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The Vindication of Don Quixote: The Impact of Noise
and Visual Pollution from Wind Turbines
Cathrine Ulla Jensen, Toke Emil Panduro, and
Thomas Hedemark Lundhede

ABSTRACT. In this article we quantify the marginal
external effects of nearby land-based wind turbines
on property prices. We succeed in separating the ef-
fect of noise and visual pollution from wind turbines.
This is achieved by using a dataset consisting of
12,640 traded residential properties located within
2,500 meters of a turbine sold in the period 2000–
2011. Our results show that wind turbines have a sig-
nificant negative impact on the price schedule of
neighboring residential properties. Visual pollution
reduces the residential sales price by up to about 3%,
while noise pollution reduces the price between 3%
and 7%. (JEL Q18, Q38)

I. INTRODUCTION

In the sixteenth century, the fictional char-
acter Don Quixote thought that windmills
were alien to the landscape. Many people
have similar views about wind turbines today.
The installation of land-based wind turbines
is controversial and is often met with oppo-
sition from the local community (Wolsink
2000), which often takes the form of a “not in
my back yard” argument. The general need to
increase renewable energy, and install wind
turbines in particular, is acknowledged, but at
the same time the location of local wind tur-
bine projects is opposed. Denmark has expe-
rienced a massive growth in wind-power ca-
pacity. In the mid 1990s less than 2% of the
domestic power supply was derived from
wind; today 5,000 onshore and offshore tur-
bines make up more than one-fifth of the do-
mestic power supply. The Danish government
plans to increase the share of onshore turbines
by an additional 1,800 megawatt-hours before
2020. In addition, large offshore wind turbine
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projects have been initiated. It is expected that
offshore projects will dominate the expansion
of wind turbine energy production in the com-
ing years.

The noise and visual appearance of wind
turbines make them very unattractive neigh-
bors (Devine-Wright 2005). The stated pref-
erence literature has shown that people in gen-
eral have a positive attitude toward wind
turbines (Borchers, Duke, and Parsons 2007),
while at the same time they are able to put a
value on the negative externalities related to
noise and visual pollution (Ladenburg 2009;
Meyerhoff, Ohl, and Hartje 2010; Ladenburg
and Möller 2011). The stated preference re-
sults are compelling, but a number of ques-
tions follow in their wake. For example, when
respondents have to relate to a hypothetical
scenario, are they cognitively able to distin-
guish between their opinions on noise and vi-
sual pollution? If not, are conclusions based
on hypothetical payments as reliable as results
based on observed, actual payments (Dia-
mond and Hausman 1994)?

The externalities related to wind turbines
are restricted to local residents, which makes
the hedonic house price method the obvious
valuation technique to choose. Only a handful
of hedonic studies have attempted to estimate
the local negative impacts of wind turbines,
and only the most recent publications have
succeeded (Sims and Dent 2007; Sims, Dent,
and Oskrochi 2008; Hoen et al. 2011; Heint-
zelman and Tuttle 2012). Heintzelman and
Tuttle (2012) find that nearby wind facilities
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significantly reduce property values. Their re-
sults show that property prices are reduced by
between 8.8% and 14.87% at a distance of 0.5
miles to the nearest turbine. They use prox-
imity to wind turbines as a proxy for noise
and visual pollution. While both noise and vi-
sual pollution from wind turbines are corre-
lated with proximity, they have a dissimilar
impact and spatial extent. As such, proximity
seems to be a rough generalization of the ex-
ternalities related to wind turbines, which im-
plies that the result of Heintzelman and Tuttle
(2012) should be interpreted with caution.

While only two hedonic studies have dem-
onstrated that wind turbines have an impact—
this study included—hedonic house price
valuation has been used with success on nu-
merous other externalities, for example, noise
pollution from traffic, and having a nice view
of, or access to, green spaces (Day, Bateman,
and Lake 2007; Sander and Polasky 2009;
Zhou et al. 2013). The hedonic literature on
road traffic has treated the related externalities
much the same way as wind turbines have
been treated in this study, by explicitly con-
trolling for both view and noise in the hedonic
model. Two examples are studies by Lake et
al. (1998) and Bateman et al. (2001). By
working with geographical information sys-
tems (GISs), the authors were able to estimate
the impact of noise and visual pollution for
each house in their sample. Their conclusions
are broadly similar in that noise and visual
pollution from larger roads are reflected in
property prices as two different negative im-
pacts.

The main contribution of the present study
is the provision of separate estimates of both
the noise and visual pollution from wind tur-
bines. We construct viewsheds based on a
high-resolution digital surface model (DSM),
which enables us to identify properties where
wind turbines are visible. Noise pollution is
calculated for each wind turbine based on
noise level measurements emitted at hub
height, distance to the wind turbine, landscape
properties, and air absorption under optimal
conditions. In total, 12,640 transactions of
house sales are included in the model, which
ensured a reasonable variation in the variables
of interest.

II. METHODS

Modeling Visual Pollution

Visual pollution from wind turbines can be
subdivided into several negative effects with
different causes, spatial extents, and impacts
(Hoen et al. 2011). Wind turbines in the open
landscape can make the area appear more de-
veloped and less rural or less authentic. The
general perception of an area can be degraded,
as can a location with a scenic view. In addi-
tion, wind turbines add movement to the land-
scape, which attracts attention and reduces the
experience of tranquility and peacefulness
that would otherwise be gained from a rural
landscape. The rotating wings of a wind tur-
bine reflect the sun, creating flickers of light,
which again attracts attention and adds to the
nuisance from the movement effect. The last
visual effect is shadow-flicker. When the
wings rotate, they cast a moving shadow,
which in turn causes flickers of shadow in the
immediate surroundings of the wind turbines.

In order to experience a visual effect
caused by turbines, one needs to be able to
see at least a part of a turbine. Properties with
a view of one or more turbines were identi-
fied by constructing viewsheds for each of
the wind turbines in the survey areas at hub
height. The viewshed was based on a high-
resolution DSM consisting of 1.6×1.6 m
cells. The DSM accounts for terrain and ob-
stacles such as buildings, vegetation, forests,
and so forth. Houses were identified as hav-
ing a view of a turbine if at least one of the
corners of the building 2 m above terrain was
located within the estimated viewshed of a
wind turbine. In total, 33% of the houses in
the analysis had a view of a wind turbine.

