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JOAQUÍN HORTAL,∗†‡§ JORGE M. LOBO,∗ AND ALBERTO JIMÉNEZ-VALVERDE∗
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Abstract: Databases on the distribution of species can be used to describe the geographic patterns of bio-
diversity. Nevertheless, they have limitations. We studied three of these limitations: (1) inadequacy of raw
data to describe richness patterns due to sampling bias, (2) lack of survey effort assessment (and lack of
exhaustiveness in compiling data about survey effort), and (3) lack of coverage of the geographic and environ-
mental variations that affect the distribution of organisms. We used a biodiversity database (BIOTA-Canarias)
to analyze richness data from a well-known group (seed plants) in an intensively surveyed area (Tenerife
Island). Observed richness and survey effort were highly correlated. Species accumulation curves could not be
used to determine survey effort because data digitalization was not exhaustive, so we identified well-sampled
sites based on observed richness to sampling effort ratios. We also developed a predictive model based on the
data from well-sampled sites and analyzed the origin of the geographic errors in the obtained extrapolation
by means of a geographically constrained cross-validation. The spatial patterns of seed-plant species richness
obtained from BIOTA-Canarias data were incomplete and biased. Therefore, some improvements are needed
to use this database (and many others) in biodiversity studies. We propose a protocol that includes controls
on data quality, improvements on data digitalization and survey design to improve data quality, and some
alternative data analysis strategies that will provide a reliable picture of biodiversity patterns.

Keywords: biodiversity patterns, biological databases, biodiversity informatics, species richness, sampling effort
assessment, predictive modeling, data-quality controls

Limitaciones de las Bases de Datos de Biodiversidad: Estudio de Caso de la Diversidad de Plantas con Semillas en
Tenerife, Islas Canarias

Resumen: Las bases de datos sobre la distribución de especies pueden ser utilizadas para describir los
patrones geográficos de la biodiversidad. Sin embargo, tienen sus limitaciones. Estudiamos tres de esas limita-
ciones: (1) inadecuación de datos crudos para describir los patrones de riqueza debido a sesgos en el muestreo,
(2) falta de esfuerzo de muestreo (y falta de exhaustividad en la compilación de datos sobre esfuerzo de
muestreo), y (3) falta de cobertura de las variaciones geográficas y ambientales que afectan la distribución de
los organismos. Utilizamos una base de datos de biodiversidad (BIOTA-Canarias) para analizar los datos de
riqueza de un grupo bien conocido (plantas con semillas) en un área muestreada intensivamente (Isla Tener-
ife). La riqueza de especies observada y el esfuerzo de muestreo estuvieron altamente correlacionados. Las
curvas de acumulación de especies no pudieron ser usadas para determinar el esfuerzo de muestreo porque
la digitalización de datos no era exhaustiva, aśı que identificamos sitios bien muestreados con base en la
proporción riqueza – esfuerzo de muestreo. También desarrollamos un modelo predictivo basado en los datos
de sitios bien muestreados y analizamos el origen de los errores geográficos en la extrapolación obtenida por
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medio de la validación cruzada constreñida geográficamente. Los patrones espaciales de riqueza de especies
de plantas con semillas obtenidos de datos de BIOTA-Canarias fueron incompletos y sesgados. Por lo tanto, se
necesitan algunas mejoras para utilizar esta base de datos (y muchas otras) en estudios de biodiversidad.
Proponemos un protocolo que incluye controles de la calidad de datos, mejoras en la digitalización de datos
y diseño de muestreo para mejorar la calidad de los datos y algunas estrategias alternativas de análisis de
datos que proporcionarán una descripción confiable de los patrones de biodiversidad.

Palabras Clave: bases de datos biológicos, controles de calidad de datos, evaluación de esfuerzo, informática
de biodiversidad, modelo predictivo, patrones de biodiversidad, riqueza de especies

Introduction

Accurate mapping of the spatial patterns of biodiversity
is needed to study the processes by which these pat-
terns vary and to design effective regional conservation
schemes. To create accurate maps, information must be
gathered on the location of species and recorded in ex-
haustive biodiversity databases. Extensive databases are a
primary tool in ecological research (Porter 2000 and other
chapters in Michener & Brunt 2000). In the case of bio-
diversity research, the biodiversity information networks
(BIN) and/or biodiversity databases under development
aim to bring together the scattered information available
in museum collections and herbaria and the data avail-
able in the literature from inventories developed with (or
without) standardized surveys (e.g., Soberón et al. 1996).
These data provide the basis for biological atlases, a num-
ber of studies on biodiversity patterns (Biodiversity Infor-
matics; Soberón & Peterson 2004), and the development
of geographically explicit conservation schemes (System-
atic Conservation Planning; Margules & Pressey 2000).

