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Observations by Alfred Wallace and Jared Diamond of plumage similarities

between co-occurring orioles (Oriolus) and friarbirds (Philemon) in the Malay

archipelago led them to conclude that the former represent visual mimics of

the latter. Here, we use molecular phylogenies and plumage reflectance

measurements to test several key predictions of the mimicry hypothesis. We

show that friarbirds originated before brown orioles, that the two groups

did not co-speciate, although there is one plausible instance of co-speciation

among species on the neighbouring Moluccan islands of Buru and Seram.

Furthermore, we show that greater size disparity between model and mimic

and a longer history of co-occurrence have resulted in a stronger plumage simi-

larity (mimicry). This suggests that resemblance between orioles and friarbirds

represents mimicry and that colonization of islands by brown orioles has been

facilitated by their ability to mimic the aggressive friarbirds.
1. Introduction
Species may resemble each other in appearance for various reasons. For example,

closely related species may not have had sufficient time to diverge phenotypi-

cally, or convergence may lead to a similar appearance across distantly related

species. This could have developed in the course of millions of years either

by random chance or because a given design (shape or colour) is favoured in a

particular habitat or environment. Alternatively, mimicry may increase the

resemblance of one species (mimic) to another (the model), thereby leading to

an advantage for the mimic or for both species [1,2].

Interspecific social dominance mimicry (ISDM) is a proposed form of social

parasitism in which a subordinate species evolves to mimic and deceive a domi-

nant ecological competitor to avoid attack by the dominant model species.

Among the roughly 10 000 species of birds, there may be about 50 phylogenetically

independent origins of visual ISDM (reviewed by Prum [3]), and game-theoretic

models have shown the plausibility of this hypothesis [4]. However, few of these

putative cases have been investigated in detail.

Wallace [5] was the first, to the best of our knowledge, to describe visual mimi-

cry between orioles (Oriolus, Oriolidae) and friarbirds (Philemon, Meliphagidae) in

the Moluccan islands. He suggested that orioles could avoid attack by hawks by

mimicking the aggressive friarbirds. Stresemann [6] disputed the mimicry claim,

which he thought was simply the result of convergent evolution (“Resultat unab-
hängiger Convergenz der Entwicklungsrichtungen”). More recently, Diamond [7]

provided a detailed account of the various explanations of the mimicry between

orioles and friarbirds and based on field observations suggested that orioles do
mimic the friarbirds to avoid attack from the friarbirds when feeding in the
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same fruiting trees. Diamond [7] also noted that the similarities

between orioles and friarbirds must represent a case of mimicry

and not convergence, because field evidence suggested that the

smaller orioles benefit from mimicking the larger pugnacious

friarbirds. Consequently, Wallace and Diamond both believed

that orioles mimic friarbirds but provided two different expla-

nations for the origin.

The oriole–friarbird study system is remarkable because it

includes multiple species pairs, which show different degrees

of plumage similarity [7]. This provides an excellent setting

for studying the evolution of visual mimicry. While both

Wallace and Diamond spent years in the field to understand

the mimicry of orioles and friarbirds, they could only base

their conclusions on observations, distributional data and anec-

dotal evidence but had no tools to investigate when and where

the two species groups evolved relative to each other. Molecular

phylogenetic data provide the means to address these questions.

Recent studies have suggested that brown orioles originated in

Australo-Papua and subsequently dispersed to the Wallacean

archipelago [8]. Friarbirds also appear to have originated in

the Australo-Papuan region [9–11] with subsequent coloniza-

tions of the Wallacean and Pacific archipelagos. However,

taxon sampling for friarbirds has been incomplete, and here

we present a comprehensive, dated phylogenetic framework

including both groups. Because human and avian perceptions

of colours differ [12], we also quantify the patterns of colour

similarity between orioles and friarbirds based on spectrometric

measurements of reflectance of museum specimens and analyse

these measurements using psychophysical models of avian

colour vision [13].

