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Abstract: Hitherto fungi have rarely been considered in conservation biology, but this is changing as the
field moves from addressing single species issues to an integrative ecosystem-based approach. The current
emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi,
their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals
and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state
of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation:
as providers of habitats and processes important for other organisms; as indicators of desired or undesired
trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links
between human societies and the natural world because of their value as food, medicine, and biotechnological
tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope
conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate
the crucial role of fungi in nature.
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non-timber forest products, pathogens

Una Perspectiva Micótica de la Bioloǵıa de la Conservación

Resumen: Hasta el momento, los hongos rara vez han sido considerados dentro de la Bioloǵıa de la
Conservación, pero esto está cambiando conforme la disciplina cambia su enfoque en problemas de especies
individuales hacia una estrategia integrada basada en los ecosistemas. El énfasis actual en la biodiversidad
como proveedor de servicios ambientales enfoca la atención en la amplia diversidad de hongos, sus papeles
cruciales en los ecosistemas terrestres y los beneficios de considerar a los hongos en sintonı́a con las plantas
y los animales. Revisamos el papel de los hongos en los ecosistemas y elaboramos un resumen del estado
actual de su conservación. Hay cinco áreas en las cuales los hongos pueden integrarse inmediatamente en la
conservación: como proveedores de hábitats y procesos importantes para otros organismos; como indicadores
de tendencias deseadas o indeseadas en el funcionamiento del ecosistema; como indicadores de hábitats
con valor de conservación; como proveedores de enlaces fuertes entre las sociedades humanas y el mundo
natural debido a sus valores como alimento, medicinas y herramientas biotecnológicas; y como una fuente de
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herramientas y estrategias novedosas para la conservación de grupos megadiversos de organismos. Esperamos
que los profesionales de la conservación valoren el potencial de los hongos, integren a los micólogos en su
trabajo y aprecien el papel crucial de los hongos en la naturaleza.

Palabras Clave: descomponedores, ecoloǵıa de bosques, especies indicadoras, hongos micorŕızicos, ĺıquenes,
patógenos, productos no-maderos de los bosques, servicios ambientales

Introduction

Since the Rio Convention on Biological Diversity was
signed in 1992, the conservation of biological diversity
has been an important topic in international politics, and
the urgent need for action was reignited at the tenth meet-
ing of the Conference of the Parties to the Convention
on Biological Diversity in Nagoya (CBD 2010). Conserva-
tion initiatives have evolved since the late 20th century
from an initial focus on protection of pristine areas and
particular (charismatic) species of animals and plants to
a more holistic ecosystem-based approach (e.g., Salafsky
et al. 2002). So far fungi have received limited emphasis
in conservation biology (Griffith 2012), except as poten-
tial threats to ecosystems, individual species, or species
groups (Fisher et al. 2012). Reasons for this neglect are
complex but seem related to a general suspicion of fungi
in the English-speaking world, their hidden lifestyle and
challenging diversity, and a historical classification as an
odd division of the Plantae (Minter 2010). We are certain
the situation is changing due to an ongoing revolution in
methods to obtain data on fungal species and communi-
ties and because fungi are the foundation of a variety of
ecosystem services.

We sought to indicate directions toward a full and bal-
anced appreciation of fungi in conservation biology. We
reviewed the critical roles fungi play in ecosystems and
provide an overview of the current state of fungal conser-
vation. We found that fungal conservation is important
in its own right and stress that consideration of the fun-
gal component of biodiversity can benefit conservation
in general.

Fungi as Ecosystem Actors

Fungi constitute a megadiverse kingdom. There are at
least 1.5 million, but probably as many as 3–5 million
species, of which only about 100,000 have been de-
scribed formally (Blackwell 2011; Scheffers et al. 2012).
Some are unicellular, but the majority form mycelia,
which range in size from a few millimeters to some of the
largest organisms on the planet; for example, honey fungi
[Armillaria spp.] mycelia can occupy many hectares of
forest floor. Most fungi are hidden in the substrates they
inhabit. Some form fruit bodies periodically or cause
visible symptoms in host plants, but only lichens are
generally visible throughout most of their lifecycle. Dis-
persal is usually passive and maintained by microscopic

windborne spores, but aquatic dispersal and animal vec-
tors are important for many species. Profuse spore pro-
duction may easily lead to the view that fungi generally
have much wider distribution ranges and face less dis-
persal limitation than most other multicellular organisms.
But this is probably not the case; recent research on spore
dispersal (e.g., Norros et al. 2012; Peay et al. 2012) and
fungal biogeography (Taylor et al. 2006; Salgado-Salazar
et al. 2013) shows that fungi tend to be less well dispersed
and ubiquitous than believed.

