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Abstract: Potential impacts of projected climate change on biodiversity are often assessed using
single-species bioclimatic ‘envelope’ models. Such models are a special case of species distribution
models in which the current geographical distribution of species is related to climatic variables so
to enable projections of distributions under future climate change scenarios. This work reviews a
number of critical methodological issues that may lead to uncertainty in predictions from
bioclimatic modelling. Particular attention is paid to recent developments of bioclimatic modelling
that address some of these issues as well as to the topics where more progress needs to be made.
Developing and applying bioclimatic models in a informative way requires good understanding of
a wide range of methodologies, including the choice of modelling technique, model validation,
collinearity, autocorrelation, biased sampling of explanatory variables, scaling and impacts of non-
climatic factors. A key challenge for future research is integrating factors such as land cover, direct
CO2 effects, biotic interactions and dispersal mechanisms into species-climate models. We
conclude that, although bioclimatic envelope models have a number of important advantages, they
need to be applied only when users of models have a thorough understanding of their limitations
and uncertainties.
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I Introduction
Several studies and meta-analyses have indi-
cated that recent climatic change has already
affected species’ geographical distributions
and the persistence of populations (Parmesan,
1996; Walther et al., 2002; Moore, 2003;
Parmesan and Yohe, 2003). Furthermore, pro-
jected climate changes are likely to have an
even greater impact on biota (Berry et al.,
2002; Hill et al., 2003; Thomas et al., 2004;
Thuiller et al., 2005b). There are many differ-
ent methodological approaches available for
examining the potential effects of climate
change on biodiversity, ranging from dynamic
ecosystem and biogeochemistry models (eg,
Woodward and Beerling, 1997; Peng, 2000)
and spatially explicit mechanistic models for
single species range shifts (eg, Hill et al., 2001)
to physiologically based (eg, Sykes et al., 1996;
Walther et al., 2005) and correlative biocli-
matic envelope models (eg, Box et al., 1993;
Huntley et al., 1995; Iverson and Prasad,
1998; 2001; 2002; Pearson et al., 2002; 2004:
Thuiller, 2003; Thuiller et al., 2005b). This
paper concentrates on the latter group –
statistical bioclimatic envelope models – which
are among the most popular approaches to
simulate species-climate change impacts.

Statistical bioclimatic modelling techniques
aim at defining, for any chosen species,
the climate ‘envelope’ that best describes the
limits to its spatial range by correlating the
current species distributions with selected
climate variables (Beaumont and Hughes,
2002; Berry et al., 2002; Pearson and
Dawson, 2003; Thuiller, 2003; Huntley et al.,
2004). Assessments of future species’biogeo-
graphical ranges are developed by applying
the models based on the climate variables
that best describe the current equilibrium dis-
tributions to simulate future distributions
under selected climate change scenarios
(Bakkenes et al., 2002; Peterson et al., 2002a;
2002b; 2004; Peterson, 2003; Thuiller, 2003;
Pearson et al., 2004; Thomas et al., 2004;
Thuiller et al., 2004b; 2005b).

The validity of bioclimatic envelope mod-
elling approaches has been questioned on the

grounds that many factors other than climate
can significantly influence species distribu-
tions and the rate of distribution changes
(Hampe, 2004), especially in a simulations of
the future. Huntley et al. (1989) (see also
Huntley, 1998, and references therein)
showed that in the Holocene the approach
using climate alone did predict distributions
even though this distribution included other
aspects such as biotic interactions (cf. Davis
et al., 1998; Beaumont and Hughes, 2002).
In the future, however, extensive habitat
fragmentation and species dispersal
limitations (Iverson and Prasad, 2002), and
impacts of rising atmospheric CO2
(Woodward and Beerling, 1997; Iverson and
Prasad, 2002), soil and fire changes (Brereton
et al., 1995; Iverson and Prasad, 1998;
Crumpacker et al., 2001) driven by human
interactions, genetic differences in popula-
tions in different parts of the range, and
changing biotic interactions suggest that it is
necessary to assess realistically the use of
such approaches in future scenarios. Such
limitations and uncertainties pose restrictions
on bioclimatic envelope models and their
results should be interpreted with caution
(Pearson and Dawson, 2003; Guisan and
Thuiller, 2005).

Nevertheless, bioclimatic envelope models
have certain advantages. They offer a tool for
undertaking relatively rapid analysis for numer-
ous individual species, and allow the identifica-
tion of key relationships between species and
governing factors of their distributions (Iverson
and Prasad, 2001; 2002; Pearson and Dawson,
2003; Gavin and Hu, 2005). They are particu-
larly valuable for providing insight into potential
climate warming effects on biodiversity when
range-limiting physiological factors for studied
species are poorly known (Crumpacker et al.,
2001). In addition, individual-species models
may provide more precise and realistic predic-
tions than those offered by species-assemblage
models (Iverson and Prasad, 1998), not least
because species’ responses to climate change
are thought to be mainly individualistic
(Huntley, 1991; Huntley et al., 1995).
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However, if we are to develop as accurately
as possible bioclimatic envelope models and
species range shift scenarios there are a num-
ber of critical methodological issues that need
to be addressed (Araújo et al., 2005a; Guisan
and Thuiller, 2005). Several methodological
aspects and decisions in modelling exercises,
such as differences between statistical tech-
niques and decisions on which model selec-
tion criteria and explanatory variables are
used in modelling, can have a notable impact
on the accuracy of bioclimatic envelope mod-
els, as well as species distribution models in
general (Elith et al., 2002; Thuiller et al.,
2004b; Guisan and Thuiller, 2005).

Our objectives are to discuss the key
methodological issues that may lead to uncer-
tainties in bioclimatic envelope modelling.
Based on a review of both earlier and more
recent published studies, we assess progress
made to improve understanding and reduce
uncertainties of predictive bioclimatic model-
ling. We also highlight issues that appear to be
hitherto insufficiently examined in the sci-
ence of bioclimatic modelling of species distri-
butions. While we acknowledge that there
have been an impressive number of biocli-
matic modelling studies done, we do not pro-
pose to describe them all. Instead, we focus
on selected recent developments and studies
that are most relevant to the uncertainty
issues discussed here.

II Modelling methods and approaches
Statistical bioclimatic envelope models repre-
sent one specific type of species distribution
models (referred to also as ‘habitat models’
and ‘ecological niche-based models’; see
Guisan and Zimmermann, 2000), in which
the biogeographical distributions of species
are related to broad-scale variation in climate
by given modelling techniques (Araújo et al.,
2005a; Guisan and Thuiller, 2005). Several
techniques have been employed in species
distribution modelling in general and in bio-
climatic envelope modelling in particular
(Franklin, 1995; Guisan and Zimmermann,
2000; Elith and Burgman, 2002; Olden and

Jackson, 2002a; Segurado and Araújo, 2004).
A list of approaches used in bioclimatic mod-
elling is provided in Table 1 and these are fur-
ther discussed below.

Climatic envelope techniques (Environmental
envelope techniques) have been used to calculate
a fitted, species-specific, minimal rectilinear
envelope in a multidimensional climatic space
(Boxcar) (Guisan and Zimmermann, 2000).
The best-known of these techniques are 
BIOCLIM (eg, Busby, 1991; Beaumont and
Hughes, 2002; Kadmon et al., 2003; Beaumont
et al., 2005), the ‘Florida Model’ (Box et al.,
1999), HABITAT (Walker and Cocks, 1991),
and DOMAIN (Carpenter et al., 1993). The
fuzzy minimal rectilinear envelope modelling
applied by Skov and Svenning (2004) also
belongs to climatic envelope techniques. Other
methods closely related to these techniques
have been used by Erasmus et al. (2002),
Midgley et al. (2002) and Miles et al. (2004).

BIOCLIM and other environmental enve-
lope techniques, as well as some related
methods such as Ecological Niche Factor
Analysis (ENFA), are designed to deal
with presence-only data (Guisan and
Zimmermann, 2000; Kadmon et al., 2003).
This is a valuable feature in cases where reli-
able absence data is not available (Kadmon
et al., 2003; Brotons et al., 2004). Paucity of
species distribution data is a common situa-
tion in remote and poorly inventoried regions.
Presence-only models can be useful also for
modelling distributions of highly mobile
organisms, because valid absences can be dif-
ficult to obtain for such species (Guisan and
Thuiller, 2005). However, in cases where
absence data is available, modelling
approaches that employ presence/absence
data are generally prioritized and seem to give
better predictions (Brotons et al., 2004;
Segurado and Araújo, 2004; Pearson et al.,
2006).