In this study, we integrate molecular data, morphological

data and plumage similarity for orioles (Oriolus) and friarbirds

(Philemon) to address questions pertaining to the evolution of

mimicry. We explicitly assess the predictions of the ISDM

model set forth by Prum [3]. We also assess how coexistence

times of models and mimics have affected mimicry, expecting

that mimicry improves the longer orioles and friarbirds have

coexisted. Finally, we assess the diversification of orioles and

friarbirds in space and time to ask when the mimetic group ori-

ginated relative to the model group and also specifically tested

if brown orioles and friarbirds co-speciated.
2. Material and methods
(a) Taxon sampling
We included the molecular data from 53 individuals of 30 out of 32

taxa (all 18 species) of the genus Philemon (missing P. buceroides
ammitophilus from interior Australia and P. novaeguineae trivialis
from the north coast of southeast New Guinea) and 40 individuals

of all 17 taxa (eight species) of brown orioles (Oriolus) following the

International Ornithological Congress World Bird List v. 5.1 [14]

(electronic supplementary material, table S1). To root the trees,

we also included four additional outgroup taxa for Oriolus follow-

ing Jønsson et al. [8] and four outgroup taxa for Philemon following

Andersen et al. [11]. We sequenced the mitochondrial gene ND2 for

all individuals and included two nuclear markers (GAPDH and

ODC) for three species of brown orioles and one nuclear marker

(Fib-5) for 11 species of friarbirds.
(b) Phylogenetic and dating analyses
DNA sequences were aligned for each gene individually using

MAFFT [15] and subsequently checked in SEAVIEW [16]. Each
of the four gene partitions (ND2, GAPDH, ODC and Fib-5) were

then analysed separately in BEAST [17] applying the most appro-

priate model of nucleotide evolution as determined by MODELTEST

v. 3.7 [18] following the Akaike information criterion (AIC).

Analyses were run for 20 million generations using a relaxed

uncorrelated lognormal distribution for the molecular clock

model and assuming a Yule speciation process for the tree prior.

We then analysed the concatenated datasets for Philemon (ND2

and Fib-5) and Oriolus (ND2, GAPDH and ODC) independently.

These analyses were run for 100 million generations (sampling

every 1000 generations) using a relaxed uncorrelated lognormal

distribution for the molecular clock model and assuming a

birth–death speciation process for the tree prior. We used two

nucleotide substitution partitions for Oriolus and three nucleotide

substitution partitions for Philemon applying the most appropriate

model of nucleotide evolution as determined by MODELTEST v. 3.7

[18] following the AIC. Finally, we analysed ND2 for both Philemon
and Oriolus combined using a relaxed uncorrelated lognormal

distribution for the molecular clock model and assuming a

birth–death speciation process for the tree prior. To obtain absol-

ute dates, we applied to our data a rate of 0.0145 substitutions

per site per lineage (2.9%) per Myr [19]. We used default prior dis-

tributions for all other parameters and ran Markov chain Monte

Carlo chains for 100 million generations sampling every 1000th

generation to produce a posterior distribution of 100 000 trees.

All analyses were repeated multiple times, and convergence

diagnostics were assessed using TRACER [20] checking that effective

sample size values for all parameters were higher than 200,

suggesting little autocorrelation between samples. Output trees

were summarized using TREEANNOTATOR [21] as a maximum

clade credibility (MCC) tree after discarding 25% of generations

as burn-in.

(c) Ancestral state reconstruction
We used LAGRANGE [22,23] to estimate ancestral areas within

Oriolus and Philemon. We assigned three geographical areas for

the LAGRANGE analysis: (i) Australo-Papua, (ii) Wallacea

(islands west of New Guinea), and (iii) the Pacific (islands east

of New Guinea). We randomly selected 1000 trees from the pos-

terior distribution of the BEAST analysis of the concatenated

dataset and ran LAGRANGE on each of these trees. The fre-

quency of the most likely ancestral areas for clades was plotted

as marginal distributions on the MCC tree derived from the

BEAST analysis, recording the area (max. areas ¼ 2) with the

highest relative probability for each node.

(d) Friarbird – brown oriole co-speciation
We tested the strength of evolutionary associations between co-

occurring friarbirds and orioles by using the function ‘ParaFit’

[24] implemented in the R package ‘ape’ [25] in R v. 3.1.2 [26].

