need to be

considered as transient when running SDMs using an appro-

priate dispersal model (e.g. Engler & Guisan, 2009; Midgley

et al., 2010). However, this approach does not consider the

arrival of new species to the study area (e.g. as a consequence

of climate change) that yield new communities (e.g. Guisan &

Theurillat, 2000; Williams & Jackson, 2007; Stralberg et al.,

2009) and possibly novel ecosystems (e.g. Seastedt et al., 2008).

One solution to this problem may be to fit SDMs at a larger

and coarser scale to redefine the SSPs after climate change,

given some dispersal constraints.

In Step 2, habitat suitability must be considered individually

for each species. Thus, community modelling approaches

(Elith et al., 2006; Baselga & Araújo, 2009) that use informa-

tion from one species to model other species should not be

used to avoid accounting twice for biotic interactions in the

framework. Even though species are modelled individually, by

doing so one already accounts for some of the biotic

interactions that constrain/favour their distribution by fitting

their realized niche. In this case, EARs in Step 4 can only

attempt to capture the remaining biotic interactions signal. A

more thoughtful approach would be to map species distribu-

tions based on their fundamental niche (Kearney & Porter,

2004, 2009), use experimental measurements of their ecophys-

iological requirements, and then use EARs to constrain/expand

the predicted distribution. However, appropriate ecophysio-

logical knowledge of species currently exists mostly for

cultivated plants as well as for some vertebrate species and

pathogenic organisms (e.g. insect species that are disease

vectors). Although this approach is currently not feasible for

most species, hopefully this will change with increasing

recognition of the importance of modelling fundamental

niches. Nevertheless, even if empirical data used to fit SDMs

are already partially shaped by dispersal and biotic interac-

tions, predictions can still be additionally filtered by these two

factors; habitat-suitability models are still able to predict a

species in environmentally suitable areas outside its colonizing

range, or where biotic agents exclude, or do not facilitate, its

presence (Pulliam, 2000; Soberón, 2007).

In Step 3, the expected value of species richness (or another

assemblage property) per analytical unit may be determined

theoretically by applying a function based on macroecological

theory (Rahbek et al., 2007; Field et al., 2009; Gotelli et al.,

2009) or empirically by using any MEM approach. The

advantages and limitations of the various MEM approaches are

thoroughly discussed in the macroecological literature (e.g.

Gotelli et al., 2009, and references therein).

Step 4 consists of identifying members of a given assemblage

using EARs derived from community analyses at the species

(e.g. from theory, co-occurrence data or experiments) or
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functional trait (Shipley et al., 2006) levels. When modelling

patterns of species or community properties (e.g. species

richness) using MEM and SDM, biotic interaction processes

have traditionally been overlooked. This is despite the fact that

they can potentially influence geographical co-existence pat-

terns of species (Diamond, 1975; Leathwick & Austin, 2001;

Gotelli & McCabe, 2002; Pellissier et al., 2010), thus shaping

communities and influencing the composition of species

assemblages, even for continental assemblages at larger

geographical scales (Gotelli et al., 2010). Step 4 will not prove

useful if assemblages only result from a purely Gleasonian

perspective of communities, i.e. being only the coincidence of

species sharing similar environmental requirements, thus not

requiring any constraint or assembly rules (i.e. avoiding Steps

3 and 4).

Testing and improving the SESAM framework

Constraining stacked predictions of individual SDMs by MEM

to predict community properties (like species richness)

remains a largely unexplored field. Therefore, testing the

SESAM framework on independent data is necessary to ensure

its proper evaluation. Good agreement between predicted and

observed assemblages will provide strong support for the

proposed framework. Knowing when to consider predictions

as satisfactorily matching observations remains an open

question in predictive modelling, and such decisions are

dependent on the study objectives and the expected level of

agreement between observed and expected outcomes.

Furthermore, if an incorrect prediction is obtained at the end,

which component(s) of the framework contributed most to the

failure? Each of the four steps should thus also be evaluated

independently; each of them bears its own uncertainty and

contributes to the final prediction error, but they may do so

unequally. For instance, EARs may need to be developed on one

dataset and then tested on a second dataset, independent of the

former. Finally, if successful, they may need to be applied to a

third dataset to test the whole SESAM framework. The same

process can be applied to the three other steps.

Although these important evaluation questions deserve

further investigation, answering them is not our primary

purpose here. We acknowledge that specific questions related

to various parts of the SESAM framework must be solved with

regard to how to evaluate each modelling step and the final

predictions of the whole framework. Questions that must be

addressed include: what if different EAR sets yield the same

final predictions, and what if different approaches to the

definition of species pool also yield the same final predictions?

In fact, such findings, if observed, will pose new questions and

pave the way for in-depth analyses of the SESAM framework

and more generally of community assembly in space and time.

For instance, can different assembly end points be obtained

from the same initial pool of habitat-filtered species (Law &

Morton, 1993)? Metacommunity theory suggests that this may

occur in high-productivity sites where both alternative stable

states and cyclical changes in composition are more likely

(Leibold et al., 2004). However, larger and more accurate

datasets on species distributions and ecology (including

ecophysiology, in an attempt to capture the fundamental

environmental niche) for entire regional species pools are most

needed to allow fitting and testing each step of the framework

as independently as possible.

CONCLUDING REMARKS

Ecological science is under pressure to predict the potential

consequences of global changes on biodiversity and ecosystem

services. SDM and MEM are two major approaches currently

used to predict biodiversity patterns. Both have progressed

significantly in recent years, but thus far they have been used

independently of each other. In this essay, we have explained

why we think that a major step forward should now be to

integrate them into a single unifying framework by using

the latter to constrain predictions of the former. Such a

framework must consider additional components, including:

(1) SSPs to account for dispersal limitations and the specia-

tion–extinction history of areas, and (2) EARs to account for

biotic interactions. We invite others to contribute ideas and

solutions to specifically improve the suggested framework,

both theoretically and practically. The framework can

undoubtedly be fine-tuned, and we encourage any such

attempt using novel data.
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