Fungi maintain crucial processes in terrestrial ecosys-
tems as decomposers of dead plant tissues and mutualistic
partners of almost all terrestrial multicellular organisms.
Decomposer fungi are especially prominent in forests and
other ecosystems where grazing, fire, or human harvest of
plant material is not dominant in carbon cycling (Boddy
et al. 2008). Plants produce between 5 and 33 t/ha of
organic matter in forest ecosystems every year, and an
estimated global carbon pool of 73 petagrams is bound
in dead wood (Pan et al. 2011). Most of this organic matter
is lignocellulose, a complex of recalcitrant biopolymers
that only fungi can decompose efficiently (Boddy et al.
2008). Fungal decomposition is crucial for the release of
nutrients and energy stored in plant litter, so fungi form
the basis of soil food chains and are grazed on directly or
indirectly by a wide range of invertebrate and vertebrate
taxa (Stokland et al. 2012).

Fungi are involved in diverse mutualistic associa-
tions. Lichenized fungi associated with green algae
or cyanobacteria are highly stress tolerant and medi-
ate most primary production and nitrogen fixation in
desert and polar ecosystems, which cover 6% of the
World’s surface (Shaver & Chapin 1991). In other cli-
mate zones, they dominate microhabitats such as tree
trunks, rock surfaces, and living leaves of rainforest trees
(Scheidegger & Werth 2009). Most plants (approximately
90% of species) rely on mycelial networks intimately con-
nected with their roots, mycorrhizas, for the uptake of
water and N, P, and other minerals from soil. In return,
mycorrhizal fungi receive substantial amounts of sugars
from their plant partners, typically 15–30% of the net
primary production (Smith & Read 2008).

Mycorhizal fungi are not only important for nutrient cy-
cling, but also for mineral weathering and carbon storage
in forest ecosystems (Courty et al. 2010; Clemmensen
et al. 2013). Further, they are intimately involved in
plant competition, and because different groups of fungi
have very different enzymatic capacities, changes in plant
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composition mediated by natural or anthropogenic pro-
cesses might result in dramatic shifts in ecosystem pro-
cesses (Averill et al. 2014).

More cryptically, the internal tissues of all vascular
plants host diverse communities of fungal endophytes,
of which some are mutualistic and prevent attacks from
pathogens and herbivores, whereas others are decom-
posers with a latent invasion strategy (e.g., Rodriguez
et al. 2009). Fungal endophytes represent a hyperdiverse
group globally, both in terms of unknown species and
undiscovered bioactive compounds (Arnold & Lutzoni
2007; Smith et al. 2008). As a functional group, they are
not clearly delimited from fungi classified as pathogens.
In some cases, beneficial fungi may become pathogenic
due to environmental changes or an imbalance in co-
evolutionary processes. For example, the recent out-
breaks of ash dieback in Europe are caused by the endo-
phytic Hymenoscyphus pseudoalbidus (syn.: Chalara
fraxinea), which originates in Eastern Asia where it
lives in non-pathogenic association with Manchurian ash
(Fraxinus mandschurica) (Zhao et al. 2012; Pautasso
et al. 2013).

The public perception, and perhaps that of many con-
servation biologists, is that fungi are extremely harmful
because of the pathogenic nature of a few species (Fisher
et al. 2012). Well-known examples include the apparent
extinction of more than 60 amphibian species due to
chytridiomycosis (Pounds et al. 2006) and the alteration
of European and North American landscapes by chestnut
blight, Dutch elm disease, and ash dieback (Loo 2009;
Pautasso et al. 2013). However, natural disturbances are
integral to the functioning and continued evolution of
ecosystems, and recent studies suggest pathogenic fungi
are drivers of biodiversity in tropical forest ecosystem
due to their density dependent attacks on species that
might otherwise become dominant by competitive exclu-
sion (Bagchi et al. 2014). Many outbreaks of pathogenic
fungi are caused or strongly reinforced by human actions,
not least the unintentional movement of fungal species
around the globe (e.g., Brasier 2008).