The null hypothesis is that the two phylogenies and the set of

co-occurrence links have diversified independently.

(e) Colour resemblance between orioles and friarbirds
We quantified plumage similarity between orioles and friarbirds

using spectrometric measurements from museum specimens

and visual models. Reflectance spectra were collected using a

Avaspec 2048 spectrometer connected to a AvaLight-XE pulsed

xenon light source (Avantes, Eerbeek, The Netherlands) through

a bifurcated fibre-optic cable. The measuring probe was fitted

with a black plastic cylinder (6 mm inner diameter) to standardize

measuring distance (5 mm) and exclude ambient light, which was

held perpendicular to the plumage (coincidental normal, [27]). We

collected the reflectance spectra from 18 standardized plumage

patches: front, crown, dorsal neck, upper back, lower back,

rump, dorsal tail proximal, dorsal tail distal, lores, cheek, wing

http://rspb.royalsocietypublishing.org/
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scapulars, wing primaries, throat, ventral neck, upper breast,

lower breast, belly and vent (electronic supplementary material,

figure S1). Specimens were measured at the British Museum of

Natural History in Tring, UK. We measured one to six specimens

per species (average¼ 3.8, s.e. ¼ 0.26; see electronic supplemen-

tary material, table S2 for a list of specimens) for 137 specimens

and 38 taxa at subspecies level (14 orioles and 24 friarbirds, see

electronic supplementary material), totalling 2457 reflectance spec-

tra. Reflectance spectra (300–700 nm, the visual sensitivity range

of most birds, [12]) were expressed relative to a WS-2 white stan-

dard (Avantes). For the analyses, we pooled the data from male

and female specimens.

Differences in coloration between orioles and friarbirds were

assessed using psychophysical models of avian vision [13], com-

puting chromatic and achromatic contrast between homologous

plumage patches for each oriole–friarbird pair (for further

details on visual models, see electronic supplementary material,

figure S2). Chromatic contrasts quantify the differences in hue

and saturation between homologous patches while achromatic

contrasts quantify differences in brightness (light to dark). For

each sympatric oriole–friarbird pair, we averaged all chromatic

contrasts, and all achromatic contrasts computed between hom-

ologous plumage patches and combined these into a new

variable (colour contrast) following [28] (for more details, see

the electronic supplementary material).

Chromatic and achromatic contrasts were computed follow-

ing Vorobyev et al. [13] and Siddiqi et al. [29], respectively.

Given that oriole mimicry is thought to be aimed at deceiving

friarbirds, we used visual sensitivity functions for V-type birds

[30], the most likely visual system for friarbirds [31]. Similarly,

to compute noise-to-signal ratios (using a Weber fraction of

0.05 and formula 9 in [13], we used the average cone proportions

(0.41 : 0.77 : 1.01 : 1; VS : S : M : L) of the only two species in the

family for which there are data (Entomyzon cyanotis and Manorina
melanocephala [32]). Sensitivity functions for double cones are not

known to vary between species, and we used the sensitivity spec-

trum of Leiothrix lutea and a Weber fraction of 0.05 [29]. Finally,

we used the spectrum of standard daylight (D65) as illuminant

[13]. Visual models were run in the R environment [26], using

the scripts in Delhey et al. [33] (for further details, see the

electronic supplementary material).
( f ) Statistical analyses
Diamond [7] suggested that the greater the size difference between

the model and the mimic, the better the plumage mimicry.

Another aspect that appears relevant is the time of co-occurrence.

If orioles mimic friarbirds, then one would hypothesize that the

mimicry improves the longer orioles and friarbirds have coexisted.