The most outstanding BIN initiative is the Global Bio-
diversity Information Facility (GBIF) (http://www.gbif.
org/). The intention of this project is to gather all in-
formation (not solely information on distribution) on
known species and to make these data freely available on
the Internet. Typically, database developers address four
questions: why the database is needed, who will be its
users, what types of questions should it help answer, and
what incentives should be given to data providers (Porter
2000; http://www.gbif.org/). Nevertheless, the biodiver-
sity data currently at hand are scarce, biased, and some-
times of poor quality. These limitations can hinder the
usefulness of the databases even if all the data available
are gathered exhaustively.

Adequate distribution data for many of the known
species and higher taxa are lacking (the Wallacean short-
fall; Whittaker et al. 2005) and are prone to taxonomic,
temporal, and geographic bias (Stockwell & Peterson
2002; Soberón & Peterson 2004; Kadmon et al. 2004).
Although a few databases from exhaustive survey cam-
paigns are available for the British Isles (Prendergast et al.
1993; Griffiths et al. 1999), they are the exception, not the
rule. Usually, sampling effort is limited, scattered, and not
standardized, and the inventories are biased toward easily

accessible sampling sites (e.g., Dennis & Thomas 2000;
Kadmon et al. 2004). Gaps and biases in biodiversity data
are important enough to compromise the description of
biodiversity patterns from the raw information compiled
in the available databases (Prendergast et al. 1993; Stock-
well & Peterson 2002; Hortal & Lobo 2006).

Three different solutions have been proposed to over-
come the lack of spatial and taxonomic exhaustiveness in
biodiversity data: (1) use environmental information as
a surrogate for biodiversity variations (Faith & Walker
1996), (2) use of predictive modeling of species distri-
butions (e.g., Soberón & Peterson 2004, 2005; Araújo
& Guisan 2006), and (3) use of predictive modeling
of biodiversity descriptors (e.g., richness, rarity, species
turnover) based on the information from well-surveyed ar-
eas (e.g., Ferrier 2002; Lobo & Mart́ın-Piera 2002; Ferrier
& Guisan 2006). These three approaches present several
problems and limitations. We considered the drawbacks
associated with the latter. Drawbacks of the other two
solutions are discussed elsewhere (Hortal & Lobo 2006).
We examined the effect of two of the drawbacks associ-
ated with current use of biodiversity databases: lack of
survey-effort assessment (and lack of exhaustiveness in
compiling data about survey effort), and lack of coverage
of the geographic and environmental variations that af-
fect the distribution of organisms. These problems make
existing databases and/or atlases less useful for describ-
ing patterns of biodiversity accurately (Prendergast et al.
1993; Johnson & Sargeant 2002; Dennis & Shreeve 2003;
Soberón et al. 2007) and compromise the utility of the
predictive models of biodiversity features (Hortal & Lobo
2006).

We analyzed the quality of the distributional informa-
tion available at an intensively surveyed territory and
predicted the distribution of species richness based on
this information. Information came from BIOTA-Canarias
(herein, BIOTA), a database that stores the information
regarding seed plants of Tenerife (Canary Islands). This
database is not exhaustive. We used the raw data in BIOTA
to describe the geographic patterns of seed-plant rich-
ness in Tenerife and assessed the reliability of the result-
ing maps, analyzed survey effort to identify well-sampled
areas, and produced a predictive model of species
richness based on information from these well-sampled
sites. We used the errors that resulted in each step as a
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basis for consideration of the problems of using incom-
plete or biased information. These problems may be over-
come with a protocol we propose that assesses and im-
proves data quality and guarantees the utility of databases
for the description of biodiversity patterns.