Classification tree analysis (CTA), also
referred to as classification and regression trees
(CART), involves rule-based methods that
have been used by, for example, Iverson and
Prasad (1998; 2001; 2002), Thuiller (2003;
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2004), Thuiller et al. (2003b) and Araújo et al.
(2005a; 2005b; 2006). CTA uses recursive par-
titioning to split the data into increasingly
smaller, homogenous, subsets until a termina-
tion is reached (Iverson and Prasad, 1998;
Venables and Ripley, 2002). The advantage of
CTA is that it is allows capturing of non-
additive behaviour and complex interactions
(De’Ath and Fabricius, 2000; Thuiller et al.,
2003b). Moreover, numerical and categorical
variables can readily be used together in CTA
(Iverson and Prasad, 1998). However, there are
limitations in applying CTA. In particular, CTA
has a tendency to produce overly complex
models that lead to spurious interpretations
(Thuiller, 2003; Muñoz and Felicísmo, 2004;
Araújo et al., 2005a).

Two closely related parametric approaches,
multiple logistic regression and generalized lin-
ear models (GLM) with a binomial distribution
and a logistic link, have been employed by
Guisan and Theurillat (2000), Price (2000),
Bakkenes et al. (2002) and Burns et al. (2003)
(see also Hirzel and Guisan, 2002, and refer-
ences therein). Using cover-abundance data
of plant species, Dirnböck et al. (2003) applied
a closely related method, ordinal logistic
regression models (proportional odds model).

An increasingly popular approach is gener-
alized additive models (GAM), which has been
used in climate change impact studies by, for
example, Leathwick et al. (1996), Thuiller
(2003; 2004) and Araújo et al. (2004). GAMs
are non-parametric extensions of GLMs.

Table 1 Examples of the statistical techniques, and their abbreviations, applied in
bioclimatic envelope modelling

Study Modelling methods

Brereton et al., 1995; Beaumont and Hughes, 2002 BIOCLIM
Kadmon et al., 2003; Meynecke, 2004; Beaumont et al., 2005
Box et al., 1993; 1999; Crumpacker et al., 2001 ‘The Florida Model’
Walker and Cocks, 1991 HABITAT
Carpenter et al., 1993 DOMAIN
Baker et al., 2000 CLIMEX
Skov and Svenning, 2004; Svenning and Skov, 2004 Fuzzy minimal rectilinear envelope

modelling
Sykes et al., 1996; Walther et al., 2005 STASH
Iverson and Prasad, 1998; 2001; 2002 Classification and regression tree

analysis (CTA / CART / RTA)
Guisan and Theurillat, 2000; Price, 2000 Logistic regression/binomial GLM
Bakkenes et al., 2002; Burns et al., 2003
Leathwick et al., 1996; Midgley et al., 2003 GAM
Araújo et al., 2004; Luoto et al., 2005
Beerling et al., 1995; Huntley et al., 1995; 2004 Locally weighted regression
Hill et al., 1999; 2002 (local regression/loess)
Berry et al., 2002; Pearson et al., 2002; 2004 ANN
Peterson, 2001; Anderson et al., 2002a; 2002b GARP
Peterson et al., 2002a; 2002b; 2004
Prasad and Iverson, 2000 MARS
Gavin and Hu, 2005 GM-SMAP
Thuiller, 2003; 2004; Araújo et al., 2005a; 2005b GLM, GAM, CTA, ANN
Thuiller et al., 2005a; 2005b

ANN � artificial neural networks; GAM � generalized additive models; GARP � genetic algorithm for rule-set prediction;
GLM � generalized linear models; GM-SMAP � Gaussian mixture distributions and multiscale segmentation; MARS � multivariate
adaptive regression splines.
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They provide a flexible data-driven class of
models that permit both linear and complex
additive response shapes, as well as the
combination of the two within the same
model (Bio et al., 2002; Wood and Augustin,
2002). Thus GAMs can cope with regression
functions that are of a form not easily approx-
imated by conventional parametric tech-
niques, such as logistic regression (Leathwick
et al., 1996). However, possible problems
with overdispersion must be handled with
caution when fitting GAMs (Leathwick et al.,
1996).

Species-climate response surfaces have
been developed also using locally weighted
regression (local regression/loess) (see
Cleveland and Devlin, 1988; Venables and
Ripley, 2002) by, for example, Huntley et al.
(1995) and Hill et al. (1999; 2002). Local
regression is a non-linear flexible method that
requires no prior assumption about the form
of the relationship between a climate predic-
tor and the species probability of occurrence
(Huntley et al., 2004). The method is thus
able to capture complex non-linear and multi-
modal relationships. According to Beerling
et al. (1995), local regression is also more
robust for extrapolation beyond the domain
within which the model was calibrated than
other modelling methods. A potential disad-
vantage is that locally weighted regression
requires an a priori selection of the bioclimatic
predictors to be included in the model
(Huntley et al., 2004). A difference between
GAMs and local regression is that in the latter
method the model is fitted as a single smooth
function of all the predictors, whereas in
GAMs the effects of the terms in the model
are expected to enter the model additively,
without interactions between terms
(Anonymous, 2001).

Artificial neural networks (ANN) are pow-
erful rule-based modelling techniques which
are increasingly used in bioclimatic envelope
modelling (eg, Berry et al., 2002; Pearson
et al., 2002; Thuiller, 2003; 2004; Araújo
et al., 2005a). This method is able to handle
explanatory variables from different sources,

such as categorical and boolean data.
Moreover, ANN is considered to be robust to
‘noise’ in the training data set, and it is able to
determine climatic envelopes that have non-
linear responses to predictors (Hilbert and
Ostendorf, 2001; Pearson et al., 2002; 2004).
Disadvantages include the requirement of
large quantity of data to train, validate and
test the network, and the limited insights into
the contributions of the predictors in the pre-
diction process (but see Olden and Jackson,
2002b). Moreover, ANN do not allow exam-
ining the response curves of species against
environmental gradients (Manel et al., 1999;
Pearson et al., 2002).

Genetic algorithm for rule-set prediction
(GARP) is an artificial intelligence based
super-algorithm which uses other techniques
(eg, logistic regression, BIOCLIM) in a
dynamic machine-learning environment
(Stockwell and Peterson, 2002; Anderson
et al., 2003). GARP uses species presence
records and georeferenced data on ecological
factors to produce a model of species’ ecolog-
ical niches. The software is tailored to search
for non-random correlations between species
presence and absence and environmental
characteristics using several different types of
rules. GARP works in an iterative process of
rule selection, evaluation, testing and incorpo-
ration or rejections to produce a heteroge-
neous rule set summarizing species’ ecological
requirements (Anderson et al., 2002a). The
algorithm can run several thousand iterations.
GARP primarily works on presence data
points, but it allows for resampling with
replacement from the pixels without con-
firmed presence data in the training set to cre-
ate a set of pseudo-absence points (Anderson
et al., 2003). When projected onto a geo-
graphical space, GARP provides predictions of
the species’ geographical distribution. GARP
has been used extensively by A.T. Peterson
and collaborators (eg, Peterson, 2001;
Anderson et al., 2002a; Peterson et al., 2002b;
Stockwell and Peterson, 2002).

Multivariate adaptive regression splines
(MARS) is a relatively novel and promising
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modelling approach. MARS has been hitherto
very rarely applied in either bioclimatic enve-
lope modelling or species distribution model-
ling in general (but see Prasad and Iverson,
2000; Muñoz and Felicísmo, 2004). This
technique combines linear regression, mathe-
matical construction of splines and binary
recursive partitioning to produce a local
model where relationships between response
and predictors are either linear or non-linear.