Size differences were computed as the ratio between oriole and

friarbird tarsus length. K.A.J. measured the length of the tarsus

for one to eight specimens (in total, 65 specimens) of 24 out of 32

taxa of Philemon and one to five specimens (in total, 36 specimens)

of 15 out of 17 taxa of brown orioles (electronic supplementary

material, table S3). Coexistence time was taken as the youngest

divergence time to the nearest sister taxon of any given co-occur-

ring oriole–friarbird pair (e.g. for Philemon moluccensis and

Oriolus bouroensis that coexist on the island of Buru, the age of

the oriole is 2.13 Myr as this is the estimated age of the node of

common ancestry between this taxon and its sister taxon. Similarly,

the age of the friarbird is 2.67 Myr. Thus, the time of coexistence is

set at the youngest of the two time estimates at 2.13 Myr). We used

generalized-linear models to assess the potential effects of size

difference and coexistence time on colour contrast. In all cases,

we fitted three models: one for each independent variable in separ-

ate models and one for both variables together including the

interaction term. These analyses were first carried out, using

all sympatric oriole–friarbird pairs as independent data points
(n ¼ 33 for coexisting time and n ¼ 30 for size difference owing

to missing morphological data on Philemon c. corniculatus). We

also used generalized-linear models to assess whether colour con-

trast, size differences and coexistence times varied geographically

(between the three regions in which orioles and friarbirds co-occur:

Wallacea, New Guinea and Australia).

These analyses, using all oriole–friarbird pairs, have two draw-

backs: some oriole taxa contribute more than one data point to the

analyses, and phylogenetic relatedness is not accounted for. Hence,

for those oriole taxa with multiple sympatric friarbirds, we aver-

aged colour contrast values to obtain a single taxon-specific value

(n ¼ 14 oriole taxa). We then fitted phylogenetic generalized-

linear models with function ‘pgls’ as implemented in the R package

‘caper’ [34], using the oriole phylogeny depicted in figure 1. These

models estimate Pagel’s lambda, a parameter that indicates the

degree of phylogenetic correlation in the data and statistically

accounts for it using suitable branch length transformations [36].

As mentioned above, these models included those testing for the

separate effects of size difference and coexistence time and for

their effects in interaction. We did not test for regional differences

using this approach owing to low number of oriole taxa in some

areas (New Guinea).

The values of colour contrast computed provide us an indi-

cation of the absolute levels of contrast between orioles and

friarbirds. If oriole plumage has evolved to match that of sympatric

friarbirds, then we expect that values of colour contrast between

orioles and sympatric friarbirds should be lower compared with

colour contrast values between orioles and allopatric friarbirds.

To quantify this, we computed for each oriole taxon (n ¼ 14) the

average colour contrast with sympatric and allopatric friarbirds

and compared them using a phylogenetic paired t-test [37] as

implemented in the R package ‘phytools’ [38] using the oriole phy-

logeny depicted in figure 1. Negative values of paired differences

would indicate that orioles are better mimics of sympatric than

allopatric friarbirds. Similar to the phylogenetic generalized-

linear models mentioned above, this test estimates lambda and

adjusts results accordingly.
3. Results
(a) Phylogenetic relationships and taxonomy
Analysis of the mitochondrial ND2 gene produced a phylogeny

for brown orioles and friarbirds (figure 1 and electronic

supplementary material, S3), which is almost fully congruent

with the phylogenies for friarbirds and orioles based on both

mitochondrial and nuclear data (electronic supplementary

material, figures S4–S5), with only minor differences for

poorly supported nodes. The two subspecies of O. melanotis
(O. m. melanotis and O. m. finschi) differ by 6.4% in mitochondrial

DNA, which is similar to differences between several other

species of brown orioles. Also, O. decipiens represents a distinct

lineage, which is not closely related to O. bouroensis as pre-

viously suggested [35,39]. The two species of brown orioles of

Australo-Papua with five (O. sagittatus) and six (O. flavocinctus)
subspecies are both monophyletic and subspecies are largely

indistinguishable in the molecular analysis. Three species of

friarbirds (P. novaeguineae, P. buceroides and P. citreogularis) are

not monophyletic and may include multiple valid species.