Species Richness Patterns from Raw Database
Information

The database BIOTA contains data on the presence of
all species in the Canary Islands (http://www.gobcan.
es/medioambiente/biodiversidad/ceplam/bancodatos/
bancodatos.html). The initial aim of this database was to
provide the regional government and other stakeholders
with information about the presence and absence of
species of interest (in territorial units with a resolution
[grain] of 500 × 500 m, herein called grid cells) for
use in environmental impact assessment and territorial
planning processes (A. Machado, personal communica-
tion). Although the exploration of the spatial patterns of
biodiversity was not among the original objectives of the
database, it has been used to obtain updated checklists
for a large number of populations in all islands of the
Archipelago (Izquierdo et al. 2005). Due to its success,
the BIOTA database has been extended to the rest of
the Macaronesian archipelagos (e.g., Azores, Borges et
al. 2005) with the economic support of the EU (Project
ATLANTICO - INTERREG III B 2000–2006).

We analyzed the spatial distribution of seed-plant
species richness at Tenerife with data from BIOTA to illus-
trate the limitations of the data stored in this database. The
Canary Islands have been intensively surveyed by Euro-
pean botanists since Linnaeus. In addition to systematic
surveys (e.g., Voggenreiter 1974; E. Barqúın Dı́ez & V.
Voggenreiter. 1987. Prodromus del Atlas Fitocorológico
de las Canarias Occidentales, I. Flora autóctona y es-
pecies de interés especial. Unpublished report, ICONA,
Bonn-La Laguna, Spain; E. Barqúın Dı́ez & V. Voggen-
reiter, 1988. Prodromus del Atlas Fitocorológico de las
Cananas Occidentales [Hierro, La Palma, Gomera, Tener-
ife, Gran Canaria]. Unpublished report, ICONA, Bann-
La Laguna, Spain.), the climatic conditions and the ex-
traordinarily rich plant diversity of the archipelago have
prompted a number of expeditions by professional and
amateur botanists, resulting in a continuous sampling ef-
fort throughout the twentieth century. Although some
additions are still being made to the island inventory,
most seed-plant species on Tenerife are well known: 1131
species (841 [74.4%] native and 318 [28.1%] Canary en-
demics) were included in Tenerife’s database when we
extracted the data (29 November 2003).

The information compiled in the database was a geo-
graphically and taxonomically exhaustive representation
of the inventory (i.e., all the species recorded in each
grid cell were gathered from relevant herbaria and liter-
ature) and was the result of a huge amount of sampling
effort (1,084,971 records on the above-mentioned date;

Figure 1. Number of (a) records and (b) observed
seed-plant species richness in Tenerife according to the
BIOTA-Canarias database (data extracted on 29
November 2003). Map resolution is 500 × 500 m grid
cells, and reference system is UTM 29N.

approximately 960 records/species and 128 records/grid
cell). Nevertheless, these surveys were spatially biased
(Fig. 1a). More critically the observed species richness
patterns were highly correlated with the amount of sam-
pling effort (measured as the number of BIOTA records,
see below) (Spearman rank correlation coefficient, rs =
0.973, n = 8,469, p < 0.0001). Therefore, the observed
distribution of species richness varied in accordance to
the spatial bias of the historical survey effort (Fig. 1). Due
to this bias, the raw information in BIOTA cannot be used
directly to describe variations in seed-plant diversity at
Tenerife.

Sampling-Effort Assessment from Nonexhaustive
Data Compilation

The first step in analyzing survey completeness was to de-
fine a measure of sampling effort that could be applied to
all the data gathered in the database, so we examined the
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metadata of BIOTA. Because data are generally compiled
from heterogeneous sources (i.e., herbarium sheets, sur-
veys using different methodologies), the measure of effort
should take into account the detail and exhaustiveness of
the information in the database. Detail refers to the bio-
logical resolution of the information (i.e., whether data
refer to single specimens or to a series of individuals),
and exhaustiveness refers to the proportion of informa-
tion compiled (i.e., all the information available or only a
subset of it).

Because detailed data usually refer to individuals or
detections of the species, use of records as a measure
of sampling effort has been proposed (Lobo & Mart́ın-
Piera 2002). A record refers to each time a species is
detected per day, per collector, or per survey method.
Records have been used successfully to assess sampling-
effort completeness (e.g., Hortal & Lobo 2005), and their
performance is similar to other fine-grain measures of sam-
pling effort, such as data on number of individuals or
number of traps (Hortal et al. 2006). Therefore, we used
the records in BIOTA as a measure of sampling effort, as-
suming that the more records in a grid cell the higher the
survey effort.