We captured visual pollution in our model
by a dummy variable that indicates whether a
turbine can be seen from the property, and by
an interaction term between the dummy vari-
able and the distance to the nearest wind tur-
bine. The specification implies that having a
view of a turbine provides a negative impact
and that the impact decreases as distance to
the turbine increases. We assume that the
combined negative externalities of the visual
pollution of wind turbines are captured by this
specification.
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TABLE 1
The Distribution of Observations across Noise Groups

<20 dB 20–29 dB 30–39 dB 40–50 dB

Affected properties (%) 4,077 (32) 7,532 (60) 879 (7) 152 (1)

Noise Pollution

Noise from wind turbines stems from three
sources: when the wings pass the tower, when
the wings cut through the air, and from the
mechanics of the turbine. Noise emitted from
a turbine is not constant. Some of the noise is
tonal and some is low frequency (Møller, Ped-
ersen, and Staunstrup 2010). The composition
of the noise affects how the sound is experi-
enced, which is different from how constant
noise sources, such as noise from highways,
are experienced.

The noise-level emissions were calculated
for each wind turbine based on how much
noise a turbine emits in the case of optimal
conditions for noise production and noise
travel distance. Noise was calculated based on
equation [1], which is provided by the Danish
legislation in a statute on noise from turbines
(Environmental Protection Agency 2011).
The equation describes the sound pressure
level (SPL) emitted from a wind turbine at a
given distance measured in decibels (dB):

2 2SPL = L −10*log(l + h )−11dBwa

+1.5dB −ΔL , [1]a

where Lwa is the sound pressure from the wind
turbine provide by the Windpro database
(EMD International A/S 2012), l is the dis-
tance to the turbine, h is the hub height, 11
dB is a distance correction constant, and 1.5
dB is a terrain correction constant assuming a
rural landscape. The air absorption, , isΔLa
calculated by the following equation:

2
2 2ΔL = (l + h ). [2]a

1,000

Noise levels were divided into noise zones
(Table 1). Properties located within these
noise zones were identified by simple overlay
analysis in GIS. No house was found to be

located within a noise zone above 50 dB, and
the majority of houses in the survey area were
located within the noise zone 20–29 dB.
Sound below 20 dB is generally perceived as
silence (Pedersen and Waya 2004), a whisper
is equal to about 30 dB, and a normal con-
versation is around 60 dB.

Equation [1] does not account for tonal or
low-frequency noise, which may affect the
perception of experienced noise. Furthermore
it does not account for the multiplication ef-
fect of noise exposure to several wind tur-
bines. Two turbines emit more noise than one.
If a house was affected by more than one wind
turbine, the house was assigned the highest
noise calculation. In addition, the perception
of noise may depend on the background noise.
The experience of noise emitted from a tur-
bine in a quiet environment is likely to be per-
ceived differently from turbine noise in an en-
vironment with other external noise sources
such as highways or railways. The noise cal-
culation does not include other sources of
noise. However, such negative externalities
are accounted for in the hedonic price model
(Table 2).

Theory

The theoretical foundation for the hedonic
valuation method stems from Rosen’s (1974)
seminal paper, which demonstrated that buy-
ers and sellers of houses in a perfectly com-
petitive market will reach a market equilib-
rium guided by the implicit prices of house
characteristics. Rosen argues that household
buyers seek to maximize utility by bidding as
little as possible for every single house (de-
fined by its characteristics), while household
sellers seek to maximize capital rent by offer-
ing their house for the highest price possible.
The equilibrium price schedule for house
characteristics forms where the bid and offer
functions meet. In equilibrium, the price, P,
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TABLE 2
Overview of Control Variables in the Model

Structural Variables

Number of floors Number of rooms Brick Tile roof Renovation 1970s
Basement size Number of toilets Flat roof Cement roof Renovation 1980s

Size of living area Number of baths Age Fiber Roof Renovation 1990s
Attic space Low basement Detached house Board roof Renovation 2000s

Environmental Variables

Forest Coastal line Highway
Lake Urban zone Large road

of any given house, n, can be modeled as a
function of a vector z that includes all K house
characteristics, zik:

P = f (z , . . . ,z , . . . z ;Θ), [3]n n1 nk nK

where Θ is a set of parameters related to the
characteristics and specific to the housing
market considered. Note that the characteris-
tics may also include environmental amenities
and disamenities obtained by ownership of the
house, which here relates to whether the prop-
erty is exposed to visual or noise pollution
from wind turbines. Assuming weak separa-
bility with respect to the parameters of interest
ensures that the marginal rate of substitution
between any two characteristics is indepen-
dent of the level of all other characteristics.
With that assumption in place, the implicit
price of a house characteristic, zk, is its market
price and is also a measure of its associated
marginal willingness to pay (MWTP) (Palm-
quist 1991).

At optimum, the household MWTP will
equate to the household marginal rate of sub-
stitution between the price of the house char-
acteristic zk and a composite numeraire good,
comprising all other goods. Hence, the slope
of the hedonic price function for a given house
characteristic zk can be recognized as the
MWTP for house characteristic zk:

dPn
MWTP = . [4]n

dznk

This allows us to calculate the value of a mar-
ginal change in the environmental good also
known as the first stage of the hedonic model.

From a policy perspective, it can be argued
that the value of such a marginal change in
amenity values is seldom a crucial piece of
information. The reason is that the hedonic
price function provides information only on
one point on the households’ demand function
with respect to the environmental good in
question—not the demand schedule for that
good, which would be the result of undertak-
ing the second stage of the hedonic theory.
Nevertheless, results from first-stage models
are the most reported results in the hedonic
literature (Palmquist 2005). The main prob-
lem in reaching the second stage is to come
up with appropriate instruments to handle the
inherit endogeneity that arises when house-
holds at the same time choose both the amount
of house characteristics to consume and the
house price.