(b) Timing, origin and dispersal of friarbirds and orioles
Ancestral area analyses are not able to unambiguously identify

a particular region as the origin for brown orioles and friarbirds

(figure 1). Other analyses with a broader taxon sampling have

suggested that the origin is likely Australo-Papuan [8–11].

http://rspb.royalsocietypublishing.org/
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Figure 1. Distribution of coexisting friarbirds and brown orioles with the phylogeny of brown orioles oriented to match the phylogeny of friarbirds (see also
electronic supplementary material, figures S3 – S5 for additional phylogenetic information). Species names are coloured according to island distributions. To the
right of taxon names are indicated distributions (Au, Australia; NG , New Guinea) followed by a number which indicates coexistence. For example, Philemon
brassi (NG, 1) occurs in New Guinea and is sympatric with Oriolus szalayi (NG, 1,5,6,9). Timescales (in million years) are indicated below the phylogenies.
Illustrations from Handbook of the Birds of the World [35]. Asterisks at nodes indicate posterior probabilities of 0.99 – 1.00.
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While colonization of Wallacea by brown orioles may be the

result of a single dispersal event with back-colonization to

Australo-Papua, the ancestral area reconstruction analysis

suggests that friarbirds colonized both the Pacific and the

Wallacean archipelagos multiple times (figure 1). The dating

analysis suggests that friarbirds originated 9.9 Ma (95%

HPD¼ 8.3–11.5 Ma), whereas brown orioles originated

5.0 Ma (95% HPD¼ 4.2–5.9 Ma). Despite the difference in

time of origin, most friarbirds colonized Wallacea and the

Pacific within the last 5 Myr.

To test for the possible coevolutionary radiation between

brown orioles and friarbirds, we evaluated the null hypothesis

that events of speciation of coexisting friarbirds and brown

orioles have taken place independently of each other. The

time of speciation among all friarbird–oriole pairs was evalu-

ated against the association from 500 randomly assigned

matches of species. The timing of co-speciation among coexist-

ing lineages was not different from the co-speciation of

randomly assigned species pairs (ParaFitGlobal ¼ 120 580.7,

p ¼ 0.235). Thus, there is no evidence of co-speciation among

coexisting friarbirds and orioles.
(c) Colour similarity between friarbirds and orioles
Across all sympatric oriole–friarbird pairs, both size disparity

and time of co-occurrence separately correlated with better

mimicry across regions (table 1 and electronic supplementary

material, S4 and S5). Colour contrast was lower for pairs that
had coexisted longer and for pairs where friarbirds were rela-

tively larger than orioles. In addition, we found a significant

positive interaction between both variables (table 1 and elec-

tronic supplementary material, S4 and S5) indicating that the

effects of time and size together are not completely additive.

Indeed, the poorest cases of mimicry were found in species

pairs that had short coexistence times and where orioles were

nearly as large as friarbirds (figure 3). These effects could

explain why plumage colour resemblance between orioles

and friarbirds is most marked in the Wallacean islands and

in New Guinea compared with the Australian mainland

(figure 2a, F2,30 ¼ 8.79, p , 0.001). Both size differences

(F2,27 ¼ 4.81, p ¼ 0.016) and coexistence times (F2,30¼ 7.9, p ¼
0.001) vary between regions being lowest in Australia

(figure 3). Thus, it appears that better mimicry in Wallacea

and New Guinea can be explained largely by the combination

of co-occurrence times and size differences.

Phylogenetic generalized-linear models confirm the effects

of size differences and coexistence time presented above. At

the taxon level, (n ¼ 14) brown orioles that have lower colour

contrast against sympatric friarbirds are those that have

coexisted with relatively larger friarbirds for longer (table 2

and electronic supplementary material, S6 and S7, figures 2

and 3). Finally, orioles tend to resemble sympatric friarbirds

more than allopatric ones, but this difference is not significant

(phylogenetic paired t-test, mean paired colour contrast

[sympatric–allopatric]¼ 22.04, s.e. ¼ 1.29, t¼ 21.58, p¼ 0.14,

l¼ 0.66).
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Figure 2. Colour contrast between orioles and sympatric friarbirds varies
across the study region (a) as does coexistence time (b) and size difference
measured as the ratio between oriole and friarbird tarsus length (c).
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4. Discussion
Recently, Prum [3,40] summarized the current knowledge of

ISDM in birds and set forth predictions of the ISDM model.