Common means of assessing sampling-effort success
cannot be used with BIOTA because of its lack of ex-
haustiveness. This database contains information only on
the observation of each species by decade in each grid
cell of all terrestrial areas of the archipelago. For exam-
ple, a single observation in a given grid cell of a species
during the 1950–1959 decade provides the same infor-
mation as 100 observations of the same species during
the same decade. Thus, the mean number of records
(±SE) per cell and seed-plant species was 1.51 ± 0.46,
with a maximum of five records (i.e., the species was
recorded in five different decades). This lack of exhaus-
tiveness impedes the use of species accumulation curves
(the most common sampling-effort-assessment method;
e.g., Hortal et al. 2004; Hortal & Lobo 2005) to iden-
tify well-sampled grid cells. These curves describe the
diminishing rate of finding new species as sampling ef-
fort increases (Soberón & Llorente 1993). If a number of
records of common species (i.e., easily detected) were
not included in the species accumulation curves, dif-
ferences in the recording of common and rare species
(i.e., difficult to detect) would not be described properly.
Thus, the curves cannot saturate or be described with an
asymptotic function, as needed for sampling-effort assess-
ment.

We used an alternative three-step procedure to identify
well-sampled grid cells in Tenerife. We developed a geo-
environmental regionalization of the island, plotted the
regional relationships between the number of records
and the number of species observed per grid cell to iden-
tify those cells where the inventories could have satu-
rated, and determined the cells with higher probability
of having reliable inventories based on the ratio between

number of records and observed species. Here, we as-
sumed that contiguous areas with similar habitat con-
ditions host similar floristic diversity (i.e., sites placed
nearby share their regional species pool), presenting
similar assembly history, similar assemblages, and simi-
lar patterns of inventory saturation. Within-region differ-
ences in the richness of these assemblages (i.e., different
community types) will result in different patterns of in-
ventory saturation, which could be identified and stud-
ied separately (Hortal et al. 2001; Lobo & Mart́ın-Piera
2002).

For other purposes, we ( J. H. and J. M. L., unpublished)
identified (roughly speaking) spatially contiguous areas
with similar environmental conditions in Tenerife. Briefly,
information on environmental similarity and spatial dis-
tance was used to classify all grid cells in Tenerife in eight
regions. The relationships between database records and
observed number of species per grid cell in these regions
were plotted to identify the different patterns of inven-
tory saturation (Fig. 2). Only two of the eight regions pre-
sented a single pattern of saturation (Gǘımar—Western
Slopes and Teno), whereas in the others, two or three
different patterns were identified, up to 16 patterns of
saturation in all. We studied the grid cells with the most
records in each of these patterns (circled in Fig. 2) and
identified groups of cells with similar ratios. We assumed
that within those groups the cells with higher ratios of
records to observed species were well sampled. For ex-
ample, from the 16 cells examined for the pattern of sat-
uration 1a (the one with higher richness in Acentejo-La
Laguna region, Fig. 2), we selected the nine that presented
ratios over 2.3 (ratios from 2.39 to 3.88; more than 700
records and more than 300 species observed), leaving out
the other seven (ratios from 1.7 to 2.15). We were as con-
servative as possible in our selection so as to ensure that
all selected cells had reliable inventories. Although we
risked missing some grid cells with reliable inventories
(see below), such a risk was less costly than the use of
unreliable data, which would have diminished reliability
of the results.

Two hundred seven grid cells (2.44% of all grid cells)
were identified as well-enough sampled to present re-
liable seed-plant inventories in Tenerife according to
BIOTA. Nevertheless, these cells were spatially aggre-
gated, clustered in several areas (Fig. 3) that roughly co-
incided with the localities repeatedly sampled by most
botanists over time (because of their high numbers of Ca-
narian endemics or their unique plant communities; “ar-
eas of botanical interest” in Bramwell & Bramwell 2001).
Thus, the areas identified as well-sampled represent the
sites that were surveyed during several decades rather
than all grid cells with good inventories. Grid cells inten-
sively sampled in a single decade could not be detected
with this method (e.g., sites surveyed during fieldwork
for a Ph.D. or during recent [1990s] work in phytosocio-
logical mapping, e.g., del Arco et al. 2006). Thus, the lack
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Figure 2. Relationship between the
sampling effort recorded in
BIOTA-Canarias (number of
records) and the observed species
richness (Sobs) at each grid cell for
each of the eight geoenvironmental
regions (see text). Sixteen different
relationships between sampling
effort and observed richness were
observed. In each relationship the
grid cells with higher number of
records were selected (ellipses) as
being well sampled.

of exhaustiveness of BIOTA impeded identification of all
good-quality inventories that could be included in the in-
formation gathered in the database.