An extension of MARS is generalized
boosted trees or generalized boosted models
(GBM) which have been recently introduced
in ecology. They are highly efficient in fitting
the data, non-parametric and combine the
strength of different modern statistical tech-
niques (Ridgeway, 1999; Friedman et al.,
2000). Boosting improves predictive accura-
cies by iteratively estimating classifiers using a
base learning algorithm (eg, a decision tree)
while systematically varying the training sam-
ple. The final boosted classifier’s prediction is
based upon an accuracy-weighted vote
across the estimated classifiers. Recently,
boosting has been shown to be a form of addi-
tive logistic regression (Friedman et al.,
2000), in which the probabilities of class
membership can be obtained from boosting.
Hitherto, there are very few studies in a con-
text of global change based on generalized
boosted models. Clearly, due to the potential-
ity of this approach such studies might pro-
vide important contributions to the climate
change modelling.

Two additional novel techniques which
have hitherto rarely been applied in geograph-
ical species distribution modelling but which
also merit further research are maximum
entropy method (Maxent) and Random
Forests Analysis (or Multiple Tree) (but see
Phillips et al., 2006; Prasad et al., 2006).
Random Forests generates hundreds or thou-
sands of random trees, evaluates them as a
whole and ultimately selects the smallest
(most parsimonious) tree that has a given
error level (predictive value). Maxent is a
machine-learning powerful technique suited
particularly for modelling species geographic

distributions based on presence-data only. In
an extensive comparative study Phillips et al.
(2006) showed that Maxent was able to per-
form regularly better (based on AUC meas-
ures) in predicting the spatial distribution of
two study species than GARP. Moreover,
Maxent was more successful in producing
detailed (fine-grained) predictions than
GARP. Thus this method can provide useful
improvements to species-climate change
modelling in regions where absence data are
not available for species.

III Performance of different modelling
techniques
Each of the modelling approaches have their
strengths and weaknesses and also differ in
their ability to summarize plausible biogeo-
graphic responses of species distributions to
climatic predictors (Segurado and Araújo,
2004). Moreover, in assessments of 
the potential impacts of climate change,
seemingly small differences in the accuracy of
models in predicting current distributions may
result in disturbingly dissimilar projections of
future distributions (Thuiller, 2003; 2004).

1 Measures of prediction accuracy
One criterion for evaluating performance of
models is to measure the accuracy of the pre-
dictions (ie, prediction error; see Fielding,
2002), preferably based on independent data
sets. There are several measures that can be
used in evaluating the classification accuracy
of the presence/absence models (Fielding and
Bell, 1997; Pearce and Ferrier, 2000a).
However, currently the discrimination ability
of the species distribution models is mainly
assessed using two measures: the Kappa sta-
tistic (Cohen’s Kappa) (Congalton, 1991), and
the area under the curve (AUC) of a receiver
operating characteristic (ROC) plot (Fielding
and Bell, 1997).

The Kappa coefficient measures the correct
classification rate (proportion of correctly clas-
sified presences and absences) after the proba-
bility of chance agreement has been removed
(Congalton, 1991). Landis and Koch (1977)



Risto K. Heikkinen et al. 757

proposed a scale to describe the degree of con-
cordance based on Kappa: 0.81–1.00 �
almost perfect; 0.61–0.80 � substantial;
0.41–0.60 � moderate; 00.21–0.40 � fair;
0.00–0.20 � fail. Kappa is dependent on a
single threshold to distinguish between pre-
dicted presence and predicted absence and
thus falls into the class of threshold-dependent
measures. The earlier practice of using a
0.5 cut-off probability as a rule of thumb has
shown to be inadequate (Manel et al., 2001;
Segurado and Araújo, 2004; Liu et al., 2005).
A more objective and increasingly popular
approach is to select an optimum probability
threshold based on the cut-off level that maxi-
mizes Kappa. This can be determined by eval-
uating Kappa values at successive probability
increments across the entire range from 0.00
to 1.00 (Huntley et al., 2004).

A recent important evaluation of the
approaches to select an optimal threshold for
transforming the species distribution predic-
tions to presences/absences was provided by
Liu et al. (2005). The authors compared 12
approaches for selecting the threshold of
occurrence. Their results challenged the com-
monly used kappa maximization approach
because it was not among the most robust
methods. Instead, the threshold-determining
approaches recommended by Liu et al. (2005)
included (i) prevalence (ie, the number of
occurrences in relation to the number of sam-
ples) approach (taking the prevalence of
model-building data as the threshold);
(ii) average probability/suitability approach
(taking the average predicted probability/
suitability (ie, the mean value of predic-
ted probabilities of species presence) of
themodel-building data as the threshold); and
(iii) using data sets with prevalence of 50% to
build models.

An alternative measure of accuracy is the
AUC of the ROC plot. AUC relates relative
proportions of correctly classified (true posi-
tive proportion) and incorrectly classified
(false positive proportion) cells over a wide
and continuous range of threshold levels
(Cumming, 2000; Erasmus et al., 2002). This

makes it a threshold–independent measure
(Pearce and Ferrier, 2000a). The AUC ranges
generally from 0.5 for models with no dis-
crimination ability to 1.0 for models with per-
fect discrimination. An approximate guide for
classifying the accuracy of AUC is that pro-
posed by Swets (1988): 0.90–1.00 � excel-
lent; 0.80–0.90 � good; 0.70–0.80 � fair;
0.60–0.70 � poor; 0.50–0.60 � fail. AUC
values of less than 0.5 indicate that the model
tends to predict presence at sites at which the
species is, in fact, absent (Elith and Burgman,
2002).

2 Comparisons of modelling techniques
Bioclimatic envelope modelling studies have
usually been conducted by employing only
one modelling approach (eg, Box et al., 1993;
Huntley, 1995; Iverson and Prasad, 1998;
2001; Bakkenes et al., 2002; Beaumont and
Hughes, 2002; Berry et al., 2002; Pearson
et al., 2002; 2004; Huntley et al., 2004;
Beaumont et al., 2005), or different variations
of the same technique, eg, GARP (Anderson
et al., 2002a; 2003; Peterson, 2003). Some
variation is expected from using different
techniques because different models use a
variety of assumptions, algorithms and
parameterizations. Thus, when studies use a
single modelling technique there is no infor-
mation of whether the selected method
provides the best predictive accuracy for the
particular data set used (Araújo and New,
2006).

A number of comparative studies have
examined the performance of different
species distribution modelling techniques
(Franklin, 1995; Manel et al., 1999; Bio et al.,
2002; Elith and Burgman, 2002; Moisen and
Frescino, 2002; Olden and Jackson, 2002a;
Thuiller et al., 2003a; Muñoz and Felicísmo,
2004; Segurado and Araújo, 2004), although
in the context of climate change such
appraisals are rare (but see Thuiller, 2003;
2004; Araújo et al., 2005a; Pearson et al.,
2006).

When assessing model variability in the
context of present-time bioclimatic modelling,
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some studies have reported only subtle differ-
ences among techniques. For example,
Franklin (1995) reported that GAM, GLM
and CTA produced all projections with similar
accuracy. In contrast, using the same three
methods and data on plant species at three
different scales, Thuiller et al. (2003a)
showed that CTA had a lower overall model
performance than the two generalized meth-
ods. In a study by Bio et al. (2002) more than
half of the species were better modelled by
GAM than by GLM, indicating that species’
responses are often complex and difficult to
fit using simple symmetric response shapes.
Elith and Burgman (2002) reported an appar-
ent trend towards better model discrimina-
tory performance from GAM and GLM in
comparison to ANUCLIM (climatic envelope
method) and GARP. The authors stated that
GARP appears to perform better than the
other three methods when tested with origi-
nal data, but testing with independent data
indicated no clear differences in the accuracy
of models. These results seem to contradict
the optimistic statements of Peterson and
Cohoon (1999) and Anderson et al. (2003),
who have suggested that GARP is especially
successful in predicting species’ distributions
under a wide variety of situations. Also the
results of Pearson et al. (2006) indicate that
GARP may yield projections that markedly
differ from theoretically more robust semi-
parametric techniques.