Current State of Fungal Conservation

Threats to fungi are essentially the same as threats to
animals and plants, including the degradation, loss, and
fragmentation of natural habitats, climate change, and
deposition of nitrogen and other pollutants (Sala et al.
2000; Dahlberg et al. 2010).

Fungal conservation is most highly developed in
Fennoscandia (Dahlberg et al. 2010), a region of rela-
tively low overall biodiversity. Government finances the
production of red lists of animals, plants, and fungi, and
these groups have equal priority for conservation. This
integrative approach has fueled fungal conservation for
three reasons. First, fungi in Fennoscandia constitute a
significant part of the total biodiversity because the boreal

zone consists largely of coniferous forests, which pro-
vide a wealth of niches for fungi but host relatively few
vascular plants and larger animals. Second, Fennoscandia
has a long tradition in fungal taxonomy and a large and
knowledgeable community of amateur field biologists,
which have resulted in an increasing knowledge of the
ecology and rich data on the distribution of macrofungi.
Third, as a consequence of the countries’ conservation
goals encompassing all groups of organisms, the focus
of conservation is directed more toward habitats than
specific species. In practice, species from many groups
are considered together to identify and prioritize con-
servation measures, and fungi are well suited as indicator
species to identify sites, in particular forests, with specific
conditions and histories.

Fungal red lists are now widely used for management
and conservation activities across Europe; 33 of the 35
national red lists of fungi are for European countries and
2 have been produced for other parts of the world (New
Zealand and Japan) (Dahlberg & Mueller 2011). A few
countries, including Finland, Norway, Sweden and the
United Kingdom, have launched action plans to protect
specific fungal habitats and species, and in at least 12
European countries there are examples of fungi being
considered in selection and prioritization of nature re-
serves (Dahlberg et al. 2010). Outside of Europe and the
Pacific Northwest region of the United States (Molina
2008), initiatives and strategies to conserve fungal bio-
diversity are more scattered (but see Buchanan & May
2003; Manoharachary et al. 2005; Abdel-Azeem 2010);
only three fungal species are currently globally red listed.
However, the situation is changing. The International
Union for Conservation of Nature (IUCN) aims to have
several hundred fungal species on their red list in the near
future (IUCN 2013). Organizations dedicated to fungal
conservation are also on the rise. The European Council
for the Conservation of Fungi (ECCF) was formed in 1985,
and in 1991 a fungal specialist group was established
within the IUCN. Since 2007, fungal conservation groups
have also been established in Africa, South America, and
the United States (Barron 2011), and an International Soci-
ety for Fungal Conservation (ISFC) was founded in 2011,
suggesting a need for attention to fungal conservation at
both the national and international levels.

Benefits of Including Fungi in Conservation

Many conservation professionals acknowledge that hu-
man well-being and social resilience depend on global
biodiversity, a view that is formalized in the concept
of ecosystem services. The Millennium Ecosystem As-
sessment (World Resources Institute 2005) grouped
ecosystem services into four categories—regulating, sup-
porting, provisioning, and cultural services. Like other
multicellular organisms, fungi provide all of these ser-
vices (Pringle et al. 2011), but the fundamental role fungi
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have as regulators of ecosystem processes in terrestrial
ecosystems makes them central to sustainable land use
(Parker 2010; Mace et al. 2012). However, it is just as
evident that the majority of threatened fungi do not con-
tribute ecologically to, and cannot even survive in, areas
managed for timber and crop production. We believe
fungi deserve conservation in their own right, but below
we review how conservation in general can benefit from
the inclusion of fungi.