The Model

The hedonic house price model is esti-
mated in two steps. In the first step, the nom-
inal sales prices are detrended using a cross-
pooled regression model that allows for
different prices across years and municipali-
ties, using 2011 as the reference year. The er-
ror term of the cross-pooled regression con-
sists of logged sales prices detrended in time
and space. In the second step, the hedonic
price model is estimated using a simple non-
spatial OLS model and two explicit spatial
models based on a generalized method of mo-
ments (GMM) estimator developed by Kele-
jian and Prucha (2010). The spatial models
consist of a spatial error model (SEM) and a
spatial autoregressive model with a spatial au-
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toregressive error term (SARAR). The two-
step approach is required because spatial
models are not able to identify highly corre-
lated variables (Panduro and Thorsen 2013)
such as the correlation between the interaction
term, the municipalities, and the year dum-
mies in equation [5]. Related approaches to
time detrending have been applied by Zhou et
al. (2013) and Won Kim, Phipps, and Anselin
(2003). The detrending procedure assumes
that all variables between the two steps are
uncorrelated, or that at least all turbine related
variables in step two are uncorrelated with all
variables in the first step. If this holds the
model will yield unbiased estimates for the
turbine variables.

The cross-pooled model that corrects for
differences in prices over municipalities and
years can be written as follows:

ln(P) = β +β municipality +β year0 1 2

+β year × municipality +μ, [5]3

where ln(P) is logged property prices, β1 is a
vector of the parameter estimates for the
dummy variables referring to municipalities,
β2 is a vector of the parameter estimates over
the 12-year period, and β3 is a vector of pa-
rameter estimates of the interaction terms be-
tween the municipalities and years. Lastly, μ
is the model’s error term, which essentially is
an expression of the logged and detrended
price and unexplained noise.

The hedonic house price model is esti-
mated using the logged detrended prices sup-
plied by equation [5]. The full hedonic
SARAR model can be written as follows:

μ = ρWμ+θ Z +θ view + view ×θ dis1 2 3

+θ noise + ε, [6]4

ε = λWε+ u, [7]

where is a vector of coefficient estimatesθ1
of the control variables presented in Table 2,

is the coefficient estimate of the dummyθ2
variable of having a view, is the coefficientθ3
estimate of the interaction term between the
view and distance to nearest wind turbine, and

represents the coefficient estimates of be-θ4
ing within one of the noise zones, using <20

dB as the reference zone. By using this model
specification we hypothesize that the negative
impacts of wind turbines are present only if a
property is exposed to noise at different levels
and to the view of the nearest wind turbine.
We further hypothesize that the effect of hav-
ing a view will decrease over distance. The
parameter W is a row-standardized N×N spa-
tial weight matrix based on the 10 nearest
neighbors. The terms and are the spatialρ λ
autoregressive coefficients, also known as the
spatial lag term and the spatial error term, re-
spectively. The hedonic model is estimated
using an (nonspatial) OLS model, where both

and are assumed to be zero; a spatial errorρ λ
model, where is assumed to be zero andρ λ
nonzero; and finally as a SARAR, where ρ
and are assumed to be nonzero. The objec-λ
tive of the application of the spatial models is
to provide consistent and efficient parameter
estimates that are robust to model specifica-
tions and unobserved spatially correlated vari-
ables.

The spatial lag term implies that there isρ
a spillover effect between house prices of
neighboring properties. LeSage and Fischer
(2008) distinguish between average direct, in-
direct, and total impacts, depending on
whether one looks solely at the estimated co-
efficient or accounts for neighboring obser-
vations. From Won Kim, Phipps, and Anselin
(2003), the marginal price of a housing char-
acteristic (total impact) becomes

dμ
−1= θ (I −ρW) , [8]k

dzk

where I is an identity matrix. The direct effect
can be interpreted in the same way as a stan-
dard regression coefficient estimate, while the
indirect effect depends on the defined neigh-
bors in the spatial weight matrix. The model
suggests a marginal change will set off a rip-
ple effect through the housing market, affect-
ing neighbors and their neighbors and so
forth.

We believe that the indirect spillover effect
represented by the autoregressive lag term ρ
can be interpreted as an information effect. If
buyers and sellers are unsure of the appropri-
ate value of a property given its characteris-
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tics, they may infer the appropriate price by
looking at nearby properties with similar char-
acteristics. The information contained in pre-
vious transactions in the same area may also
allow the household to form expectations
about the future evolution of the prices in the
area. Alternatively, the lagged dependent vari-
able is likely to be a proxy for unobserved
characteristics. In either case, the spillover ef-
fect should be disregarded in the interpreta-
tion of the MWTP in hedonic house price
models, as it does not reflect the preference of
buyers.

III. DATA

In total, the analysis contains 12,640 sales
of single-family houses sold over the 12-year
period from 2000 to 2011. During this period,
several turbines were built. Property prices
prior to turbine construction were modeled as
if the property were not exposed to any ex-
ternality related to turbines. The anticipated
arrival of a turbine before installation will
probably be capitalized into the price of the
property. However, there will most likely be
a large variation from buyer to buyer in
knowledge about potential turbines. Therefore
we use the time of installation as a cutoff date.
This also ensures that it is the actual and ex-
perienced noise and view pollution that is
evaluated and not the expected pollution.

Data also contain information on the struc-
tural characteristics of the property, such as
number of rooms, size of the living area, and
so forth. This information was extracted from
the Danish Registry of Buildings and Housing
database (Ministry of Housing, Urban and Ru-
ral Affairs 2012). The registry also contains
information on the exact coordinates of the
location of each house. Proximity variables to
environmental externalities were calculated
for each property using ArcGIS Desktop 10.1.
The proximity measures are proxies for view,
accessibility, and so on. To remove possible
border problems, all spatial externalities less
than 5.5 km from the border of the survey ar-
eas were included in the calculation of spatial
variables. Spatial data were supplied by the
Danish National Survey and Cadastre from
the spatial database Kort10 (KMS 2001). A

summary of the control variables applied in
the model is presented in Table 2.