Predictive Modeling of Species Richness Based on
Geographically Biased Areas

Once a set of well-sampled grid cells has been identified,
a possible solution to mitigate the spatial gaps in knowl-
edge is to model and predict the distribution of biodi-
versity. Predictive modeling involves building the model
itself, validating the results of the model, and making im-
provements to the model. We used the Poisson stepwise
general linear model (MacCullagh & Nelder 1989; Craw-
ley 1993) to model species richness as a function of en-

vironmental variables (Nicholls 1989; Austin et al. 1996),
following the procedure described in Hortal et al. (2001,
2004) and Lobo and Mart́ın-Piera (2002). We validated the
model by examining outliers and refining the data accord-
ingly. Finally, we assessed its predictive power by taking
into account the spatial structure of the data.

Model Building

We selected a set of environmental predictors, including
the linear, quadratic, or cubic equations of these vari-
ables (or all the categories in qualitative variables) in
the model, in an iterative fashion by means of a mixed
forward–backward procedure until no more significant
additions could be made (Austin et al. 1996). We used a
set of predictors that accounted for the factors that affect
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Figure 3. Grid cells (500-m width) with reliable
seed-plant inventories at Tenerife according to the
information gathered in BIOTA-Canarias.

variations in plant communities: climate (e.g., Fernández-
Palacios 1992; Lobo et al. 2001), substrate (e.g. Lobo
et al. 2001), elevation (a surrogate for environmental
gradients that is related to plant distributions in Tener-
ife [Fernández-Palacios 1992; Fernández-Palacios & de
Nicolás 1995]), and geomorphology and geomorpholog-
ical diversity, which are usually related to diversity vari-
ations (e.g., Wohlgemuth 1998). Thirteen environmental
predictors were used in total, 10 continuous (mean an-
nual precipitation; precipitation in the dry and rainy sea-
sons; mean, maximum, and minimum temperature; ele-
vation; slope; aspect diversity; and elevational range) and
three categorical (soil type, geology, and aspect [origi-
nal aspect data were reclassified into nine categories])
variables. Once an environmental model was available,
we included the third-degree polynomial of latitude and
longitude (trend surface analysis; Legendre & Legendre
1998) in the model, eliminating the nonsignificant terms
from the resulting equation. This way, we accounted for
any spatial structure remaining unexplained by the model
(resulting from historical effects or other unaccounted-for
factors).

Validation and Improvement of the Models

We measured the explanatory capacity of the models
based on changes in deviance and assessed significance
with the F statistic (see McCullagh & Nelder 1989). Never-
theless, these measures only assessed how well the mod-
els fit the data we used, not the true reliability of model
predictions. A measure of their true reliability should
account for the accuracy of predicted scores when the
model is extrapolated to an unknown territory. There-
fore, model extrapolations have to be validated with in-
dependent data (i.e., not used to calibrate the model).

If independent data are lacking, one should use a cross-
validation procedure in which data are split n times into
two sets, one used to calibrate the model and other to val-
idate its results (Fielding & Bell 1997; Fielding 2002). In
our case we (1) subsampled data eight times, extracting
a mean of 27 squares each (12.5%); (2) adjusted model
parameters based on data from the rest of the grid cells;
(3) extrapolated the models to the cells extracted in step
1; and (4) calculated prediction errors at each grid cell
as the scaled difference between observed and predicted
scores (prediction error = [observed richness – predicted
richness] × 100 / observed richness).

The overall predictive performance of the model was
the mean of all prediction errors obtained in step 4, and
the predictive power of the models was the inverse of this
mean (100 – mean prediction error; Hortal et al. 2001).
A good predictive model will provide reliable extrapola-
tions in most cases. Therefore, to decide if model extrapo-
lations are good enough, it is necessary to set up cutoffs
for both mean predictive power and the variability in pre-
diction errors. We considered that if a large number of
prediction errors were higher than 30%, model extrapo-
lations would not be reliable. Thus, we considered good
models those with 85% or higher predictive power (15%
mean prediction error) and with <15 SD in prediction
errors (i.e., most errors within 0 and 30% in the case of a
15% mean prediction error). These cutoffs were necessar-
ily arbitrary because they referred to the error in model
extrapolations that we considered acceptable.