Fungi Providing Services for Other Organisms

Most of the key processes driven by fungi (e.g., recycling
of nutrients from dead wood and maintenance of plant
nutrition by mycorrhizal fungi) derive from the combined
action of larger ecological guilds (Fig. 1a). Within guilds
fungal communities are often very species rich, which
suggests high levels of functional redundancy. Both ex-
perimental (e.g., Strickland et al. 2009; Fukami et al.
2010) and explorative studies (e.g., Taylor et al. 2014)
report high levels of niche differentiation and less redun-
dancy than expected in fungal communities, indicating
that species identities matter in major ecosystem pro-
cesses where fungi contribute.

Fungi provide a direct principal food resource for
many organisms, including mammals, orchids, and in-
sects. Polypores and other long-lived fleshy fruit bodies
are particular rich habitats for dependent insects, espe-
cially beetles and diptera. For example, the dryad’s saddle
(Polyporus squamosus) hosts over 246 beetle species
in Europe (Benick 1952). Other fungi are involved in
the formation of microhabitats, such as cavities in trees,
that are critical for some birds, mammals, arthropods,
and epiphytes (Fritz & Heilmann-Clausen 2010; Remm
& Lõhmus 2011; Cockle et al. 2012). In many cases,
associations are species specific or selective, implying
that understanding of the fungal part of the association
is crucial for the conservation of the dependent species,
as has been described for rare beetles associated with
bracket fungi (Komonen 2003), orchids dependent on
specific suites of mycorrhizal partners (Batty et al. 2002),
and threatened marsupials dependent on truffles for food
(Claridge & May 1994).

Fungi as Indicators of Ecosystem Processes

The narrow and thin-walled hyphae of fungi are exposed
to chemicals in the environment and are highly sensi-
tive to microclimatic gradients. Lichens are among the
most sensitive organisms regarding air quality. In fact,
the earliest record of biodiversity loss resulting from hu-
man industrial activity was made by Thomas Pennant in
1773, who observed the decline of lichens as a result
of copper smelting at Parys Mountain, Wales (Pennant
1781). The differential sensitivities of lichens to SO2 and
other airborne pollutants have since been widely used as

a proxy measure of air quality in both urban and natural
areas (Nimis et al. 2002).

Non-lichenized fungi are also affected by SO2 pollution,
but anthropogenic nitrogen pollution is now the most
pervasive threat. The decline of some mycorrhizal species
(e.g., stipitate hydnoids and Cortinarius spp.) have been
particularly dramatic, though more widespread changes
in species composition in polluted areas are of equal con-
cern (Arnolds 2001; Lilleskov et al. 2011).

The effects of global climate change on fungi are diffi-
cult to quantify, but it is apparent that climate warming
over recent decades has altered the phenology of fungal
fruiting. For example, many fungi previously known to
fruit only in the fall now also fruit in spring (Kauserud
et al. 2012). Changes in fungal community structure pro-
vide an early warning of changing ecosystem processes,
but so far there have been few efforts to implement this
in standardized monitoring schemes. Broadly, fungi con-
stitute the most visible link to the vast biodiversity under-
ground and are basal to the highly diverse decomposer
food chains. Incorporating fungi into ecosystem level in-
dices such as the biodiversity intactness index (Scholes &
Biggs 2005) and the living planet index (Loh et al. 2005),
which so far neglected decomposers in general, would
greatly enhance the value of these indices.

Fungi as Indicators in Conservation Planning

The very specific habitat requirements of fungi make
them well suited as indicators for selecting conservation
areas and monitoring their status. Accounting for fungi
in an area expands understanding of the biotic space and
emphasizes microhabitats and processes that are pivotal
for biodiversity but easily overlooked if fungi are not con-
sidered. For instance, specialized wood-inhabiting fungi
may be absent from otherwise valuable woodland areas
due to the lack of old trees and dead wood, and may be
extirpated in a landscape if remaining old-growth areas
are fragmented (Stokland et al. 2012). Similarly, some
mycorrhizal and lichenized fungi are highly sensitive to
breaks in forest continuity and may be lost from forest
ecosystems if mature trees are not retained through rota-
tions (Coppins & Coppins 2002; Rosenvald & Lõhmus
2008). These processes are also important for many
other organisms, including arthropods, mollusks, and mi-
crofauna; in practice fungi are often the easiest group
to monitor.