Contrasting results have also been obtained
using ANN. Olden and Jackson (2002a)
stated that, on average, ANN outperformed
logistic regression, linear discriminant analysis
and CTA, although all approaches predicted
species presence/absence with moderate to
excellent success (cf. Thuiller, 2003; Araújo
et al., 2005a). In an extensive evaluation study
with seven modelling methods, Segurado and
Araújo (2004) concluded that ANN per-
formed generally best, immediately followed
by GAMs including a covariate term for spatial
autocorrelation. In contrast, Manel et al.
(1999) concluded that ANN do not currently
have major advantages over logistic regression

and discriminant analysis as regards model
performance. However, it is important to note
that ANN, as well as other modelling tech-
niques, are sensitive to small variations in
model parameterization. Unless studies equal
parameterizations for a given technique,
results from models are not entirely compara-
ble (Segurado and Araújo, 2004). Multivariate
adaptive regression splines (MARS) has rarely
been included in comparative studies.
However, it has been shown to perform in
several cases better than CTA, ANN or logis-
tic regression (Moisen and Frescino, 2002;
Muñoz and Felicísmo, 2004).

Comparisons of modelling techniques in
the context of climate change are more
recent and provide evidence of previously
unnoticed levels of variability across model-
ling techniques (Thuiller, 2003; 2004; Araújo
et al., 2005a; 2005b; Pearson et al., 2006).
For example, in Thuiller (2003) CTA
appeared as the weakest method with a ten-
dency to overfit. ANN performed slightly
better than the other methods but showed
also a tendency to overfit during the calibra-
tion process. GAM and GLM did not appear
to overfit and had a higher accuracy than
ANN in several cases. The results of the
follow-up study by Thuiller (2004) indicated
that the variability across model projections of
species future ranges from GLM, GAM,
ANN, and CTA can be large and even over-
ride the variability arising from the use of a
range of climate change scenarios.

In a bioclimatic modelling study based on
116 breeding bird species in Britain at two
time periods (Araújo et al., 2005b), models
yielded projections that were variable both in
magnitude and direction. For example, 90%
of the species were projected both to expand
and to contract depending on the modelling
technique and calibration used. Araújo et al.
(2006) examined projected potential distribu-
tions of European amphibian and reptile
species under a set of climate change scenar-
ios. As with the UK birds study, they detected
considerable amount of methodological
uncertainty as model projections were
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extremely variable. Pearson et al. (2006)
applied nine modelling techniques to model
current and potential future distributions of
four target species in South Africa. Their
results showed significant differences
between predictions from different models,
with predicted changes in range size by 2030
differing in both magnitude and directions.

Some general conclusions can be drawn
from these comparative studies. First, the
best model performance has been most often
attributed to techniques using complex
approaches to mode fitting; GAM, ANN, and
recently also MARS (but see Elith et al.,
2006; Lawler et al., 2006). These methods
thus represent perhaps the most reliable
choices for bioclimatic modelling exercises
employing only one modelling method.
However, it should be noted that some of the
techniques, eg, GARP and locally weighted
regression, have rarely been included in com-
parative studies (but see Elith and Burgman,
2002; Pearson et al., 2006). Moreover, under
certain circumstances (for example interpola-
tions made within a given region and time
period) most of the methods are able to
provide moderate or excellent performance.

3 Approaches to account for model
predictions� variability
As a response to the variability in the model
performance between different methods,
two recent developments to reduce the
uncertainty in species-climate impacts model-
ling have been defined (Araújo and New,
2006). Rather than using a single modelling
technique investigators can (i) use a frame-
work including different methods and models
for each species and select the most accurate
technique using both evaluation methods and
expert knowledge (Thuiller, 2003; 2004), or
(ii) use majority vote criterion approach
among multiple models thus deriving a single
projection that represents the central ten-
dency across all models considered. Thuiller
(2004) used a consensus analysis based on
principal components analysis (PCA) to
derive composite variables that summarize

the highest amount of information from indi-
vidual projections from different methods
(GLM, GAM, CTA, ANN) (see also
Anderson et al., 2003; Thuiller et al., 2005b).
This approach was further explored and its
usefulness demonstrated in a study by Araújo
et al. (2005b) where the authors were able to
test the results of bioclimatic models applied
to bird distributions in Great Britain using two
data sets in different time periods subject to
climate change. The results of models were
found to be extremely variable across species
and modelling methods. Using a consensus
approach authors were able to produce fore-
casts with significantly reduced uncertainties.
However, as pointed out by Araújo et al.
(2005b), averaging the model projections will
mainly increase the accuracy of forecasts
when better models (eg, models based on
techniques that generally provide superior
overall performance and perform consistently
well across a range of species) and not merely
more models are taken into account.
Improved accuracy will thus also critically
depend on traditional challenges of trying to
build better models with improved data.
However, there is a possibility that models
providing realistic projections are a minority
within one ensemble of forecasts. Thus they
would contribute little to building a consensus
among an ensemble of forecasts. An alterna-
tive for combining forecasts is proposed by
Araújo et al. (2006), whereby different clus-
ters of model projections are produced and
consensus is calculated within each cluster.
This allows simple conditional statements of
probabilities to be made, whereas the full
breadth of variability provided by an ensemble
of forecasts is still preserved (for extended
discussion see Araújo and New, 2006).

IV Model validation approaches and
bioclimatic envelope models
A wealth of literature is available on the
evaluation, validation and confirmation
of numeric models (Oreskes et al., 1994;
Harrell et al., 1996; Rykiel, 1996; Fielding and
Bell, 1997; Guisan and Zimmermann, 2000;
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Araújo et al., 2005a). However, the perspec-
tives presented have varied considerably.
Oreskes et al. (1994) takes an extreme view
that because all natural systems are not
closed model results are always non-unique,
and verification or validation of numerical
models is impossible. These authors argued
that the primary value of models is heuristic
and that predictions will always be open to
question. Others have provided less extreme
standpoints. For example, Harrell et al.
(1996), Fielding and Bell (1997) and Olden
et al. (2002) contend with discussing the
following strategies for model validation:
resubstitution (no partitioning is carried out,
the data used to calibrate models are also
used to validate them); bootstrapping and
leave-one-out jack-knifing; (one-time) data
splitting; grouped cross-validation (also
known as k-fold partitioning, hold-out, or
external method).

A recent contribution to the debate of
model validation under climate change was
provided by Araújo et al. (2005a). The authors
argued that the validation of species-climate
envelope models has been insufficiently
explored and this has contributed to creating
an optimistic perception of their true perform-
ance in climate-change impact assessments.
This is not surprising since validation of models
is often made with non-independent data as
predictions concern events that have not yet
occurred. In some cases species range
shift projections (eg, Sætersdal et al., 1998;
Beaumont and Hughes, 2002) were made
without attempts to validate the predictive
accuracy of models being presented.
However, most bioclimatic envelope modelling
studies (eg, Brereton et al., 1995; Huntley et al.,
1995; Bakkenes et al., 2002; Midgley et al.,
2002; Huntley et al., 2004; Skov and Svenning,
2004) have used the resubstitution approach,
ie, using the same data for training and testing
(Figure 1a). Resubstitution is currently not
considered a desirable option, because it tends
to give optimistically biased estimates or error
rates and model performance (Harrell et al.,
1996; Fielding and Bell, 1997; Olden et al.,

2002; Thuiller, 2003; Muñoz and Felicísmo,
2004; Thuiller, 2004).

Data partitioning approaches in model val-
idation have increasingly been applied to cir-
cumvent the problems of resubstitution
approach. The most commonly used
approach is one-time data splitting (ie, split
sample; see Harrell et al., 1996; Guisan and
Zimmermann, 2000), whereby data is ran-
domly split into calibration and validation sub-
sets (Figure 1b). This approach has been used

Figure 1 Three main approaches for
calibrating and validating species-climate
envelope models: (a) resubstitution;
(b) one-time data splitting (split-sample
approach); and (c) independent 
validation 
Source: Reprinted from Araújo et al.
(2005a).
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in bioclimatic envelope modelling by Box et al.
(1993), Iverson and Prasad (1998), Berry et al.
(2002), Pearson et al. (2002; 2004), Thuiller
(2003; 2004), Araujo et al. (2004), among
others (for review, see Araújo et al., 2005a).

Some of the studies have used bootstrap
method (Peterson et al., 2002a; 2004;
Peterson, 2003) or fourfold cross-validation
(Luoto et al., 2006a). However, as with data
splitting, bootstrapping and cross-validation
take samples randomly from the original data.
Although they provide a more robust meas-
ure of model performance than resubstitu-
tion, they may also provide non-independent
samples that are vulnerable to certain pitfalls
of correlative models based on geographical
data, especially spatial autocorrelation.
Spatial autocorrelation may bias the accuracy
of models that are fitted with samples from
the original data even when these are
obtained with additional field sampling within
the modelled region (Vaughan and Ormerod,
2003; Araújo et al., 2005a).

