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Abstract

Many metrics can be used to capture trends in biodiversity and, in turn, these
metrics inform biodiversity indicators. Sampling biases, genuine differences be-
tween metrics, or both, can often cause indicators to appear to be in conflict.
This lack of congruence confuses policy makers and the general public, hin-
dering effective responses to the biodiversity crisis. We show how different
and seemingly inconsistent metrics of biodiversity can, in fact, emerge from
the same scenario of biodiversity change. We develop a simple, evidence-based
narrative of biodiversity change and implement it in a simulation model. The
model demonstrates how, for example, species richness can remain stable in
a given landscape, whereas other measures (e.g. compositional similarity) can
be in sharp decline. We suggest that linking biodiversity metrics in a simple
model will support more robust indicator development, enable stronger pre-
dictions of biodiversity change, and provide policy-relevant advice at a range
of scales.

Introduction

Concerns over the global loss of biodiversity and the
degradation of ecosystem goods and services have led
to international commitments aimed at preventing fur-
ther declines. For example, the parties to the Convention
on Biological Diversity (CBD) committed to the Strategic
Plan for Biodiversity 2011–2020, supported by 20 Aichi
Biodiversity Targets to be met by 2020, which calls for
effective and urgent action during this decade to tackle
biodiversity loss. These targets are echoed in the United
Nations’ newly approved Sustainable Development Goals
(SDGs) and, in particular, their goals 14 and 15 concern-

ing the conservation of seas and terrestrial ecosystems re-
spectively. It is critical both to be able to measure progress
against these targets and to identify the most effective
policies and interventions for achieving them. However,
there are a number of difficulties associated with both
these needs. We highlight five of the most pressing.

First, biodiversity is a complex concept and no single
indicator can effectively summarize its status or trend.
Many different metrics of biodiversity are used for
reporting trends although most are based upon the
number of species or individuals present. Some aspects
of biodiversity, such as phylogenetic and functional
diversity, are rarely assessed despite their potential
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relevance (Diaz et al. 2013; Mace et al. 2014; Stef-
fen et al. 2015). A framework for essential biodiver-
sity variables (EBVs) (Pereira et al. 2013) is now gaining
support and providing a basis for collaboration (see
http://geobon.org/essential-biodiversity-variables/ebv-
classes-2/) but is still far from being streamlined, with
six classes of metrics and 22 categories of measurement
(Pereira et al. 2013). Furthermore, being based on ecolog-
ical principles, the EBVs may not easily link to decisions
or policies designed to achieve the CBD targets (Jones
et al. 2011; Nicholson et al. 2012) or even to the targets
themselves (Tittensor et al. 2014). Even when considering
a single target, several different metrics may be in use.
For example, Aichi Target 12 calls for the prevention of
extinctions and progress is currently assessed using three
indicators: the Red List Index that measures change in
the number of threatened species since the previous
assessment, the Living Planet Index that assesses changes
in abundance within populations of vertebrates since
1970, and the Wildlife Picture Index that uses modeled
changes in species occupancy of birds and mammals in
16 sites since 2007. In addition to the differing metrics of
change used by such indicators, different indicators may
give different results because they sample different places
or taxa, or because they calculate change from different
baselines.

Second, most indicators of global biodiversity are
extrapolated or modeled from local observations at a par-
ticular time and place. However, the processes of biodi-
versity change (e.g., migration and local extinction) in-
teract and vary across scales of space and time, so that
global trends are not a simple function of local or regional
trends (Sax & Gaines 2003; Thomas 2013). This compli-
cates the description of global trends (McGill et al. 2015)
and confounds efforts to extrapolate and forecast future
changes.

Third, there are substantial gaps in data and obser-
vations due to the accessibility, popularity, measurabil-
ity, and even fundamental knowledge of different com-
ponents of biodiversity. Observations sourced for the
most widely used indicators are inevitably biased; gen-
erally toward recent decades, large-bodied and charis-
matic species, in terrestrial, temperate, economically-
developed, and easily-accessible environments (Boakes
et al. 2010; Hudson et al. 2014; Pimm et al. 2014; Geijzen-
dorffer et al. 2015; Meyer et al. 2015; Newbold et al. 2015;
Gonzalez et al. 2016). Certain areas of significant biodiver-
sity, such as soils and oceans, especially involving inver-
tebrate and microscopic organisms, are extremely poorly
known and weakly sampled (Mora et al. 2011).