Data on wind turbines were provided by
the Danish Energy Agency (2012) and include
the geocoded location of the wind turbines,
hub height, total height, and rotor diameter.
Noise data for each wind turbine were sup-
plied by the database from the planning pro-
gram WindPro 2.8, which includes reported
noise date from the manufactures (EMD In-
ternational A/S 2012). The viewshed of each
wind turbine was constructed based on a
DSM, which consists of 1.6×1.6 m cells.
Each cell contains the average height of the
surface, which is defined as ground surface
including obstacles relevant to the viewshed
such as buildings, fences, forest, and so forth.
A more detailed description of the properties
of the Statistics Denmark data has been pro-
vided by Heywood, Cornelius, and Carver
(2006). The Statistics Denmark data was sup-
plied by COWI (2009).

Survey Area

The survey consists of 24 spatially de-
tached subsurvey areas, which combined
cover 647 km2, 20 municipalities, and 55,864
houses in Denmark. The subsurvey areas are
located in a rural environment characterized
by fields, small villages, and towns, which are
representative areas for raising wind turbines
in Denmark. The main criterion for selection
of the survey areas was that they have as many
transactions as possible within a primarily 600
m and secondarily a 2,500 m radius of the
nearest wind turbine. The selection criterion
resulted in a rather dispersed study area, as
illustrated in Figure 1. The survey areas were
identified using GIS and assessed manually
using high-resolution aerial photos. Each sur-
vey area consisted of trades within a 2.5 km
radius around a given turbine, which ensures
that the exposure to the wind turbine exter-
nality varies between being exposed and be-
ing nonexposed. If two zones overlapped,
they were merged. Turbines and other envi-
ronmental features were modeled within the
survey area in a radius of 5.5 km from the
border of the survey area.
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FIGURE 1
Map of Denmark Showing the Spatial Distribution

of Study Areas

IV. RESULTS

The results of the model estimations are
presented in Table 3 for wind turbine exter-
nalities and relevant model tests. The full es-
timation results can be found in Appendix B.
In addition, model estimates using only Eu-
clidian distance to describe the relationship
between the wind turbine and sold properties
can be found in Appendix B. The estimates of
wind turbine externalities vary only margin-
ally between models and are significant at the
5% level except for the view variable in the
SEM model and the 39–50 dB noise zone in
the OLS model, which are both significant at
the 10% level. All three models are robust to
heteroskedasticity. The nonspatial model is
estimated using OLS with heteroskedasticity-
consistent standard errors. The two spatial
models are estimated using the GMM with in-
novations robust to heteroskedasticity; see,
for example, Piras (2010) for an elaboration.

Having a view of a wind turbine from the
house results in a considerable reduction in
the price schedule of the house. The effect of
the view of a wind turbine decreases as dis-

tance to the turbine increases. The models pre-
dict that a house located within one of the
noise zones has a discrete impact on the sales
price. The negative impact of the noise zone
is positively related to the noise level. Com-
paring this model with a model where dis-
tance is used as a proxy for noise and view
indicates that changing the specification of the
turbine variables has little effect on the control
variables. The effects on distance and noise
levels are compared in Table 5.

The spatial autoregressive terms in the
SEM model and the SARAR model are highly
significant, which indicates that the two mod-
els adjust for spatial autocorrelation. The ad-
justed R2 is calculated for the three models.
The SARAR model has a considerably higher
adjusted R2 than either of the other models.
This indicates that the lag term in the SARAR
model improves model performance.

The global Moran’s I value is calculated for
the residuals for each of the models, based on
a row-standardized spatial weight matrix that
includes the 10 nearest neighbors. The global
Moran’s I test indicates that all three models
suffer from spatial autocorrelation, as the re-
siduals have a significant spatial structure,
which is different from a random spatial dis-
tribution.

Spatial dependence of the residuals of the
OLS models was tested using Lagrangian
multiplier (LM) statistics. The term robust in
the LM-error and LM-lag (in Table 3) indi-
cates that it tests for one type of dependence
under the assumption that the other is present
(Anselin et al. 1996). The Lagrangian multi-
plier tests are significant for both an error term
and a lag term. The error term is the more
important of the two terms. In the SARAR
model, both autoregressive terms are in-
cluded.

V. MODEL INTERPRETATION

The marginal implicit price of the hedonic
price function is presented in Table 3. The
price functions are all log-linear, thus the mar-
ginal changes represent the relative change in
house price. Table 4 contains both a marginal
willingness to pay in relative and absolute
prices based on the average sales price in 2011
in the survey areas. The table is based on the
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TABLE 3
Model Estimation of Turbine Externalities

Variable OLS SEM SARAR

View −0.1168† (0.0134) −0.0315* (0.0172) −0.0398*** (0.0154)
View×Distance 0.00699† (0.0008) 0.00242** (0.0010) 0.00278*** (0.0001)
20–29 dB −0.0368† (0.0059) −0.0307*** (0.0102) −0.0256*** (0.0080)
30–39 dB −0.0512† (0.0118) −0.0550*** (0.0190) −0.0442*** (0.0151)
40–50 dB −0.0433* (0.0243) −0.0669** (0.0273) −0.0509** (0.0243)
λ (error term) 0.6004† (0.0120) 0.4413† (0.0254)
ρ (lag term) 0.2678† (0.0276)
Wald statistics (h1: λ = ρ = 0) 1,538.4†
Adjusted R2 0.3794 0.3704 0.4492
Global Moran’s I 0.2553† 0.2776† 0.1367†
LM-error 4,629.275†
LM-lag 3,220.362†
Robust LM-error 1,468.492†
Robust LM-lag 59.576†

Note: The table is a subset of the full model shown in Appendix B. Here we show only the variables relevant to the wind turbine. N =
12,640, OLS = 12,581 degrees of freedom. Standard errors are in parentheses. LM, Lagrangian multiplier; OLS, ordinary least squares; SARAR,
spatial autoregressive model with a spatial autoregressive error term; SEM, spatial error model.

* Significant at 10%; ** significant at 5%; *** significant at 1%; † significant at 0.1%.