The best option to validate bioclimatic
envelope models is to use independent test
data collected from another region (eg,
Beerling et al., 1995; Price, 2000; Randin
et al., 2006) or from another point of time
(Araújo et al., 2005a; Araújo and Rahbek,
2006; see Figure 1c). One of the most impor-
tant challenges in bioclimatic modelling is to
understand the limitations of models by cali-
brating and validating models with data that
are distinctively independent from each other.
This is because predicting species distribution
patterns at one point of time distant from that
used to calibrate the models is one of the chief
purposes of bioclimatic envelope models. 
To date, such studies have been very rare 
(but see Hill et al., 1999; Araújo et al., 2005a;
2005b; Walther et al., 2005).

The results of Araújo et al. (2005a)
showed that accuracies of correlative biocli-
matic envelope models for 116 UK birds were
always higher when evaluated by one-time
split sample than accuracy values derived
from fitting the calibrated model to the inde-
pendent data recorded c. 15 years later than

the calibration data. This result supported
concerns that models’ predictive accuracy
measured by one-time data splitting (and
other related validation methods) are likely to
provide generally overoptimistic assessment
of model performance on truly independent
data. In contrast, using a physiologically based
climatic envelope model (STASH), Walther
et al. (2005) compared detailed past climatic
and distribution records of Ilex aquifolium
with the current climate and distribution.
In this case the model predicted well the new
suitable areas available for the species to be
colonized. The authors concluded that a shift
in the northern margin of Ilex aquifolium, in
concert with increasing winter temperatures,
was demonstrated.

V Uncertainty issues in model building
There are several decisions which may con-
tribute to uncertainty in the models and
should thus be taken into account when devel-
oping species distribution models (including
bioclimatic envelope models) (Elith et al.,
2002). Sources of uncertainty in models have
received a considerable attention in the statis-
tical and ecological literature (Chatfield, 1995;
Harrell et al., 1996; Buckland et al., 1997;
Guisan and Zimmermann, 2000; Vaughan and
Ormerod, 2003; Johnston and Omland,
2004; Rushton et al., 2004). This attention is
warranted because there is increasing evi-
dence that the ‘best’ model developed for a
given studied region is only one among many
alternative models.

Research has been primarily concerned
with regression models (GLM, GAM).
However, many of the methodological uncer-
tainties discussed for these techniques apply
to other approaches (Vaughan and Ormerod,
2003). Factors contributing to the uncer-
tainty of model projections include, for exam-
ple, decisions associated with model building
(a priori selected predictors versus manual
selection versus automated model selection),
collinearity, choice of the variable and model
selection criteria, identifying and excluding
outliers, autocorrelation and overdispersion,
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and finding a balance between underfitted
(‘overly parsimonious’) and overfitted (over-
parametrized) models (Nicholls, 1989;
Crawley, 1993; Chatfield, 1995; Mac Nally,
2000; Elith et al., 2002; Heikkinen et al.,
2004; Johnston and Omland, 2004).

1 Model building approaches
Basically, there are three approaches to
develop a single final model in a multiple
regression setting: (i) a priori selection of a set
of explanatory variables, (ii) manual model
building, and (iii) automated model calibra-
tion. Automated model building is a com-
monly available option in the majority of
statistical packages (eg, S-Plus, SPSS). It is
also embedded in some novel modelling
frameworks such as GRASP (Lehmann et al.,
2003) and BIOMOD (Thuiller, 2003). The
strong point of this approach is that several
hundreds of species can be analysed and their
potential range shifts examined within one
computer run in a reasonable amount of time.
Moreover, BIOMOD framework can run
analysis for each species using several differ-
ent modelling techniques or different forms
and parameterizations of one particular
method (Thuiller, 2003).

A disadvantage of the automated model
selection approach is that critical steps and
alternative pathways in model building are
not as transparent and controlled as in
manually conducted modelling exercises.
Automated selection of variables may thus
result into biologically implausible models and
selection of irrelevant (or noise) variables
(James and McCulloch, 1990; Pearce and
Ferrier, 2000b). Particularly, when modelling
a limited set of indicator species vulnerable to
climate change, manual model building may
provide an appropriate, ‘hands-on’ process
that gives a better control to the modeller
than automated techniques and enables the
development of ecologically plausible models
(Nicholls, 1989; Crawley, 1993; Pausas et al.,
2003). As highlighted by Leathwick et al.
(1996), increasing sophistication in analytical
tools is no substitute for specific and detailed

insight into the behaviour of complex ecolog-
ical systems. Chatfield (1995) referred to
model building as a process involving formu-
lating, fitting and checking a model in an iter-
ative and interactive way. However, when
dealing with several hundreds of species this
approach can be time-consuming and difficult
to apply. Moreover, both with manual and
automated model building the modeller needs
to pay attention to other sources of uncer-
tainty, such as collinearity and overfitting.

The third option, a priori selection of a lim-
ited number of predictors in the models, has
been used in a number of bioclimatic model-
ling studies (eg, Beerling et al., 1995; Sykes
et al., 1996; Hill et al., 2002; Huntley et al.,
2004). A disadvantage of this approach is that
it requires an a priori decision as to the selec-
tion of bioclimatic variables to be included in
the model. However, when empirical infor-
mation about the physiological limits con-
straining species’ geographical distributions
are available, a priori selection of appropriate
predictor variables may well turn into an
advantage (Huntley et al., 2004). Moreover,
by using a limited number of physiologically
meaningful variables the modeller may more
readily circumvent the potential collinearity
and overfitting problems (cf. Mac Nally, 2000;
Beaumont and Hughes, 2002; Beaumont
et al., 2005). A possible shortcoming is that,
when models are applied to new regions, the
studied species may respond to the a priori
selected variables differently. For example,
species may show a strong correlation with a
particular predictor variable in one area and
little response in another area (Osborne and
Suárez-Seoane, 2002; Pearson and Dawson,
2003). Also it is possible that presence or
absence of a given species is highly correlated
with climatic variables excluded from the a
priori selected set. This may happen because
of the correlations between the predictor
variables (Beerling et al., 1995) or because a
particular response is observed only in certain
parts of the study area (see Osborne and
Suárez-Seoane, 2002, and references
therein).
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2 Overfitting and model selection criteria
One of the crucial issues in species distribution
modelling is the identification of the optimal
trade-off between producing underfitted and
overfitted models, and developing an under-
standing of the factors that may result into
these two phenomena (Harrell et al., 1996;
Elith et al., 2002; Vaughan and Ormerod,
2003). Some studies include what seems to be
an exceeded number of climatic variables and
are thus vulnerable to unbalanced observa-
tions per predictors ratio, as well as to potential
overfitting problems (see Brereton et al., 1995;
Beaumont et al., 2005; Guisan and Thuiller,
2005). Briefly, this means that overfitted mod-
els including too many explanatory variables
are exceedingly complex and may begin to fit
random noise in the data (Chatfield, 1995;
Fielding, 2002). Although more complicated
models may appear to give a better fit, the pre-
dictions they produce may be poorer
(Chatfield, 1995). The study by Beaumont
et al. (2005) suggests that the use of BIOCLIM
with all its 35 climatic variables may lead to
overfitting and therefore affect the potential
usefulness of projections. The authors also
showed that the size of the predicted species’
distributions using all 35 variables were on
average half of the size of the distributions
produced using only six relevant parameters.

Certain modelling techniques (particularly
CTA) have a higher tendency to overfitting
than others (Thuiller, 2003; Araújo et al.,
2005a). However, many factors other than
the choice of the technique can have an
impact on the number of predictors selected
in the final models. One of these factors
includes the model selection criteria. A ‘tradi-
tional’ model selection approach in regression
modelling is selecting significant predictors
using forward or backward (or both) stepwise
procedures. The decision as to whether a
variable is included or dropped from the
model can be judged by F-statistic or �2 statis-
tic (Crawley, 1993; Lehmann et al., 2003;
Johnston and Omland, 2004).