Fourth, the system within which biodiversity loss
is observed is not well understood. Often, including
for the Aichi targets, the drivers–pressure–state–impact–

response (DPSIR) framework is used (Han et al. 2014;
Marques et al. 2014). However, the framework linkages
are assumed rather than evidence-based, and the metrics
of biodiversity are rather weak proxies for global metrics,
being based on available data but without evidence of
causal associations or knowledge of the dynamic relation-
ships involved. Developing linked indicator sets, based on
established cause-effect and feedback relationships, has
been recognized as important (Sparks et al. 2011), espe-
cially considering the different Aichi targets that are het-
erogeneous in intent and unlikely all to be achievable si-
multaneously (Perrings et al. 2011; Joppa et al. 2013; Di
Marco et al. 2016).

Lastly, it has proven difficult to link biodiversity change
into models of socioeconomic and environmental change,
with the result that biodiversity is at best weakly involved
in integrated assessment models (IAMs), and often only
as a response metric (van Vuuren et al. 2006), rather than
in the system dynamics (Harfoot et al. 2014a).

As a consequence of all these factors it is difficult to
present a summary of biodiversity loss that is comprehen-
sive and consistent. Recent studies indicating that there
is no recent loss of local species richness or diversity
(Vellend et al. 2013; Dornelas et al. 2014) have been chal-
lenged due to systematic biases in the data (Gonzalez et al.

2016). But other recent reports state the following suite
of conclusions: a sixth global mass extinction is already
underway (Ceballos et al. 2015), global species survival
measured by the Red List Index could fall by about 0.2
by 2020 (Tittensor et al. 2014), species extinction rates
are about 100 times background rates (Pimm et al. 2014),
land-use pressures have reduced average local terrestrial
species richness by about 14% (Newbold et al. 2015), ver-
tebrate populations have declined by 52% (WWF 2014),
terrestrial vertebrate populations have declined by about
25%, and invertebrate populations by about 45% (Dirzo
et al. 2014). Can all these be true, and if so what explains
the differences?

Here, we develop a simple narrative of global biodi-
versity change drawing upon current knowledge as well
as experts’ understandings of the system. We implement
this in a stylized spatially-explicit simulation of a hy-
pothetical region and show how commonly used biodi-
versity metrics might be expected to respond to anthro-
pogenic impacts in human-modified landscapes over dif-
ferent spatial scales. We measure biodiversity indicators
in the modeled system. We suggest that this approach,
as well as being a useful heuristic device, has practical
and applied value for refining global biodiversity metrics
in order to 1) measure the most influential changes, 2)
identify key points for intervention within the system,
and 3) reconcile apparent conflicts between biodiversity
indicators.
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1700 1975 2025

Habitat A

Habitat B

Habitat C

Specialist - affinity habitat A
Generalist - affinity habitat C
Disturbance tolerant - affinity habitat C
Climate sensitive - affinity habitat A
Specialist - exotic species
Generalist - exotic species

Sampling Plot

Human modified landscape

Figure 1 Regional landscape and community composition at three time points along a trajectory of human disturbance, starting from a pristine state

in 1700 and running forward to 2100, as simulated by the idealized biodiversity response model. Pristine areas are indicated by coloured regions and

human-dominated areas by white regions. A set of species exist in this landscape, each with an affinity for a particular habitat type (indicated by the

color of the symbol) and with traits indicated by the symbol shape. In the first 275 years, 55% of the pristine habitat in the landscape was converted to

human-modifiedmatrix, while the ambient temperature increased by 2.75 °C. In the last 125 years, a further 25% of the pristine habitat is converted, while

temperature increases by 1.25 °C.

Methods

Constructing the narrative

Our first step was to develop a picture of the current
state of understanding of global biodiversity change and
the most well-established causes and effects. We invited
26 biodiversity specialists, representing five countries,
employed within academia, nongovernmental organiza-
tions, and private companies, to state what they consid-
ered to be the most important changes taking place to
biodiversity (causes, states, and foci) based on their ex-
pert knowledge (see Section S1 for details). To assess the
evidence base for these changes, we asked them to state
also their level of confidence in each statement by indi-
cating its comprehensiveness (taxonomic, geographic and
across disciplines, and the extent of scientific consensus
among experts). This information was used to construct
the narrative that formed the basis for the simulation. The
narrative guided our selection of anthropogenic impacts
and provided the baseline of current state with which to
test the simulation’s results.