First, ‘Visual deception should be physiologically plausible

at ecologically relevant visual distances between individuals’.

This is certainly the case for this study system as both the

models and mimics are medium-sized passerine birds that

often feed (and compete for resources) in the same fruiting

trees [7].

Second, ‘Model species are larger in body mass than

mimic species, and socially dominant over them’. Our mor-

phological data demonstrate that members of Philemon and

Oriolus overlap in size. However, while comparing coexisting

orioles and friarbirds, it is clear that there are notable size

differences between the models (larger) and the mimics, par-

ticularly in the Indonesian islands. Diamond [7] suggested

that a larger difference in size between co-occurring friarbirds

and brown orioles led to better mimicry. He hypothesized

http://rspb.royalsocietypublishing.org/
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that if mimicry had evolved because it enabled orioles to feed

alongside aggressive friarbirds, there would be a stronger

selection on small orioles to mimic friarbirds as they would

be more vulnerable to attacks. Based on a large-scale

survey, Prum [3] found that linear dimensions of mimics

are on average 82% of the model, which is in good agreement

with our study (the tarsus length of orioles was on average

76% of that of sympatric friarbirds, n ¼ 14). However, the

relative size differences between the model and the mimic

varied greatly within the study system (the linear dimensions

of mimics ranged between 62% and 92%), and this variation

was correlated with colour contrast (figures 2 and 3). Orioles

that are substantially smaller than co-occurring friarbirds

show lower levels of colour contrast to the model and are

therefore better mimics.

Third, ‘Model and mimic species are not closest relatives,

and are each more closely related to other species that differ

in their appearance’. It is well established that friarbirds and

brown orioles belong to different clades (Meliphagidae and

Oriolidae) that are well separated in the passerine tree [41].

Our phylogenetic analyses of the two groups show that the

origin of friarbirds dates back to the Miocene (9.9 Ma) with

the majority of taxa having evolved within the last 5 Myr.

This probably reflects the emergence of an extensive archipel-

ago to the west of New Guinea [42], which was colonized

multiple times by friarbirds (figure 1 and electronic sup-

plementary material, figure S3). Brown orioles originated

later (5.0 Ma), and the number of colonizations of the Walla-

cean archipelagos remains unclear. While the biogeographic

origins of the clades are ambiguous, the results suggest

that they both colonized and diversified within Wallacea

at roughly the same time during the Late Miocene and the

Early Pliocene. Consequently, some friarbirds and brown

orioles may have coexisted for millions of years on these

islands. Our results show that friarbirds and brown orioles do

not represent a case of co-speciation but that the sequential

order of island colonization across the Wallacean islands

http://rspb.royalsocietypublishing.org/
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took place in different ways for the two groups. However,

there is one plausible instance of co-speciation among species

on the neighbouring Moluccan islands of Buru (Philemon moluc-
censis mimicked by Oriolus bouroensis) and Seram (Philemon
subcorniculatus mimicked by Oriolus forsteni; figure 1).

Finally, ‘SDM can create a coevolutionary arms race in

visual appearance. If geographic isolation or speciation

occurs subsequent to the origin of mimicry, independent

populations of models and mimics may produce coevolution-

ary radiation in visual appearance among clades’. Diamond

[7] pointed out several convincing reasons that brown orioles

mimic friarbirds and not vice versa. However, the mimicking

brown orioles are not a monophyletic assemblage of species

(figure 1 and electronic supplementary material, figure S3).

Our analyses suggest that different lineages of brown orioles

currently present in the Moluccan islands (O. phaeochromus,

O. bouroensis and O. forsteni) and in the lesser Sunda islands

(O. decipiens and O. melanotis) have evolved improved mimi-

cry compared with their relatives in Australia. It is uncertain

if the brown oriole clade adapted to mimic friarbirds early on

or if being brown simply provided a selective advantage that

could be further honed once brown orioles came into contact

with friarbirds in depauperate island ecosystems. Following

Diamond’s [7] observations, we found a negative relationship

between levels of plumage divergence and size divergence,

thereby confirming that the closest plumage similarity (i.e.