Recently, there has been a trend towards
using Bayesian information criterion (BIC)

(also known as Schwarz criterion) or Akaike’s
information criterion (AIC) in model selection
(Rushton et al., 2004). AIC has two compo-
nents: negative log-likelihood, which meas-
ures lack of model fit to the observed data,
and a bias correction factor, which increases
as a function of the number of model param-
eters (Johnston and Omland, 2004). AIC is
equivalent to twice the log-likelihood of the
model fitted plus two times the number of
parameters included in the model (Rushton
et al., 2004).

BIC is superficially similar to AIC and has
also two components: negative log-likelihood,
and a penalty term that varies as a function of
sample size (increases as sample size
increases) and the total number of para-
meters (Johnston and Omland, 2004).
Advantages of AIC and BIC include the fact
that they can be used to make inferences
from more than one model and they 
consider both model fit and complexity simul-
taneously. Applying different model selection
approaches to the same data may result in
differently parameterized models. Thus, the
choice of model selection criterion is impor-
tant and is likely to affect the accuracy of
predictions. Bio et al. (2002) considered that
BIC leads into more reliable and parsimonious
(simpler) models (see also Buckland et al.,
1997). Sometimes BIC may lead to too strict
(underfitted) models that do not capture
some of the important relationships between
response and predictor variables (Bio et al.,
2002). According to Johnston and Omland
(2004) AIC is a generally favoured option.
However, the consequences of choosing
among the AIC, BIC or ‘traditional’ F- and �2

statistics in model selection has been poorly
examined and it remains a field with a need
for further inquiry.

Recent work by Maggini et al. (2006) has
further challenged the model selection
approaches by reporting that two alternative
approaches that are currently available in
GRASP, cross-selection and the Bruto
method (Venables and Ripley, 2002: 234),
appear to have clear advantages over AIC,
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BIC or F-statistics. They concluded that,
while AIC appears to be very conservative
and BIC too selective, cross-selection creates
more stable models (based on ROC statistics)
and the Bruto method has the advantage of
providing automatic selection of smoothing
degrees of freedom and increasing computa-
tional speed.

3 Sample size
The sample size also affects model selection
and the predictive performance of the model
(Cumming, 2000; Peterson et al., 2002a;
Araújo et al., 2005b). Stockwell and Peterson
(2002) studied the effects of sample size on
the accuracy of species distribution models
using GARP, logistic regression, and a
surrogate method with a single environmental
variable. Their results suggest that machine-
learning methods such as GARP can reach a
near maximal average success at predicting
species’ occurrences with 50 data points,
whereas the remaining two methods reached
their maximum accuracy at c. 100 data points.
This indicates that species distribution models
based on fewer data points than 100 may
provide less robust models.

However, the assumption that a sample of
100 data points provides a maximum potential
predictive accuracy of models in all situations
is probably too optimistic. Pearce and Ferrier
(2000b) showed that in their data a clear
increase in the discrimination performance of
the models was observed between the 250
and 500 sample sizes. The results of
McPherson et al. (2004) suggested that opti-
mal models had large sample sizes, in their
case between 300 and 500 (see also
Cumming, 2000; Reese et al., 2005). Araújo
et al. (2005a) demonstrated that using a 70%
random sample instead of the total 2861 
10-km grid squares reduced the predictive per-
formance of British bird models dramatically.

These results indicate that the more data
are available for model building the better.
However, increasing the sample size may also
produce some undesirable effects. This is
because the relatively high sample size tends

to lower p-values compared to smaller sample
sizes (McBride et al., 1993). When data con-
sists of several thousands data points (which
is not unfamiliar with atlas data sets) it is easy
to obtain statistically significant differences,
even though the predictors account for only a
minor part of the variation in the species dis-
tribution data (cf. Crawley, 1993: 57). It is
thus advisable to be cautious when building
models with large data sets in order to avoid
overparameterized models that include vari-
ables with little ecological relevance. When
model selection is based on stepwise proce-
dures using F-statistics or �2 statistics, this
can be done by applying a more stringent
p-value as the variable selection criteria than
the commonly used 0.05. However, as
regards AIC and BIC, very little research has
been carried out of their behaviour to varying
sample sizes. In the future, new work should
be addressed to assess relationships between
sample size and different model selection cri-
teria so as to understand their synenergetic
impacts on the accuracy of species-climate
models.

VI Multicollinearity and
autocorrelation

1 Multicollinearity
Multicollinearity among predictors may ham-
per the analysis of species-environment rela-
tionships in multiple regression settings. Due
to collinearity, ecologically more causal vari-
ables may be excluded from the models if
other intercorrelated variables explain the
variation in response variable better in statis-
tical terms (Mac Nally, 2000; Luoto et al.,
2002; Heikkinen et al., 2004). However, in
bioclimatic modelling studies very little atten-
tion has hitherto been paid to multicollinear-
ity (Guisan and Thuiller, 2005; Luoto et al.,
2006a). Future contributions would be
required to amplify our better understanding
of the possible biases in species-climate mod-
elling arising from collinearity problems.

Approaches to tackle collinearity include
the examination of the correlation or variation
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inflation factors (VIFs) between the predic-
tors, and dropping some of the highly inter-
correlated variables from the analysis
(Cawsey et al., 2002; Elith and Burgman,
2002) (but see Philippi, 1993). Data-reduction
techniques have also been applied, such as
using principal components analysis (PCA) to
reduce the dimensionality of the predictor
data set (Gates and Donald, 2000; Suárez-
Seoane et al., 2002; Muñoz and Felicísmo,
2004). However, one disadvantage of using
PCA is the difficult interpretation of its out-
puts. Furthermore, some variables that are
irrelevant to a species’ distribution may con-
tribute to the principal components (Gates
and Donald, 2000; Vaughan and Ormerod,
2003), creating a false expectation of their
relevance for species distribution modelling.

Recent developments have provided alter-
native means of addressing collinearity within
species distribution models. When aiming at
prediction with regression analysis, valuable
insights can be developed by sequential
regression and structural equation modelling
(Graham, 2003). Collinearity can also be
addressed by variation partitioning (Borcard
et al., 1992) and hierarchical partitioning
methods (Chevan and Sutherland, 1991;
Mac Nally, 2000), which are designed to pro-
vide more in depth understanding of the
explanatory powers of predictors (Watson
and Peterson, 1999). These methods provide
a dissection of the variation in response vari-
able(s) into independent components which
reflect the relative importance of individual
predictors or groups of predictors and their
joint effects (Anderson and Gribble, 1998;
Cushman and McGarigal, 2004; Heikkinen
et al., 2004; 2005). In a recent work, Gibson
et al. (2004) provided a useful approach to
species distribution modelling by combining
logistic regression, model selection based on
AIC and hierarchical partitioning into the
same modelling framework. Hierarchical par-
titioning was used to support the identifica-
tion of predictor variables most likely to
influence the variation in the target-species
distribution.

2 Spatial autocorrelation
Autocorrelation is a frequently observed fea-
ture in spatially sampled biogeographical data
(Diniz-Filho et al., 2003), which can hamper
attempts to identify plausible relationships
between species distributions and explana-
tory variables (Legendre, 1993; Segurado
et al., 2006). Due to spatial autocorrelation,
values of particular variables in neighbouring
sites are more or less similar than they would
be in a random set of observations (Legendre,
1993).