Especially in Europe, several indicator schemes based
on fungi have been suggested to assess the conserva-
tion value of forests and grasslands (Heilmann-Clausen
& Vesterholt 2008) (Fig. 1b), and in Sweden and the
Baltic countries fungi play a central role in the iden-
tification of key forest habitats—smaller areas selected
to sustain biodiversity in the managed forest landscape
(Timonen et al. 2011). While fungal indicator schemes
are generally proposed based on field experience rather
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Figure 1. (a) Three different mycorrhizas on European Beech (Fagus sylvatica) (upper arrow, Byssocorticium
atrovirens; middle arrow, unknown fungus; lower arrow, Russula sp.) (photo by Jens H. Petersen); (b) Hygrocybe
punicea, a waxcap species commonly used as an indicator of grassland sites with high conservation value (photo
by Nigel Bean); (c) women selling fungi in a street market in Zambia (photo by Maria Härkönen); and (d) a
family collecting fungi for food and learning about their identification, near Copenhagen, Denmark (photo by
Flemming Rune).

than hard evidence, several studies confirm the validity
of suggested indicator species (e.g., Penttilä et al. 2006;
Müller et al. 2007).

Connections between Fungi and Humanity

The links between fungi and people are ancient. Fungi
have been used as a source of food, medicine, and tinder
for thousands of years. They are features in religious cere-
monies, where statues and images of fungi are evident in
relicts of ancient civilizations (Rutter 2010). The cultural
appreciation of fungi varies across the globe, but in the
English speaking world they have been viewed tradition-
ally with suspicion (Arora & Shepard 2008). While this
may be one reason fungi have been somewhat overlooked
in conservation biology, the situation is clearly changing
as people become more aware of the wide variety of uses
and actions of fungi.

Wild fungi are a sustainable and renewable resource,
which may help turn public opinion in favor of con-
servation. Today, more than 1100 species of fungi are
collected for food or traditional medicine in over 80
countries (Boa 2004). Growing global markets for edi-
ble and medicinal mushrooms since the 1980s has led
to increased harvesting of many species for subsistence
and commercial sale (Fig. 1c). Over-exploitation by har-
vesters (Minter 2010) and negative effects of harvesting
on habitats (Egli et al. 2006) are rare, and positive effects
of use, such as increased awareness of fungi and their
habitats, yield many benefits for conservation. Their util-
ity provides incentives for conservation because many
prized wild fungi are restricted to relatively undisturbed
natural areas. Edible wild fungi are increasingly seen as
an economic alternative to timber production (Aldea

et al. 2012). Even larger economic interests are associated
with fungi as principal sources of enzymes, antibiotics,
and other chemicals in the biotechnology sector. These
interests are expected to increase in the coming century
as novel products are discovered from fungi (Erjavec
et al. 2012; Rambold et al. 2013). This may help restore
links between humanity and nature at a discursive level,
even though bioprospecting in general may be overrated
as a potential incentive for conservation in practice
(Costello & Ward 2006).

In times of increasing concern for disconnectedness
between urbanites and the outdoors, collecting wild ed-
ible fungi with minimal environmental impacts may be
the kind of activity the conservation movement should
encourage (Fig. 1d). The tradition of public involve-
ment in the scientific discipline of mycology is long.
Even today fungal taxonomists collaborate with ama-
teurs to obtain interesting specimens, and long time-
series data from fungal forays have been used in high
profile scientific papers of conservation relevance (e.g.,
Gange et al. 2007). The amount and quality of these
data have increased immensely since the development
of internet based platforms for recording of species,
storage of metadata, including documentation photos,
and communication between amateurs and professionals
(Halme et al. 2012).

While this development is very similar to what is hap-
pening in citizen science based projects on other organ-
isms, high fungal species richness and relatively poorly re-
solved taxonomy impose new challenges and innovative
solutions (Molina et al. 2011). Emery and Barron (2010)
involved local non-professional experts in an investiga-
tion of the taxonomy and reasons for decline of edi-
ble morels in the U.S. Mid-Atlantic. Hence, they provided
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a link between amateur field knowledge and taxonomic
expertise. Some professionals see the increase in amateur
mycologists as a threat to professional taxonomy in a time
when funding to do basic taxonomic work is shrinking.
However, successful citizen science is possible only if
skilled professionals can support and train interested am-
ateurs. We fully agree with Korf (2005) and Barron (2011)
that mycology as a scientific discipline could benefit
from increasing involvement by the public, even though
this might imply a reconsideration of research questions
and approaches.