Given the clumped distribution of well-sampled areas,
we used a geographically constrained procedure for data
splitting in step 1. Using random selection of sites to folds
for cross-validation in our data could give an erroneous
measure of the ability of the model to extrapolate species
richness scores because its performance would be tested
against squares placed near the cells used to adjust it.
Therefore, we included a spatial restriction in the selec-
tion of the extracted cells in step 1 to assess the accu-
racy of model predictions outside the bounds of the data
used (Boyce et al. 2002). Well-sampled cells placed nearby
were extracted each time to extract all data from spatially
contiguous areas, so model predictions were tested in
areas where no data points were used to adjust model
parameters.

Following the modeling protocol described above, we
developed an environmental model in which soil type, el-
evation, aspect, and the quadratic equation of minimum
temperature accounted for 84.3% of species richness vari-
ability in the data (Table 1). The inclusion of the spatial
terms resulted in a model that explained 89.1% of data
variability, including soil type, elevation, the quadratic
equation of minimum temperature, and four spatial terms
(lat, lat2, long, and lat × long). Despite their high ex-
plained variability, the predictions from both models were
highly unreliable (Table 1). All prediction errors from the
former were below 55%, although the mean predictive
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Table 1. Goodness of fit and reliability of the general linear models of seed-plant species richness.

Models df Deva �Devb Fc % Devd PPe

Null 206 2,396,312
environmental 190 374,403.3 2,021,908.9 1026.1 84.38 72.68 ± 26.14
environmental + spatial 192 262,338.1 2,133,974.1 1561.8 89.05 43.81 ± 130.86

Without outliers 180 2,148,301
environmental 161 170,947.6 1,977,353.3 1862.3 92.04 76.27 ± 27.78
environmental + spatial 157 141,585.4 2,006,715.5 2225.2 93.41 48.72 ± 48.44

aDeviance of each model.
bVariation of deviance with respect to the null model (quoted above the statistics of each kind of model).
cFischer’s F score.
dProportion of variability in the data explained by each model.
ePredictive power, calculated from the results of the cross-validation subsampling of the data (see text).

power was 72.7%. Therefore, predictions were relatively
good in some areas but highly biased in others. This pat-
tern was more striking in the latter model (< 45% of mean
predictive power and a high variability) (Table 1).

We investigated model residuals to find outliers and
discarded them to improve model performance. We as-
sessed their residual value and potential leverage (i.e.,
the importance of the observation in the adjustment of
model parameters) to determine their importance in the
final configuration of the model (Nicholls 1989). We elim-
inated those outliers that were likely to correspond to
erroneous data or be irrelevant for model parameters ac-
cording to their potential leverage (Hortal et al. 2001).
Deleting these outliers could contribute to overfit train-
ing data (and thus diminish the predictive power of the
models). Nevertheless, some erroneous richness scores
could be present in the data due to inaccuracies caused by
uneven sampling effort, given the impossibility of devel-
oping a proper assessment of sampling effort. Therefore,
we eliminated dubious (and potentially inaccurate) data
(see a discussion on the deletion of outliers due to dif-
ferences in sampling effort in Lobo & Mart́ın-Piera 2002).
Twenty-six outliers were identified and eliminated from
model calculations. The models developed with the cor-
rected data set were more explanatory (92% and 93.4%;
Table 1). They predicted higher species richness scores
along the northern and, more importantly, eastern coasts
and decreasing scores toward the higher elevations of the
Teide (Fig. 4a). Despite these slight increases in model
reliability, the inaccuracy in model predictions was also
quite high (Table 1). Important numbers of prediction
errors per case where higher than 50% (76 cases, 42% of
all cases) or 75% (51 cases, 28% of all).

The inaccuracy of model predictions was also spatially
biased (Fig. 4b). One key issue when assessing the reliabil-
ity of models is to determine whether they can explain the
spatial structure in data and whether some unexplained
spatial structure remains in the errors of the model (Diniz-
Filho et al. 2003). The final model underpredicted species
richness especially in the southern and western coastal
areas of, for example, Teno or Montaña Roja, and overpre-

dicted species richness especially in some areas near the
Teide and in some points near the northern coast (Fig.
4b). Interestingly, predicted richness scores were unreal-
istically high in some coastal areas of the Anaga Penin-
sula (northeast of the island) (>500 species, whereas
the highest observed richness was 428). Spatial bias in
the results of the model with only environmental vari-
ables was similar, although the magnitude of the bias was,
in general, less dramatic (not shown). The higher mag-
nitude of the biases in the spatioenvironmental model
could be attributable to “geographical overfitting” (i.e., a
tight fit to the scores present in the areas covered by the
training data that diminish the predictive power of the
model).