Recent biogeographical studies have
increasingly addressed spatial autocorrelation
in broad-scale biodiversity modelling (eg,
Selmi and Boulinier, 2001; Lichstein et al.,
2002; Diniz-Filho et al., 2003; Diniz-Filho
and Bini, 2005; Ferrer-Castán and Vetaas,
2005). There are several different
approaches to explore spatial structure in the
data, including: (i) applying generalized least
squares (GLS), where spatial correlation
structure is incorporated assuming exponen-
tial, spherical or Gaussian relationships
between error terms and geographical dis-
tances (Selmi and Boulinier, 2001; Diniz-Filho
and Bini, 2005); (ii) using geographical
coordinates of the sampled data points
and their higher and cross-product terms in
the modelling exercise (trend-surface analy-
sis) and associated variation partitioning
analysis (eg, Heikkinen and Birks, 1996;
Lichstein et al., 2002; Titeux et al., 2004;
Ferrer-Castán and Vetaas, 2005); and (iii)
comparing semivariograms or Moran’s I coef-
ficients of the field data and of the model
residuals to see how much of the spatial
autocorrelation structure in the species data
is accounted for by the environmental vari-
ables (Bio et al., 2002; Hawkins et al., 2003).
According to Diniz-Filho et al. (2003) and
Ferrer-Castán and Vetaas (2005), strong
correspondence between the spatial struc-
tures of both species data and environmental
data may increase the danger that accounting
statistically for spatial component (eg, by
partial regression or spatial GLS) downplays
the significance of environmental variables. 
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A recent novel approach to use eigenvector-
based spatial filters that are capable to
capture spatial structures at different scales
(Borcard and Legendre, 2002; Griffiths,
2003; Borcard et al., 2004; Diniz-Filho and
Bini, 2005). These filters can be used as pre-
dictors in (partial) multiple regression analysis
to take the spatial autocorrelation into
account as effectively as possible (Diniz-Filho
and Bini, 2005).

However, these recent developments in
accounting for spatial autocorrelation has
predominantly concerned species richness
modelling. As regards species distribution
modelling and particularly bioclimatic enve-
lope modelling, progress has been more mod-
est (but see Araújo et al., 2005a; Segurado
et al., 2006). In species-environment model-
ling one of the approaches to account for the
patch-like autocorrelation in the data is to use
autologistic models in which information of
the response variable from the neighboring
sampling points is used to produce a summary
(autocovariate) variable (Augustin et al.,
1996; Heikkinen et al., 2004). Another option
is to use spatial autoregressive models in
which a spatial autocorrelation (SCA) term is
added to the linear predictor to reduce the
spatial structure in the model residuals
(Lichstein et al., 2002; Guisan and Thuiller,
2005).

Overall, there is a need for additional stud-
ies assessing the importance of autocorrela-
tion within bioclimatic modelling and more
importantly to investigate approaches to
circumvent or deal with the issue. This is
because species-climate studies are often
based on atlas data sets that are most likely
vulnerable to autocorrelation (Diniz-Filho and
Bini, 2005). However, integrating spatial
autocorrelation effects into bioclimatic
modelling in a context of global change can be
problematic. More specifically, it is unlikely
that spatial structure described under current
conditions will be maintained in the future
because they indirectly reflect the effects
of historical, dispersal and environmental
factors (Guisan and Thuiller, 2005).

VII Species geographical and ecological
characteristics and performance of
species-climate models
By definition, bioclimatic envelope models
examine the relationship between climatic
variables and species distributions. However,
there is evidence that the performance of
species-climate models may be influenced by
the characteristics of the species distribution
patterns. Stockwell and Peterson (2002)
noted that predictive accuracy of GARP was
not independent of range size; widespread
species were modelled less accurately. Similar
results had been discussed by Araújo and
Williams (2000), using logistic regression.
Fielding and Bell (1997), Manel et al. (2001)
and McPherson et al. (2004) argued that
species prevalence can also have an impact on
the accuracy of the species distribution mod-
els, measured either by Cohen’s kappa or
AUC. However, the results of these papers
were not fully coincident. According to
Manel et al. (2001) kappa was only marginally
affected by prevalence and AUC values were
wholly independent of it. In contrast,
McPherson et al. (2004) argued that kappa is
sensitive to variation in prevalence values and
AUC provides a more reliable measure of
model performance. McPherson et al. (2004)
concluded that models perform best when
prevalence is intermediate (see also Virkkala
et al., 2005).

Other species spatial characteristics might
also affect model performance (Brotons et al.,
2004; Segurado and Araújo, 2004; Luoto
et al., 2005). In a simulation experiment,
Reese et al. (2005) showed that model accu-
racy was positively related to the level of con-
tiguity in the distribution maps. This suggests
that species with high spatial contiguity might
be better modelled than species with low con-
tiguity. Brotons et al. (2004) reported that the
predictive accuracy of the models was gener-
ally higher for more marginal species (margin-
ality � distance of species’ mean distribution
in environmental space relation to the global
mean). In a comprehensive modelling study,
Segurado and Araújo (2004) investigated the
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effects of two species geographical character-
istics (area of occupancy and extent of occu-
pancy) and two species-environmental
characteristics (marginality and niche breath)
on models’ accuracy. Their results indicate a
clear trend towards increasing model perform-
ance for restricted-range species and decreas-
ing performance for widespread species.
Segurado and Araújo (2004) also noted that
model performance is higher for species with
high environmental marginality and low niche
breath than for generalist species.

Three recent studies have also demon-
strated the sensitivity of model projections for
the geographical distribution and ecological
properties of the target species (Kadmon
et al., 2003; Luoto et al., 2005; Thuiller et al.,
2005a). Kadmon et al. (2003) showed that
species characterized by high prevalence
within a limited range of climatic conditions
were modelled with higher precision than
rarer ones with wide climatic ranges; thus,
niche breath had a negative effect on model
accuracy. The results of Luoto et al. (2005)
suggested that the performance of species-
climate models for boreal butterflies
were negatively correlated with latitudinal
range (geographical extent of distribution)
and prevalence, and positively with spatial
autocorrelation (clumping of distribution)
(Figure 2). In other words, species at the mar-
gin of their range or with low prevalence were
better predicted than widespread species, and
species with clumped distributions better
than widely scattered dispersed species. The
overall message emerging from these studies,
as well as other recent studies discussed here,
is that species geographical attributes can sig-
nificantly influence the behaviour and uncer-
tainty of pure species-climate models, which
should be taken into account in assessments
of climate change impacts.

VIII Sampling and delineating climatic
predictors and equilibrium of species�

distributions with climate
An accurate description of species-environment
relationships requires that samples are taken

Figure 2 The effects of (A) latitudinal
range (geographical extent of
distribution); (B) prevalence; and (C)
clumping of distribution (measured as
spatial autocorrelation) on the accuracy
of species-climate models for the
distributions of 98 butterfly species in
Finland. Accuracy of models was
measured by area under curve (AUC)
values from the ROC plots. Results are
shown both as resubstitution (open
symbols) and cross-validation (solid
symbols) statistics 
Source: Reprinted from Luoto et al.
(2005).
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across the complete gradient of environmental
space in which species occur. Such sampling
should include sites defining the boundaries of
species environmental distributions (Vaughan
and Ormerod, 2003). Kadmon et al. (2003)
reported that the climatic bias in sampling can
have a significant effect on the accuracy of
model predictions and reduce model perform-
ance. Thuiller et al. (2004c) examined the
consequences of restricting the range of
environmental conditions over which species-
climate models are developed. The authors
showed that the incomplete sampling of the
climatic range can strongly influence the estima-
tion of response curves, especially towards
upper and lower ends of environmental ranges
(see also Pearson et al., 2006). This may reduce
the applicability of the models for predictive
purposes and produce spurious projections of
species’ distributions into the future. In conclu-
sion, projections of species’ future distributions
should be evaluated carefully if the model
calibration data is not covering the full range
of environmental gradients which species
inhabit.

Incomplete coverage of projected future
climates can also produce prediction errors.
For example, in the Northern Hemisphere
species are generally projected to move
northwards. In many studies, southernmost
regions are projected to experience a future
climate that has no modern analogue in the
study region. In such cases modelling results
provide incomplete information of how
species might respond to non-analogue situa-
tions (Sætersdal et al., 1998). This may lead
to the projections of species loss in the south-
ern quarters of the study area being an arti-
fact. This issue has been discussed in some of
the bioclimatic envelope modelling papers (eg,
Bakkenes et al., 2002; Peterson et al., 2002b).
However, only Sætersdal et al. (1998) have to
our knowledge treated the problem in an
explicit manner, by excluding those parts of
the study area which were projected to have
a future climate with no modern analogue.

It is possible that different types of climatic
predictors other than those usually used in 

bioclimatic modelling might provide better cor-
relations with the species’ distributions.
Particularly the long-term (eg, 30 years) aver-
age data commonly used may not show the
effects of certain coincidences, such as a
sequence of cool, short summers or growth
seasons (Baker et al., 2000). Establishment of,
for example, insect populations may depend on
very short-term weather events. Moreover,
Hill et al. (1999) pointed out that mean
monthly climate values cannot reflect short-
term climatic events and extreme conditions
that may have an important influence upon
population dynamics of butterflies. A period of
particularly wet and cold summer weather
may depress local populations to levels where
they can be vulnerable to extinction.