TABLE 4
Marginal Implicit Willingness-to-Pay Estimates

Parameter % Change in the House Price Average MWTP (€)

View (dummy) −3.15 −6,233
View×Distance (per 100 m) −0.24 −479
20–29 dB (dummy) −3.07 −6,075
30–39 dB (dummy) −5.50 −10,883
40–50 dB (dummy) −6.69 −13,239

Note: The view×distance parameter should be interpreted in relation to the 2,500 m border of the zone.
Therefore the effect at 2,500 m equals 0, whereas the effect of a property, e.g., 100 m away from the wind
turbine will equal 2,400× −0.24. MWTP, marginal willingness to pay.

estimates of the SEM model. The lag term in
the SARAR model implies a spillover effect
that may be an information effect. Such an
effect would be inappropriate to account for
in the interpretation of the estimates of the
hedonic house price model. Given the ambig-
uous interpretation of the lag term in the
SARAR model, we choose to present and in-
terpret the estimates of the SEM model (see
also Section II).

The noise and visual pollution of wind tur-
bines have a considerable impact on local res-
idents. The impact of turbine noise on the im-
mediate surroundings results in a 6.69%
reduction in house prices in highly exposed
areas. The marginal willingness to pay dou-
bles from the low noise zone of 20–30 dB to
the high noise zone of 39–50 dB. The visual
pollution of a wind turbine reduces the house

price by 3.15%. Starting from the base of the
wind turbine, the price increases by 0.24% for
each 100 m away from the turbine for those
houses with a view of a turbine. The specifi-
cation of the hedonic model indicates that
having a view of a wind turbine is negative.
However, the negative visual impact of the
turbine reduces with distance.

The results are in line with the findings of
the only other hedonic article to identify a
negative impact of wind turbines. Heintzel-
man and Tuttle (2012) find a depression in
property price of between 8.80% and 14.49%
within a radius of 0.5 miles to the nearest tur-
bine. Our results indicate that prices drop by
between −7.3% and 14% under similar cir-
cumstances, depending on the level of noise
exposure. Table 5 presents the impact of noise
and visual pollution evaluated at the mean
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TABLE 5
The Percentage Change in the House Price That Can Be Attributed to Noise and

Visual Pollution from Wind Turbines

Noise and Visual Pollution

Distance to Visible
Turbine <20 dB 20–29 dB 30–39 dB 40–50 dB Distance as Proxy

200 m −8.7 −11.8 −14.2 −15.4 −13.8
400 m −8.2 −11.3 −13.7 −14.9 −12.6
600 m −7.7 −10.8 −13.2 −14.4 −11.4
800 m −7.3 −10.3 −12.8 −14.0 −10.2
1,000 m −6.8 −9.8 −12.3 −13.5 −9.0
1,200 m −6.3 −9.4 −11.8 −13.0 −7.8
1,400 m −5.8 −8.9 −11.3 −12.5 −6.6
1,600 m −5.3 −8.4 −10.8 −12.0 −5.4

Note: The table is based on the spatial error model (SEM) in Table 3. The column to the far right is based
on a SEM using only Euclidian distance to describe the relationship with the wind turbine. The combinations
of high sound levels and high distances are calculated according to the model but will in reality not be relevant.

house price for varying levels of distance and
noise exposure (see Section II). The impact
assessment of the wind turbine is compared
with an assessment based on a SEM that uses
Euclidian distance between the nearest wind
turbine and the sold properties (see Appendix
B). The Euclidian distance measure represents
a proxy variable of the noise and visual pol-
lution of wind turbines. These estimates are
close to the <20 dB noise zone at long dis-
tances. At intermediate distances they are
closer to the 20–29 dB zone, and at close dis-
tances they are closer to the 30–39 dB zone.
The distance measure is not able to predict the
large variation of impact by wind turbines on
neighboring properties driven by the exposure
of noise and visual pollution and, therefore, is
insufficient as a mean proxy measure. The Eu-
clidian distance measure seems especially in-
adequate to predict the impact on properties
exposed to the high levels of noise.

The effect of lot size as suggested by, for
example, Lewis and Acharya (2006) was in-
vestigated by interactions with the noise and
view variables and showed no appreciable or
mixed effects on results, probably due to mul-
ticolinarity among the high number of spatial
models.

VI. CONCLUSION

In this paper we succeeded in separating
and identifying the visual and audible exter-
nalities arising from wind turbines. We iden-

tified a negative price premium of around 3%
of the sales price for having a view of at least
one wind turbine. The price premium declines
as distance to the turbine increases at a rate of
0.24% of the sales price per 100 m. Further-
more, we find that noise provides an addi-
tional negative price premium, which in terms
of impact mirrors that of having a view. Ap-
proximately 3% to 7% of the change in house
prices can be explained by the exposure to
noise. The estimates of noise and visual pol-
lution are compared with a simple Euclidian
distance measure. From the comparison it is
clear that a straight-line relationship between
wind turbine and properties is insufficient.
The parameter estimate based on the Euclid-
ian distance measure represents a mean ex-
pression that will be more or less erroneous
depending on which noise zone the property
is located in and whether the wind turbine can
be seen from the property. In the analyses we
do not account for a possible cumulation ef-
fect of wind turbines. The effect of having one
wind turbine as opposed to having several tur-
bines or an entire wind farm may be different.
We account only for the nearest turbine in
terms of the visual pollution and the loudest
wind turbine in terms of noise pollution. The
dataset applied in this analysis was designed
in such a way (see Section IV) that it makes
it less opportune to study a possible cumula-
tive effect of wind. In addition, information
on manufacture and turbine production capac-
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ity has been ignored. Such information might
have provided further relevant results.

The analysis covers a large number of spa-
tially detached areas. Recall that the hedonic
price schedule is assumed to be generated in
an equilibrium market. We essentially assume
that the supply and preference structures are
stable across the spatially detached areas and
recognize that this might not be a fully valid
assumption. Parameter estimates of noise and
view between municipalities in the survey ar-
eas were tested by an analysis of variance test.
Based on this, we cannot reject that parameter
estimates between municipalities are differ-
ent. Previous hedonic studies on wind turbines
have very likely suffered from lack of spatial
variation due to a small dataset (Heintzelman
and Tuttle 2012). The number of survey areas
chosen in this analysis ensures a reasonable
variation in the wind turbine variables.

Neither of the model estimations fully re-
solves the problem of spatial autocorrelation.
Both explicit spatial models retain a signifi-
cant spatial structure in the error term. This
indicates that the models still suffer from
omitted spatial processes such as misspecifi-
cation of the functional form, mismeasure-
ment of spatial covariates, or omitted spatial
covariates. If the omitted spatial processes are
not correlated with the turbine variables, the
estimate of the impact of wind turbines re-
mains trustworthy. In addition, the model es-
timates are robust across models.