Discussion

The spatial representation of species richness obtained
with the predictive models we developed was spatially
biased. It is extremely unlikely that the representations
reflect accurately the spatial patterns of richness vari-
ation outside the bounds of the grid cells used to fit
them (i.e., the well-sampled cells). An incorrect model
structure or the lack of some important explanatory vari-
ables may have affected the occurrence of biased pre-
dictions. Although some overdispersion existed in the
data, varying the overdispersion parameter did not affect
model building or model parameters (McCullagh & Neld-
ner 1989; Crawley 1993) and changed only slightly the
explained variability of the models (<0.5%). The predic-
tors used are also unlikely to cause poor model perfor-
mance; all known determinants of plant species richness
(including those previously related to plant distribution in
Tenerife) were included in the modeling process, and the
variables selected during the cross-validation were quite
stable.

On the contrary, spatial biases in data are a plausi-
ble explanation for the poor predictive performance of
our models. Spatially biased data result in spatially biased
models and predictions. Provided that Tenerife is a highly
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Figure 4. Results of the predictive model of the spatial
distribution of seed-plant species richness in Tenerife
(including native and introduced species) from the
grid cells identified as well sampled after the
elimination of outliers (Table 1): (a) species richness
predicted from the model including environmental
and spatial variables and (b) prediction errors (%) in
each data cell based on the results of the spatially
explicit cross-validation (see text) (circle size,
magnitude of the error; negative scores [black to gray],
predicted scores higher than the observed richness;
positive scores [gray to white], predicted richness
figures lower than the observed). Map resolution is
500 × 500 m grid cells, and reference system is UTM
29N.

heterogeneous island (e.g., del Arco et al. 2006), the lack
of survey coverage (apparent in Fig. 3) resulted in predic-
tive errors that we were unable to detect in absence of ad-
ditional complete inventories coming from less-surveyed
parts of the island. This poor representation of plant di-
versity is not the case in other published examples (e.g.,
Wohlgemuth 1998), but we are aware that it might be the

rule rather than the exception for most regions and living
groups worldwide, especially for fine-grain data.

Enhancing the Utility of Biological Databases

Conservation assessment processes and biodiversity re-
search need good-quality data to provide reliable (and
long-lasting) conservation strategies and scientific infor-
mation on biodiversity pattern and process. Nevertheless,
most times these data are lacking, and it is necessary to

Original Data

Biodiversity
Database

Digitalization

check quality
of records

Sampling effort
assessment

Additional
surveys

Predictive
modeling

Validation
Maps of

biodiversity
variables

all

several

identify well-
sampled cells

a few or
none

bad

good

-check quality of
environmental
information
-change grain
-change methods
and/or hypotheses

exhaustivenessbad

good

taxonomic
accuracy

good

geographic
accuracy

good

bad

bad

discard records

BIN Quality Controls

Figure 5. Schematized protocol to obtain reliable
maps of biodiversity variables from biodiversity
databases (dark gray rectangles, physical objects; light
gray rectangles with round corners, processes; white
hexagons, specific parts of processes that lead to two or
more options [represented by rhombuses]; dashed light
gray rectangles, domain of operation of biodiversity
information networks (BIN) such as GBIF (see text)
and the quality-control processes needed to ensure the
reliability of the final product. Thick, continuous-line
arrows represent the process when all quality controls
are satisfactory, and dashed-line arrows represent
secondary processes occurring when the result of some
process or quality control is not satisfactory (or very
rare, such as all cells being well sampled).
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obtain surrogates for the distribution of biodiversity. We
summarized the protocol needed to assess data quality
and obtain reliable information on the geographic distri-
bution of biodiversity features (Fig. 5).