A general assumption in bioclimatic model-
ling is that species’ distributions are at equilib-
rium with current climate. Recent studies
have asked how distant from equilibrium are
current distributions of species, and further
questioned whether possible deviations from
equilibrium would produce important biases in
species-climate model projections (Svenning
and Skov, 2004; Araújo and Pearson, 2005).
Using species data from a 50-km grid system
in Europe and a pattern-based analysis
(Mantel test), Araújo and Pearson (2005)
showed that the degree of covariation
between four studied species groups and
climate varied notably. Covariation was
strongest between plant and bird species’
composition and climate, whereas the rela-
tionships between reptiles, amphibians and
climate were weaker. These findings led to the
conclusion that the two latter groups would
be more likely to have distributions that depart
from equilibrium assumptions, possible due to
lower dispersal abilities. The authors also
concluded that such a departure would affect
the reliability in which bioclimatic models cap-
ture the full responses of species to climate.

IX Effects of non-climatic factors 
and scale
In the species-climate modelling literature 
it has been increasingly highlighted – and
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occasionally examined (see Iverson and
Prasad, 1998; Pearson et al., 2004; Thuiller
et al., 2004a; Virkkala et al., 2005; Luoto
et al., 2006b) – that many factors other than
climate may have an important role in explain-
ing species’ geographical distributions. Such
effects need to be taken into account when
developing future projections of species’ dis-
tributions. Iverson and Prasad (1998) showed
that in many cases a combination of climate
and edaphic variables was necessary to
achieve the best CTA models for the studied
tree species (see also Coudun et al., 2006).
Huntley (1995) proposed that, although an
appropriate model relating geographical distri-
bution of plants to environment may include
only macroclimatic variables, in the case of
birds such a model may need also to include
structural attributes and taxonomic composi-
tion of vegetation. Crick (2004) emphasized
that the current distributions of birds may be
due to factors other than climate, for example
past persecution (Milvus milvus in the UK as
an example). In such cases purely species-
climate models based on current distributions
can yield incomplete indications of the
species’ climatic needs.

However, most attention has hitherto
focused on integrating the possible impacts of
land cover into bioclimatic modelling studies.
Bakkenes et al. (2002) noted that conclusions
of the pure species-climate models on coastal
regions should be treated carefully because in
such regions species’ distributions are limited
geographically by the sea and not by the
climate. In fact, only a few biogeographical
studies have explored the importance of cli-
mate versus land cover for modelling species’
distributions (but see H-Acevedo and Currie,
2003; Stefanescu et al., 2004; Thuiller et al.,
2004a; Bomhard et al., 2005). Moreover, it is
important to note that the variation of impor-
tance of climate and land-cover factors is very
likely a scale-dependent phenomenon (cf.
Wiens, 1989; Pearson et al., 2004). The rela-
tive roles of land cover and scale have been
insufficiently examined at different scales 
(but see Thuiller et al., 2003a). However, the

limited results available so far suggest that, at
the coarse European resolution, the predic-
tive power of bioclimatic models are generally
not greatly improved by the inclusion of land-
cover variables (Thuiller et al., 2004a),
whereas at 10 km or higher resolution the
integration of land-cover data can improve
spatial predictions for certain species (Pearson
et al., 2004; Virkkala et al., 2005; Luoto et al.,
2006b).

The importance of land cover at varying
scales is likely to vary among different groups
of organisms and may also be related to the
habitat specifity of species. Virkkala et al.
(2005) showed that the distribution patterns
of marshland birds in boreal regions at the
scale of 10 � 10 km reflect the interplay
between habitat availability and climatic vari-
ables; however, the coverage of marshland
habitats was clearly the most important pre-
dictor for species distributions. Luoto et al.
(2006a) modelled the distributions of 98
boreal butterfly species at the same resolution
using climate and land-cover information.
Although certain butterfly species showed
clear correlations with some land-cover vari-
ables, most of the variation in butterfly distri-
butions appeared to be associated with
climate, particularly growing degree-days and
mean temperature of the coldest month.

The results of Thuiller et al. (2004a),
Pearson et al. (2004), Virkkala et al. (2005) and
Luoto et al. (2006b) are concordant with the
current paradigm that climate governs the
species’ distributions at broad biogeographical
scales (Currie, 1991; Huntley et al., 1995;
Parmesan, 1996), whereas land-cover and spa-
tial distribution of suitable habitats determine
species’ occupancy at finer spatial resolution
(Hill et al., 1999; Bailey et al., 2002; Pearson
et al., 2004; Luoto et al., 2006b). However, our
understanding of how the relative importance
of land cover versus climate varies over a range
of scales and between different species groups
is still incomplete, and more multiscale assess-
ments are needed (cf. Rahbek and Graves,
2001; Rahbek, 2005) if progress in modelling
species distributions is to be expected.
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X Conclusions
All modelling approaches have their advan-
tages and disadvantages. The choice of the
modelling approach has to consider a range of
factors including the breadth of ecological
knowledge, existing distribution data, spatial
and temporal scale as well as goals of the
modelling (Pearson and Dawson, 2003).
Bioclimatic models allow consideration of
how climate change may affect many species
simultaneously and provide estimates of
potential change in species richness and
ecosystems in a given region (eg, Crumpacker
et al., 2001; Peterson et al., 2002b; Pearson
and Dawson, 2003; Beaumont et al., 2005).
These models are useful ‘first filters’ for iden-
tifying locations and species that may be
greater risk and provide first approximations
as to the impact of climate change on species
ranges (Pearson and Dawson, 2003; Thuiller
et al., 2005b). Bioclimatic models may also be
informative when investigating the likelihood
that particular change in climate might affect
species’ distributions (Araújo et al., 2006).
However, due to numerous sources of uncer-
tainty, the models and their results should
only be applied with a thorough understand-
ing of the limitations involved (Pearson and
Dawson, 2003; Thuiller, 2003; 2004; Araújo
et al., 2005a; 2005b).

Sources of uncertainty reviewed here indi-
cate that in applying correlative species-
climate models we need to have broad
understanding of the wide range of method-
ological issues that may affect the usefulness
of models; only then should we be able to
circumvent the pitfalls associated with model-
ling species responses to climate change.
Furthermore, it is clear that more realistic
simulations of the impacts of climate change
on species range shifts require addressing the
complex interactions between the many fac-
tors affecting distributions (Pearson and
Dawson, 2003). Many recent papers have
highlighted the need for research aiming to
develop approaches that integrate factors
such as land cover, biotic interactions and

dispersal mechanisms into pure species-
climate models (Pearson et al., 2002; Guisan
and Thuiller, 2005). An increasing number
of studies have started to address these
challenges (eg, Leathwick and Austin, 2001;
Iverson et al., 2004; Pearson et al., 2004;
Pearson and Dawson, 2005), but there is 
still substantial research required. In fact,
developing hybrid-models that bring 
together the best of correlative bioclimatic
modelling with the best of mechanistic and
theoretical models is one of the most impor-
tant challenges for modellers (Araújo et al.,
2006).

Nevertheless, it is important to acknowl-
edge that natural systems are not closed,
hence it is not possible to account for all
potential driving forces of species distribu-
tions (Araújo et al., 2005a). Thus, errors are
an inherent property of bioclimatic models,
whether they are correlative, mechanistic or
theoretical, and the primary value of models
is very likely more heuristic than predictive
(Araújo et al., 2005b). By and large, because
of the various sources of uncertainty dis-
cussed here it may be conceptually inade-
quate to use the projections of bioclimatic
models as face value for making predictions of
future events. However, as argued by
Whittaker et al. (2005), when the limitations
of models are understood, we should be in a
better position to make the best use of their
results. Last but not least, a plea made by
Araújo et al. (2005b) deserves to be put for-
ward also here: more empirical evidence
needs to be gathered to reinforce the confi-
dence of bioclimatic models and their predic-
tions. By providing repeated evidence of their
value we should be in a better position to use
their outputs with confidence.
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