The results presented in this article can be
applied in cost-benefit analysis, especially be-
cause we succeed in modeling view and noise
as two separate parameters. Note that the re-
sults of the hedonic house price model rep-
resent only MWTP and that such results will
not usually be used in scenarios with non-
marginal changes. Still, Bartik (1988) argues
that the estimates of nonmarginal localized
changes based on the hedonic house price
model can be used as estimates of benefits or
costs, given that the nonmarginal change is
restricted to a local area, thus not affecting the
global housing market. We regard setting up
a wind turbine in the landscape to be both lo-
calized and not affecting the global housing
market. Based on this assumption, our results
are directly applicable in the planning process
and could be used to compensate those living
close to wind turbines, or as part of a welfare
economic cost-benefit analysis that includes
the negative effects of noise and visual pol-
lution.

We conclude that noise and visual pollution
from wind turbines have a considerable im-
pact on nearby residential properties. When
Don Quixote was tilting at windmills, he was
fighting imaginary giants. At present, wind
turbines are a symbol of sustainable energy,
the way of the future; however, local residents
who live in close proximity to these sustain-
able giants experience some very real nega-
tive externalities in the form of noise and vi-
sual pollution.
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APPENDIX A

TABLE A1
Descriptive Statistics for Dummy Variables

Name Description Mean Observations = 1

Brick House build in bricks 0.9158 13,592
Flat roof Flat roof 0.0244 362
Cement roof Cement roof 0.1979 2,937
Fiber roof Fiber roof 0.4445 6,597
Board roof Board roof 0.0268 398
Tile roof Tile roof 0.2778 4,123
Lower basement Lower basement 0.0912 1,354
Detached house The property is a detached house 0.8213 12,189
Renovation 1970s House rebuilt between 1970 and 1979 0.1113 1,652
Renovation 1980s House rebuilt between 1980 and 1989 0.0703 1,044
Renovation 1990s House rebuilt between 1990 and 1999 0.0551 817
Renovation 2000s House rebuilt between 2000 and 2009 0.0701 1,041
<20 dB Within a zone where a turbine makes noise <20 dB 0.3181 4,721
20–30 dB Within a zone where a turbine makes noise 20–30 dB 0.5908 8,768
30–39 dB Within a zone where a turbine makes noise 30–39 dB 0.0756 1,122
39–50 dB Within a zone where a turbine makes noise 39–50 dB 0.0151 224
View At least one turbine is visible 0.3547 5,264
Urban zone House within urban zone or not 0.8117 12,047

TABLE A2
Descriptive Statistics for Nondummy Variables

Variable Description Mean Min. Max.

Price Trade price, not corrected for inflation (Danish
kroner)

1,329,000 100,000 18,150,000

Age Age of the house (year built) 1957 1850 2010
Number of baths Number of bathrooms 1.268 1 4
Size Size of living area (m2) 136.5 56 492
Basement size Size of basement (m2) 12.19 0 230
Attic size Size of attic (m2) 24.43 0 260
Number of rooms Number of rooms 4.642 1 16
Number of floors Number of floors 1.03 1 3
Number of toilets Number of toilets 1.536 1 5
Number of bathrooms Number of bathrooms 1.268 1 4
Forest Distance in meters to the nearest forest, zero being

within forest; in the model used as dummy
variables based on steps of 100 m with reference
distance being above 700 m

297.2 0 4,294

Lake Distance in meters to the nearest lake with a surface
greater than 200 m2; in the model used as dummy
variables based on steps of 100 m with reference
distance being above 700 m

4,390 0 10,500 (1,903)

Coastline Distance in meters to the nearest coastline; in the
model used as dummy variables based on steps of
100 m with reference distance being above 700 m

4,677 8.022 10,500 (2,348)

Highway Distance in meters to the nearest highway; in the
model used as dummy variables based on steps of
100 m with reference distance being above 1,000 m

8,297 17.94 10,500 (9,606)

Large road Distance in meters to the nearest road wider than 6 m;
in the model used as dummy variables based on
steps of 100 m with reference distance being above
400 m

393.9 2.847 5,239

Distance Distance in meters to the nearest onshore turbine in
steps of 100 m

14.89 0.6827 25.00
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APPENDIX B