Exploring and visualizing the narrative through
a simulation

The information gathered in the “Constructing the
narrative” section was sufficiently complete to create a
representation of a hypothetical terrestrial landscape.
A stylized, spatially-explicit agent-based model of
ecosystem change in response to anthropogenic impacts
was constructed (Reconciling Biodiversity Indicators—
http://reconciling-biodiversity-indicators.unep-wcmc.
org) using the graphic language Processing (see Fry, B.
& Reas, C. Processing URL https://processing.org/). The
model simulates the time dynamics of individuals be-
longing to a set of 14 hypothetical species (see Table S1),
living in a randomly generated landscape initially
comprising three contiguous habitat types and a set of
protected areas (Figure 1). The region is initialized in a
pseudorandom pristine state. The extent and configura-
tion of each habitat is generated randomly from defined
spatial ranges, while the location of protected areas
is drawn randomly and the configuration determined
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randomly within a defined range. The species agents
are subsequently distributed randomly within habitat
types. The region is then subjected to habitat conversion,
climate change, and species invasions.

There are four native species types within the model:
habitat specialists, habitat generalists, disturbance
tolerants, and climate sensitives. Each species type has an
affinity for its native habitat (Figure 1). Habitat specialists
can exist only inside their native habitat, while other
types can persist in other natural habitats or in the
converted matrix if other criteria are met. Assuming that
resources are more limiting in the matrix (Felton et al.
2003), only a limited density of conspecific generalists can
be supported in the matrix, while disturbance-tolerant
species can only exist within a threshold distance of their
native habitat. There was no density dependence in na-
tive habitats. Climate-sensitive organisms can exist any-
where as long as the climatic conditions are within their
tolerance range. Each natural habitat is initialized with 20
individuals of each species type. The model also incorpo-
rates two additional species types: exotic generalists and
exotic climate-sensitive organisms. These are not present
in the initial model landscape but are probabilistically
introduced following anthropogenic change. The simula-
tion moves forward in time intervals of 25 years, and at
each step, habitat is converted following a random walk
from a randomly chosen start location at a rate of 0.2%
per year, approximately equivalent to the global rate of
conversion of pristine habitat to human-dominated area
documented in the HYDE reconstruction of land-use
change (Goldewijk 2001) and observed in global land
conversion data (Balmford et al. 2003). The ambient
temperature of the region increases at a rate of 0.01 °C
per year. Source code for the model can be obtained
from https://github.com/mikeharfoot/Reconciling-Biodi
versity-Indicators

The model was used to generate biodiversity metrics
comparable to those most often used to characterize bio-
diversity (see above): species richness, population abun-
dance, and extinction rates. Richness and abundance
were measured over time at two different spatial scales: a
local scale comparable to a single plot (which was sited
randomly) and a regional scale (i.e., across the whole
landscape) such as may be targeted for national, regional,
or ecosystem-wide assessments. Extinction rate was only
measured at the regional scale since it has little meaning
at the plot scale. We also calculated a metric of compo-
sitional similarity through time—Bray Curtis similarity,
which takes into account both species identities and their
abundances (Bray & Curtis 1957)—to measure the over-
all similarity of the regional community at each time step
to the initial state. A value of 1 indicates that the com-
munity has a composition of species in identical relative

abundances to that of the initial state, and a value of 0
indicates that no initial species are present in the current
community. The necessary data are seldom available to
calculate compositional similarity for real ecosystems.

Full details of the model are provided in Section S2.

Results

The narrative

Most experts described change to global biodiversity in
terms of loss of species (extinctions), loss of species
abundance, and spatial changes due to invasions, loss
of habitat, geographic range shifts, and homogenization
processes (see Table 1). Experts were more confident
when making statements at a global scale than at regional
or local scales, and were more confident about the state
of biodiversity than the causes of change, with particu-
larly high uncertainty over how anthropogenic pressures
interact and the consequences for ecosystems. Experts
were more confident when making statements about ver-
tebrates, and identified gaps in knowledge concerning in-
vertebrates, some plants, and microbes (see Section S3 for
details).

The key threats (habitat degradation and loss, climate
change, and invasive species) were identified as affect-
ing species differentially so that the simulation included
species with differing sensitivities (see Methods section).
Protected areas were identified as a key response and
were therefore included within the simulation landscape.