Development of New Tools for Biodiversity Monitoring

Rapid developments of high throughput NextGen DNA
and RNA sequencing methods are revolutionizing the
way fungi can be studied. It is now possible, from a small
sample of soil or sawdust, to sample fungal communities,
identify known species, and classify unknown species
even if the community contains hundreds or thousands
of species (Kõljalg et al. 2013). New insights into fungal
biodiversity have already emerged, which in some cases
have direct conservation relevance (e.g., Kubartová et al.
2012; van der Linde et al. 2012; Ovaskainen et al. 2013).
The design of relevant sampling protocols, the processing
of massive bioinformatic data sets that include many un-
known organisms, and consideration of the relevance of
these unknown organisms for conservation are all aspects
that require substantial attention. Fungal conservation
research strengthened by metagenomics is not happen-
ing in isolation, and methodological improvements and
subsequent understanding of species distributions, com-
munity dynamics, and fungal contributions to processes
are likely to have considerable impact in other fields
of conservation.

Ways Forward for Fungal Conservation

With an estimated minimum of 1.5 million species world-
wide but only 100,000 species named so far, many con-
servationists might suggest that serious consideration of
fungi in conservation is premature. While we agree that
the big unknowns in fungal biology are challenging, we
also see solutions. Given the magnitude of fungal diver-
sity, the immense variation in life histories and ecological
strategies, and the variety of links between fungi and peo-
ple, multiple case-specific conservation strategies should
be considered. For example, in the selection of forest
patches for a reserve network, polypores, and lichens
might be the most appropriate fungal indicator of con-
servation value. For education and outreach campaigns,
a focus on wild edible and visually striking fungi makes
sense. In urban areas, epiphytic lichens are obvious indi-
cators of the state of and changes in air quality. This mir-
rors the situation in animal conservation, where various
taxonomic and functional groups are typically addressed

separately, unless interactions or obvious requirements
for complementarity call for a complex approach.

Fungal conservation initiatives are currently develop-
ing within the mycological community and in national
and international conservation organizations in which
mycologists participate. We hope the conservation com-
munity will welcome these initiatives, collaborate with
mycologists, and come to appreciate fungi as a crucial
part of nature that needs to be taken into account in
efforts to conserve biodiversity on Earth.
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Fritz, Ö., and J. Heilmann-Clausen. 2010. Rot holes create key micro-
habitats for epiphytic lichens and bryophytes on beech (Fagus syl-
vatica). Biological Conservation 143:1008–1016.

Fukami, T., I. A. Dickie, J. P. Wilkie, B. C. Paulus, D. Park, A. Roberts,
P. K. Buchanan, and R. B. Allen. 2010. Assembly history dictates
ecosystem functioning: evidence from wood decomposer commu-
nities. Ecology Letters 13:675–684.

Gange, A. C., E. G. Gange, T. H. Sparks, and L. Boddy. 2007. Rapid and
recent changes in fungal fruiting patterns. Science 316:71.

Griffith, G. W. 2012. Do we need a global strategy for microbial conser-
vation? Trends in Ecology & Evolution 27:1–2.

Halme, P., J. Heilmann-Clausen, T. Rämä, T. Kosonen, and P. Kunttu.
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Penttilä, R., M. Lindgren, O. Miettinen, H. Rita, and I. Hanski. 2006.

Consequences of forest fragmentation for polyporous fungi at two
spatial scales. Oikos 114:225–240.

Pounds, J. A., et al. 2006. Widespread amphibian extinctions from
epidemic disease driven by global warming. Nature 439:161
–167.

Pringle, A., E. Barron, K. Sartor, and J. Wares. 2011. Fungi and the
Anthropocene: biodiversity discovery in an epoch of loss. Fungal
Ecology 4:121–123.

Rambold, G., M. Stadler, and D. Begerow. 2013. Mycology should be
recognized as a field in biology at eye level with other major disci-
plines – a memorandum. Mycological Progress 12:455–463.
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