TABLE B1
Full Model for Noise and View

Variable OLS SEM SARAR

Intercept −4.8950† (0.1764) −5.5474† (0.2479) −5.1224† (0.2186)
Brick 0.0686† (0.0095) 0.0632† (0.0103) 0.0605† (0.0097)
Tile roof 0.0155 (0.0168) −0.0066 (0.0161) −0.0043 (0.0156)
Cement roof −0.0267 (0.0172) −0.0302* (0.0167) −0.0299* (0.0162)
Fiber roof −0.1039† (0.0163) −0.0940† (0.0153) −0.0938† (0.0148)
Board roof −0.0391* (0.0222) −0.0606*** (0.0226) −0.0538** (0.0216)
Flat roof −0.1394† (0.0221) −0.1324† (0.0208) −0.1279† (0.0202)
Age 0.0010† (0.0001) 0.0014† (0.0001) 0.0012† (0.0001)
Detached house 0.0538† (0.0058) 0.0435† (0.0061) 0.0419† (0.0058)
Number of bathrooms 0.0178** (0.0078) 0.0228** (0.0091) 0.0069 (0.0082)
Low basement 0.0179** (0.0088) 0.0230** (0.0092) 0.0269*** (0.0088)
Size (log) 0.5550† (0.0104) 0.5395† (0.0110) 0.5321† (0.0106)
Basement size 0.0007† (0.0001) 0.0007† (0.0001) 0.0008† (0.0001)
Renovation 1970s −0.0355† (–0.0080) −0.0260† (0.0070) −0.0243† (0.0068)
Renovation 1980s 0.0067 (0.0097) 0.0078 (0.0088) 0.0070 (0.0086)
Renovation 1990s 0.0986† (0.0109) 0.0996† (0.0102) 0.1033† (0.0100)
Renovation 2000s −0.0958† (0.0102) −0.0932† (0.0114) −0.0923† (0.0112)
Urban zone 0.0057 (0.0081) 0.0280* (0.0158) 0.0174 (0.0121)
Coast 0–100 m 0.2963† (0.0312) 0.3530† (0.0464) 0.2708† (0.0397)
Coast 101–200 m 0.1762† (0.0207) 0.2252† (0.0344) 0.1549† (0.0277)
Coast 201–300 m 0.1683† (0.0172) 0.2245† (0.0319) 0.1671† (0.0248)
Coast 301–400 m 0.1546† (0.0163) 0.1584† (0.0297) 0.1248† (0.0239)
Coast 401–500 m 0.1780† (0.0159) 0.1474† (0.0288) 0.1302† (0.0232)
Coast 501–600 m 0.1089† (0.0159) 0.1039† (0.0293) 0.0909† (0.0230)
Coast 601–700 m 0.0726† (0.0182) 0.0572** (0.0264) 0.0497** (0.0225)
Highway 0–100 m −0.3914† (0.1379) −0.3855† (0.0972) −0.3900† (0.1013)
Highway 101–200 m −0.2173† (0.0881) −0.1611* (0.0901) −0.1406* (0.0746)
Highway 201–300 m 0.1726** (0.1126) 0.1192* (0.0690) 0.1252** (0.0568)
Highway 301–400 m −0.0017 (0.0872) −0.0524 (0.0583) −0.0591 (0.0530)
Highway 401–500 m 0.1871† (0.0446) 0.1513* (0.0781) 0.1399** (0.0591)
Highway 501–600 m 0.1543† (0.0475) 0.1368*** (0.0432) 0.1185*** (0.0363)
Highway 601–700 m 0.0817*** (0.0281) 0.0646 (0.0435) 0.0467 (0.0335)
Highway 701–800 m 0.1393† (0.0301) 0.1260† (0.0330) 0.1063† (0.0259)
Highway 801–900 m 0.0957† (0.0328) 0.1021*** (0.0319) 0.0789*** (0.0260)
Highway 901–1,000 m 0.1141† (0.0371) 0.0575 (0.0367) 0.0516 (0.0314)
Forest 0–100 m 0.1008† (0.0133) 0.0936† (0.0248) 0.0582*** (0.0191)
Forest 101–200 m 0.0844† (0.0132) 0.0786*** (0.0245) 0.0467** (0.0189)
Forest 201–300 m 0.0841† (0.0133) 0.0807*** (0.0247) 0.0510*** (0.0189)
Forest 301–400 m 0.0943† (0.0137) 0.0979† (0.0251) 0.0657† (0.0193)
Forest 401–500 m 0.1062† (0.0147) 0.0991† (0.0261) 0.0688† (0.0202)
Forest 501–600 m 0.1147† (0.0167) 0.0924† (0.0275) 0.0693*** (0.0216)
Forest 601–700 m 0.0901† (0.0190) 0.0713** (0.0282) 0.0595** (0.0234)
Lake 0–100 m 0.3623† (0.0340) 0.3661† (0.0582) 0.2630† (0.0490)
Lake 101–200 m 0.2021† (0.0219) 0.1988† (0.0395) 0.1169† (0.0317)
Lake 201–300 m 0.0698† (0.0195) 0.0917*** (0.0324) 0.0345 (0.0264)
Lake 301–400 m 0.0310* (0.0191) 0.0519** (0.0256) 0.0229 (0.0214)
Lake 401–500 m −0.0394*** (0.0157) −0.0321 (0.0232) −0.0426** (0.0182)
Lake 501–600 m −0.0071 (0.0169) 0.0088 (0.0223) −0.0075 (0.0178)
Lake 601–700 m 0.0080 (0.0167) 0.0235 (0.0211) 0.0092 (0.0173)
Large road 0–100 m −0.0007 (0.0071) −0.0110 (0.0125) −0.0038 (0.0094)
Large road 101–200 m 0.0331† 0.0073) 0.0193 (0.0122) 0.0263*** (0.0093)
Large road 201–300 m 0.0253† (0.0077) 0.0011 (0.0123) 0.0086 (0.0097)
Large road 301–400 m 0.0214*** (0.0085) 0.0050 (0.0114) 0.0094 (0.0094)
View −0.1168† (0.0134) −0.0315* (0.0172) −0.0398*** (0.0154)

(table continued on following page)
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TABLE B1
Full Model for Noise and View (continued)

Variable OLS SEM SARAR

View×Distance 0.00699† (0.0008) 0.00240** (0.0011) 0.0028*** (0.0010)
20–29 dB −0.0368† (0.0059) −0.0307*** (0.0102) −0.0256*** (0.0080)
30–39 dB −0.0512† (0.0118) −0.0550*** (0.0190) −0.0442*** (0.0151)
40–50 dB −0.0433* (0.0243) −0.0669** (0.0273) −0.0509** (0.0243)
Spatial error term (ρ) 0.6004† (0.0120) 0.4413† (0.0254)
Spatial lag term (λ) 0.2678† (0.0276)
Wald statistics (h1: λ = ρ = 0) 1,538.4†
R2 0.3794 0.3704 0.4492

Note: N = 12,640; OLS = 12,581 degrees of freedom. In parentheses: standard error, R2 for the OLS adjusted, for SEM and GSM pseudo-
R2. OLS, ordinary least squares; SARAR, spatial autoregressive model with a spatial autoregressive error term; SEM, spatial error model.

* Significant at 10%; ** significant at 5%; *** significant at 1%; † significant at 0.1%.