The simulation results

Figure 2 shows how the four metrics (species richness
(a), species abundance (b), extinction rate (c), and com-
positional similarity (d)) respond over a 400-year period.
Regional richness increases in the early stages of the
simulation due to the introduction of exotic species to the
region while native specialists persist. Regional richness
shows a clearer response than the plot-based metrics that
are subject to sampling variation across the landscape.
After around 1900, however, many habitat specialists
and climate-sensitive species are extirpated leading to
rapid declines in regional richness and increases in ex-
tinction rate. Plot-level richness declines monotonically
throughout these simulations as species are lost from
the sites faster than exotics establish. Both regional and
plot-level abundances decline but asymptote once all
sensitive species are filtered out. Because the original
assemblage is known precisely in these simulations (as
opposed to in real life), we can also track change in
compositional similarity to the starting condition over
time. Unlike other metrics, compositional similarity has
declined sharply, linearly, and continuously.
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Table 1 Summary of major findings from the survey of experts used to create the narrative. Details of the questions posed and answers given are

provided in the Sections S1 and S3, respectively

Main generalizations Further comments

There are widespread global

losses in species abundance

and range size

We are more certain of the status of vertebrates than other taxonomic groups

All species, including common species, may be impacted

Large-bodied mammal populations are rebounding from a very low baseline in North America and northern

Europe.

Large predators and all medium-sized animals are declining in Africa and other developing nations outside

protected areas due to persecution and hunting

Large-bodied mammals have declined (on average) in the past 50 years

Freshwater species are faring worse than other groups, everywhere and including most taxa

The marine environment is really suffering in nearshore parts of Africa due to intensive fishing.

Many species are threatened

with extinction and the

situation is not improving

Invertebrates are just as threatened as vertebrates

Specialist species are worse off than generalist species

Local species richness is not

declining

Locally, across sites at plot scale, there is no overall change in species richness over time for plant

communities

In time series, there is no overall loss of species richness within sites

This may be temporary and due to extinction debt or introduced species

Local species richness is

declining

Selected species are being removed from ecosystems

Homogenization is occurring Invasions of nonnative species are very significant in this process

–species communities are

becoming more similar

This can lead to losing diversity globally but not locally

Climate change is set to

further impact biodiversity

Species ranges are moving consistent with climate change

Climate change is already affecting species in the oceans and at high latitudes on land

As climate change increases in scope and severity, it will affect susceptible species and those subject to

other threats

We do not understand how pressures from climate change will interact with other pressures such as

hunting and land conversion

Invasive species pose a threat

to native species

Currently, this is especially evident on islands and increasingly in continental areas

Invasive species are greatly underreported in Africa and the tropics

The establishment of

protected areas is

preventing species loss in

some places

The rate of habitat loss has increased over the past 50 years—this has been the primary driver of wildlife

decline

Biodiversity has been

detrimentally impacted by

loss and degradation of

habitat, human presence,

and harvesting

Reduction of area of natural habitats causes “overcrowding” of habitat specialists, causing an extinction

debt of unknown size and duration

We need ecosystem-level analyses of how these pressures interact

Discussion

While the narrative is simplistic and the simulation styl-
ized, we suggest that the coupling of these approaches
is valuable in a number of different ways. First, our
approach acts as a heuristic tool. The narrative of change
derived from expert judgment can be encoded in a sim-
ulation model that can be used by biodiversity experts,
policy makers, and general public to better under-
stand how responses emerge. As a result, our approach
provides a straightforward means to explain and even en-
hance the messages derived from the suite of biodiversity

metrics, which may be confusing to policy makers and
the general public, or even be interpreted as conflicting.
For example, evidence that there is no local loss of diver-
sity on average (Vellend et al. 2013; Dornelas et al. 2014)
may seem to be inconsistent with evidence for overall
loss of abundance (Dirzo et al. 2014) (though see Gon-
zalez et al. 2016). However, our simulation shows that
short-term stability in species richness can be consistent
with significant decreases in abundance (Figure 2). Sim-
ilarly, greatly elevated global extinction rates (Barnosky
et al. 2011; Pimm et al. 2014) are consistent with much
lower levels of net loss—or even gain—in local species
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Model Results Biodiversity indicators

Local species richness shows
periods of stability over short 
dura�ons as shown by 
Dornelaset al (2014), shown 
by Dornelaset al (2014), 
Gonzalez et al (2016), O'Brien 
et al (2010) and Vellend et 
al (2013)      

Net decline in local species 
richness since 1700 as inferred
by Newbold et al (2015)

Loss of 25% of abundance in 
vertebrates and 45% of 
abundance in invertebrates as 
shown by Dirzo et al (2014)

Net decline in local abundance 
since 1700 as inferred by
Newbold et al (2015) 

Drama�c increase in ex�nc�on 
rate post-1900 as shown by 
Pimm et al (2014) and Ceballos 
et al (2015)