the strongest mimicry) is found in the coexisting species

pairs that differ most in size. In addition, we found that the

duration of coexistence between friarbirds and orioles also

affected the degree of mimicry. Oriole–friarbird pairs that

have presumably coexisted for longer times had lower

levels of colour contrast (figures 2b and 3). Taken together,

these results suggest that both the strength of selection to

avoid aggression, which should be more intense the larger

the size difference, and the opportunity for phenotypic

change to happen afforded by longer periods of coexistence,

have shaped the evolution of mimicry in brown orioles.
5. Conclusion
We present a detailed analysis of a classic example of visual

mimicry in birds in Australo-Papua and the surrounding

archipelagos, using nearly complete dated molecular sub-

species-level phylogenies, and drawing on several lines of

evidence to determine how brown orioles (the mimics) evolved

in relation to friarbirds (the model). Consistent with the mimicry

hypothesis, our analyses show that friarbirds evolved before
brown orioles and that they speciated and dispersed largely

independently of each other in Australo-Papua and the

surrounding archipelagos. In the depauperate island environ-

ments, improved mimicry probably facilitated the persistence

of brown orioles. Our data also show that orioles tend to better

match the colourof sympatric friarbirds than allopatric friarbirds.

Finally, a longer history of co-occurrence and a larger size differ-

ence between model and mimic lead to better mimicry,

ultimatelyallowing for the existence of both friarbirds and orioles

on Wallacean islands.
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Museum of Natural History, Stockholm, Sweden (Ulf Johansson);
Zoological Museum, University of Copenhagen, Denmark (Jon
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In a recent paper on ‘The evolution of mimicry of friarbirds by orioles (Aves:

Passeriformes) in Australo-Pacific archipelagos’, Jønsson et al. [1] use molecular

phylogenies and plumage reflectance measurements to test several key predic-

tions of the mimicry hypothesis. Jønsson et al. [1] show that friarbirds

originated before brown orioles, and that the two groups did not co-speciate,

although there is one plausible instance of co-speciation among species on

the neighbouring Moluccan islands of Buru and Seram. Furthermore, Jønsson

et al. [1] show that greater size disparity between model and mimic and a

longer history of co-occurrence have resulted in a stronger plumage similarity

(mimicry). One distinct outlier in this respect was the species-pair Philemon
fuscicapillus and Oriolus phaeochromus. The two species have seemingly co-

existed for approximately 3.7 Myr on the north Moluccan island of

Halmahera. Diamond [2] described the species pair as ‘closely similar’ but

the reflectance measurements do not show the expected high levels of plumage

similarity (fig. 3 orange pin to the left). However, in a paper we had overlooked,

by Besson [3], evidence based on museum specimens convincingly demonstrates

that these two taxa do not co-occur. Rather, Philemon fuscicapillus is restricted to

the island of Morotai, whereas Oriolus phaeochromus is restricted to the island of

Halmahera. In light of this, we have re-analysed the data. As expected, the ana-

lyses show similar but stronger correlations between plumage similarity and

coexistence time
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Figure 1. Average coexistence time and relative size difference correlate with
the level of colour contrast between orioles and coexisting friarbirds. Red col-
ours depict high and green colours low values of colour contrast. (Online
version in colour.)
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coexistence time (phylogenetic regression; effect ¼ 22.88,

s.e. ¼ 0.95, t ¼ 23.04, p ¼ 0.011, R2 ¼ 0.4), and between

plumage similarity and size differences (phylogenetic

regression: effect ¼ 25.65, s.e. ¼ 9.71, t ¼ 2.64, p ¼ 0.023, R2 ¼

0.33) due to the removal of the outlier from fig. 3 in Jønsson

et al. [1] (figure 1). The effect of the interaction between these

two variables is, however, no longer significant (phylogenetic

regression; effect ¼ 213.05, s.e. ¼ 17.98, t ¼ 20.73, p ¼ 0.48).

Hence, our main conclusions that both coexistence time and

size disparity between orioles and friarbirds contribute to the

evolution of visual mimicry in orioles are upheld.
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