TABLE B2
Full Model, Distance as Proxy Variable

OLS SEM SARAR

Intercept −4.9880† (0.1768) −5.660† (0.2337) −5.3510† (0.2234)
Brick 0.0667† (0.0095) 0.06262† (0.009776) 0.0609† (0.0097)
Tile roof 0.0137 (0.0168) −0.0077 (0.0158) −0.0059 (0.0156)
Cement roof −0.0267 (0.0173) −0.0296* (0.0165) −0.0291* (0.016)
Fiber roof −0.1035† (0.0164) −0.09381† (0.0151) −0.093† (0.0149)
Board roof −0.0391* (0.0222) −0.0619*** (0.0221) −0.0568*** (0.0217)
Flat roof −0.1403† (0.0221) −0.1329† (0.0206) −0.1300† (0.0204)
Age 0.0011† (8.95e–05) 0.0014† (0.0001) 0.0012† (0.0001)
Detached house 0.0542† (0.0058) 0.0432† (0.0057) 0.0422† (0.0058)
Number of bathrooms 0.0146* (0.0078) 0.0211** (0.0089) 0.0095 (0.0084)
Low basement 0.0208** (0.0088) 0.0232*** (0.0088) 0.0262*** (0.0088)
Size (log) 0.5536† (0.0104) 0.5403† (0.0106) 0.5366† (0.01064)
Basement size 0.0007† (9.001e–05) 0.0007† (9.147e–05) 0.0008† (9.105e–05)
Renovation 1970s −0.0356† (0.0080) −0.0259† (0.0067) −0.0248† (0.0067)
Renovation 1980s 0.0048 (0.0097) 0.0076 (0.0085) 0.0068 (0.0085)
Renovation 1990s 0.0947† (0.0109) 0.0995† (0.0098) 0.1023† (0.0099)
Renovation 2000s −0.0964† (0.0102) −0.0936† (0.0110) −0.0933† (0.0111)
Urban zone 0.0081 (0.0081) 0.0213 (0.0154) 0.0158 (0.0129)
Coast 0–100 m 0.2927† (0.0312) 0.3542† (0.0472) 0.2890† (0.0417)
Coast 101–200 m 0.1764† (0.0207) 0.2280† (0.0336) 0.1718† (0.0292)
Coast 201–300 m 0.1640† (0.0172) 0.2267† (0.0303) 0.1805† (0.0261)
Coast 301–400 m 0.1552† (0.0161) 0.1594† (0.0289) 0.1315† (0.0252)
Coast 401–500 m 0.1721† (0.0158) 0.1478† (0.0280) 0.1323† (0.0244)
Coast 501–600 m 0.1080† (0.0159) 0.1055† (0.0281) 0.0945† (0.0244)
Coast 601–700 m 0.0646† (0.01812) 0.05651** (0.0250) 0.0498** (0.0232)
Highway 0–100 m −0.4113*** (0.1378) −0.3748† (0.1033) −0.3856† (0.1049)
Highway 101–200 m −0.1827** (0.0879) −0.1517* (0.0896) −0.1342* (0.0774)
Highway 201–300 m 0.1629 (0.1126) 0.1182 (0.0743) 0.1200** (0.0607)
Highway 301–400 m −0.0064 (0.0872) −0.05857 (0.0581) −0.0639 (0.0524)
Highway 401–500 m 0.1826† (0.0445) 0.1440** (0.0724) 0.1384** (0.0626)
Highway 501–600 m 0.1436*** (0.0475) 0.1306*** (0.0442) 0.1181*** (0.0382)
Highway 601–700 m 0.0712** (0.0280) 0.0575 (0.0427) 0.0446 (0.0358)
Highway 701–800 m 0.1282† (0.0300) 0.1190† (0.0341) 0.1046† (0.0277)
Highway 801–900 m 0.0842** (0.0327) 0.0933*** (0.0316) 0.0774*** (0.0274)
Highway 901–1,000 m 0.1046*** (0.0370) 0.0493 (0.0375) 0.0451 (0.0330)
Forest 0–100 m 0.0990† (0.0133) 0.0882† (0.0248) 0.0623*** (0.0206)
Forest 101–200 m 0.0835† (0.0132) 0.0749*** (0.0246) 0.0511** (0.0203)
Forest 201–300 m 0.0847† (0.0132) 0.0780*** (0.0246) 0.0560*** (0.0204)

(table continued on following page)
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TABLE B2
Full Model, Distance as Proxy Variable (continued)

OLS SEM SARAR

Forest 301–400 m 0.0992† (0.0136) 0.0968† (0.0249) 0.0734† (0.0207)
Forest 401–500 m 0.1092† (0.0146) 0.0979† (0.0255) 0.0756† (0.0216)
Forest 501–600 m 0.1187† (0.0166) 0.0914† (0.0262) 0.0750*** (0.0229)
Forest 601–700 m 0.0946† (0.0190) 0.0721*** (0.0263) 0.0642*** (0.0243)
Lake 0–100 m 0.3649† (0.0340) 0.3685† (0.057) 0.2860† (0.0514)
Lake 101–200 m 0.2103† (0.0219) 0.2045† (0.0394) 0.1385† (0.0340)
Lake 201–300 m 0.0882† (0.0195) 0.1025*** (0.0326) 0.0556** (0.0283)
Lake 301–400 m 0.0477** (0.0191) 0.06206** (0.0260) 0.0379* (0.0226)
Lake 401–500 m −0.0224 (0.0156) −0.0236 (0.0231) −0.0331* (0.0193)
Lake 501–600 m 0.0091 (0.0168) 0.0156 (0.0215) 0.0030 (0.0187)
Lake 601–700 m 0.0167 (0.0166) 0.0253 (0.020) 0.0149 (0.018)
Large road 0–100 m −0.0003 (0.0070) −0.0111 (0.0123) −0.0049 (0.0102)
Large road 101–200 m 0.0323† (0.0073) 0.0180 (0.0120) 0.0242** (0.0100)
Large road 201–300 m 0.0252*** (0.0077) −0.0003 (0.0118) 0.0062 (0.0102)
Large road 301–400 m 0.0242*** (0.0085) 0.0052 (0.0108) 0.0090 (0.0097)
Distance 0.0060† (0.0004) 0.0059† (0.0009) 0.0045† (0.0007)
Spatial lag term (λ) 0.5998† (0.012) 0.2157† (0.0306)
Spatial error term (ρ) 0.4982† (0.0247)

Note: N = 12,640; OLS = 12,585 degrees of freedom. OLS, ordinary least squares; SARAR, spatial autoregressive model with a spatial
autoregressive error term; SEM, spatial error model.

* Significant at 10%; ** significant at 5%; *** significant at 1%; † significant at 0.1%.
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