Loss in composi�onal similarity 
as shown by Dornelas et 
al. (2014) and  Newbold et 
al.(in press)

A

B

C

D

Figure 2 Comparison of time series of biodiversity metrics emerging

from an ensemble of 125 simulations of the stylized biodiversity model

with recent biodiversity indicators. Dark lines on plots indicate median

responses and shaded regions show minimum and maximum ranges. (a)

Species richness is a count of the number of species in the entire region

(blue) or measured at the plot scale (black). (b) Abundance is the total

number of individuals—irrespective of species—in the entire region (blue)

or measured at the plot scale (black). (c) Extinction rate is the proportion

of all species present at the start of the simulation that have been lost,

recorded across the entire region. (d) Compositional similarity between

the ecological community in the simulation at each time step and its

initial state. The compositional similarity index has a value of 1 when the

community composition is the same as the initial state and zero when

none of the same species are present, and is based on 125 simulations

with the line showing themedian result and the shaded regions indicating

maximum and minimum observed values.

richness, both of the net outcomes of local invasions and
homogenization, and because of the longer term stabi-
lization. The failure of commonly used diversity metrics,
such as local species richness and abundance, (Figures
2a and b) to capture fully the rapid ongoing degrada-
tion in the composition of the ecological assemblage
(Figure 2d) is a worrying feature for indicators that might
be used as a basis for policy decisions. However, the
ability to present a consensus view based upon evidence
from a variety of indicators, capturing differing aspects
of biodiversity, is advantageous when communicating
with policy makers, and it is encouraging that we did not
observe any metrics that diverged from the narrative.

Second, the simulation results demonstrate that, with
recognition of cause and effect, it is possible to link biodi-
versity indicators dynamically. Though currently poorly
understood, these relationships can be improved dynam-
ically as we gain more ecological understanding. Future
knowledge may support functional or even phylogenetic
diversity metrics that could underpin the development of
more efficient and informative indicators providing in-
formation better linked to decisions (Jones et al. 2011),
for example, when comparing community changes re-
sulting from two different patterns of habitat loss (Keil
et al. 2015).

Third, a more comprehensive dynamic framework
would permit more meaningful integration of biodiver-
sity models into 1) decision-analysis tools, for example,
to demonstrate the consequence of climate change af-
fecting only the most sensitive species, or the conserva-
tion interventions that might best mitigate the impacts of
a particular anthropogenic pressure on biodiversity, and
2) IAMs to demonstrate biodiversity feedback to socioe-
conomic futures. This would allow robust and evidence-
based biodiversity goals to be produced. Until such inte-
gration takes place, it is hard to see how biodiversity can
be mainstreamed into the development agenda.

There are many candidate models to support such
developments, such as those that are being reviewed
for the IPBES (Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services, see
http://www.ipbes.net/) guide for scenario analysis and
modeling of biodiversity and ecosystem services. Here,
for illustration, we focus on the potential benefits of
integration across two particular types of model that lie
at opposite ends of the pattern- to process-based model
continuum and differ in the characteristic units of eco-
logical representation: taxonomic-versus functional-trait
based. The PREDICTS model is a statistical model that
currently focuses on land-use change, and allows various
biodiversity metrics to be predicted based on a global
compilation of studies of local ecological communities
(Hudson et al. 2014; Newbold et al. 2015). Already
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PREDICTS can be used to illustrate how different metrics
of local biodiversity may behave under different extrinsic
forces at different scales (Newbold et al. in press; Newbold
et al. 2015). However, PREDICTS contains no ecological
processes, it is entirely empirical based on a large number
of observations, and currently cannot be used to predict
changes in regional or global biodiversity. Spatial and
temporal dynamics relevant to real ecological systems
are most directly incorporated through process-based
models, such as the Madingley model (Harfoot et al.
2014b) or the Ecosim model (Walters et al. 2002); such
models have the additional advantage that they can
report directly on some aspects of ecosystem function
and services, such as biomass production or aspects of
ecosystem dynamics such as stability or resilience, but
do not currently report on the species-based biodiversity
variables that are used to calculate currently mainstream
indicators.

By coordinating these different modeling approaches,
it will be possible to substantially strengthen simulations
that establish cause and effect through the DPSIR frame-
work. This could refine the process of indicator produc-
tion, from focusing data collection toward key metrics, to
defining and implementing indicators that more compre-
hensively describe the changing state of the system. As
a whole, this development would allow the conservation
community to more strategically and effectively evaluate
how the biodiversity and ecosystem targets of the SDGs
can be met simultaneously with those for socioeconomic
development.
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