The process of gathering the information into biodiver-
sity databases or BIN (Fig. 5) cannot be understood as a
process limited to digitizing the original data. Some qual-
ity controls are needed to assess the reliability and utility
of records (Fig. 5), namely assessing their taxonomic accu-
racy (e.g., Valdecasas & Camacho 2003; Dillon & Fjeldsa
2005), the accuracy of their geographic allocation (e.g.,
Chefaoui et al. 2005), and the exhaustiveness of records
stored in the database. Regarding the latter, some BIN ini-
tiatives of academic origin are as exhaustive as possible
(e.g., GBIF). Nevertheless, other biodiversity databases
contain limited information, recording only the presence
of each species in a cell (i.e., biological atlases) or stor-
ing nonexhaustive compilations of all information (this
work). Our results show that such a lack of exhaustive-
ness complicates the assessment of survey completeness.
Therefore, we recommend checking whether all the avail-
able information has been included in the database. If
there is some information remaining to be entered, it is
worth it to continue its digitalization until the database is
complete and sampling effort can be analyzed with relia-
bility.

Once the quality of all records to be used has been en-
sured, an adequate assessment of sampling effort is the
second quality control (Fig. 5). The completeness of re-
gional or local inventories can be assessed reliably with
species accumulation curves if the information gathered
is exhaustive (Hortal & Lobo 2005). This analysis can de-
termine the likelihood of the absence of species from
some places and identify the places where measures of
other biodiversity features (e.g., species richness, species
composition) can be obtained accurately (i.e., from com-
plete inventories). In addition, exhaustive data can be
used to estimate the scores of these variables at each ter-
ritorial unit, rather than using raw, observed data (Hortal
et al. 2004).

Once well-sampled cells (or areas) are identified, their
coverage in the studied territory can be assessed to deter-
mine whether it is necessary to carry out additional sur-
veys (Fig. 5). Unavoidably, survey data from a given region
constitute only a group of samples, not a complete inven-
tory (Nicholls & Margules 1993). If all areas are well sam-
pled, maps can be obtained directly from the database. If
several (but not a few) areas are well sampled, predictive
modeling can fill in the gaps in knowledge. Nevertheless,
even if a number of well-surveyed areas can be identified
accurately, unevenness in sampling effort could result in a
partial (and biased) description of biodiversity variations
(Dennis 2001). Therefore, it is necessary to determine the
degree of environmental and geographic coverage of the
studied region provided by the well-sampled areas (Hor-
tal & Lobo 2005) and the possible bias produced by the

coverage of regional environmental conditions obtained
with these areas (Kadmon et al. 2004).

If well-sampled areas are not sufficient to describe
the environmental and geographic variability of the re-
gion or are biased toward a limited number of the en-
vironmental domains present, additional surveys should
be conducted. Well-surveyed areas should cover the en-
tire spectrum of environmental conditions in the re-
gion and the entire geographic extent (i.e., represent
all combinations of environmental conditions and ar-
eas that are environmentally similar but separated spa-
tially). Araújo and Guisan (2006) stress the importance
of improving sampling designs used for the prediction
of species distributions. Additional surveys should tar-
get previously unsampled areas that improve the spa-
tial and environmental coverage of well-sampled areas
and diminish their bias (Hortal & Lobo 2005; Funk et al.
2005).

Once a sufficient number of areas are well surveyed
(and well distributed), predictive modeling techniques
can be used to obtain maps of biodiversity features (Fig.
5). There are many examples of reliable predictive maps
of the distribution of biodiversity variables (e.g., Wohlge-
muth 1998; Lobo & Mart́ın-Piera 2002). Alternatively,
modeling techniques can be used to predict the distri-
bution of all species in the database one by one. This
approach presents some intrinsic problems, especially
when data are biased, if reliable absence data are lacking,
and when modeling rare species (Hortal & Lobo 2006).
The last quality control required is the validation of model
predictions (Fig. 5).

Concluding Remarks

The BIOTA example shows the potential magnitude of
the effects of two of the limitations inherent in a num-
ber of biodiversity databases: lack of exhaustiveness and
lack of geographical (and environmental) coverage. The
extent to which the effects of the limitations in this ex-
ample can be extrapolated to other studies depends on
each particular case, especially if one takes into account
that the original purpose of BIOTA was not to develop
analyses of the distribution of biodiversity. Such limita-
tions exist in most databases. Lack of exhaustiveness or
large gaps in their spatial and/or environmental coverage
could compromise their future utility, in the same way
that data gathered in the past have limited utility because
the data lack detail and geographical coverage is not ex-
haustive. Therefore, we stress the importance of making
an assessment of (and, eventually, improving) the qual-
ity of biodiversity databases to account for the effects of
both problems. We encourage exhaustive compilation of
all the available information with sufficient quality and
detail.
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