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Abstract

Many international, national, state, and local organizations prioritize the ranking of threatened and
endangered species to help direct conservation efforts. For example, the International Union for
Conservation of Nature (IUCN) regularly publishes the influential Red List of Threatened Species.
Unfortunately, current approaches to categorizing the conservation status of species do not explicitly
consider genetic or genomic diversity (GD), even though GD is positively associated with both
contemporary evolutionary fitness and with future evolutionary potential. To test if genome sequences
can help improve conservation ranking efforts, we estimated GD metrics from publicly available
mammalian population data and examined their statistical association with formal Red List conservation
categories. We considered intrinsic biological factors that could impact GD and quantified their relative
influences. Key population GD metrics are both reflective and predictive of IUCN conservation
categories. Specifically, our analyses revealed that genome-wide heterozygosity and autozygosity (a
product of inbreeding) are associated with the current Red List categorization, likely because
demographic declines that lead to “listing” decisions also reduce levels of standing genetic variation. We
argue that by virtue of this relationship, conservation organizations like IUCN can leverage genome
sequence data to help infer conservation status in otherwise data-deficient species. This study 1)
outlines the theoretical and empirical justification for a new GD criterion based on the mean loss of
genome-wide heterozygosity over time; 2) provides a bioinformatic pipeline for estimating GD from
population genomic data; and 3) provides an analytical framework and explicit recommendations for use
by conservation authorities.

Main

Global biodiversity is declining rapidly as humans continually modify wild habitats and expand their
environmental footprint. Habitat reduction and fragmentation, overharvesting, invasive species, and
other anthropogenic impacts routinely lead to population declines, reduced gene flow, and subsequent
increases in inbreeding and genetic drift'. Collectively, these anthropogenic impacts lead to a loss of
genetic/genomic diversity (GD) and a concomitant reduction in population fitness®#. The loss of GD and
fitness can accelerate an extinction vortex>® and jeopardize the sustainability of a population or species
because GD provides the evolutionary potential needed to adapt to a changing environment’~°. In this
regard, the Convention on Biological Diversity (CBD) recently listed “maintaining at least 90% of GD of all
species” as “Goal A" in Post-2020 Global Biodiversity Framework with support from the International
Union for Conservation of Nature (IUCN). As one of three components of biodiversity, along with species
and ecosystem diversity, GD is becoming central in conservation policies.

As an international entity comprised largely of academic, government, and private members, [UCN
strives to help protect nature by using the best available science to prioritize conservation efforts. One of
the most visible tasks of the IUCN is their production and regular updating of the “Red List”, which
classifies species into one of nine categories (Extinct, Extinct in the Wild, Critically Endangered,

Endangered, Vulnerable, Near Threatened, Least Concern, Data Deficient, and Not Evaluated). The Red
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List often influences national and state authorities in their official listing decision for species under their
supervision. For example, the IUCN Red List is used at the international level by the Convention on
International Trade in Endangered Species (CITES), the Convention on Biological Diversity (CBD), and by
the United Nations Sustainable Development Goals (SDGs). The IUCN Red List is also used at the
national level by the National Institute of Biological Resources of South Korea and the U.S. Fish and
Wildlife Service, and at the state or provincial level by the California Department of Fish and Wildlife and
by the Indiana Department of Natural Resources (among many others). Decisions made by I[UCN
regarding the Red List can and do reverberate through the global conservation community.

The IUCN makes categorical assignments for each species considered according to four conservation
criteria: 1) census population size; 2) demographic trajectory; 3) geographic range size, and 4)
associated quantitative analyses of population viability. However, Red List assignments do not explicitly

consider GD despite calls to do so'%'3. This is unfortunate because GD is an important component of

1415

population viability'®'>, and in many instances GD can provide insights into rare or elusive species

whose population attributes are otherwise difficult to address'®'”. For example, Rice’s whale is a newly
described species of baleen whale endemic to the Gulf of Mexico'®. Baleen whales are notoriously
difficult to study at sea, but empirical GD estimates from only a few individuals (e.g., sourced from
beached whales or noninvasively collected DNA) could provide critical demographic context for
conservation plans.

Unfortunately, there is no well-established standard to determine when the loss of GD becomes a
conservation concern (though see '°727). Previous studies based on microsatellite genetic markers have
suggested that threshold levels of GD can be used to help delimit conservation categories. For instance,
Willoughby et al. (2015) proposed a conceptual framework that—based strictly on GD estimates from
related species and recognizing that GD is but one component of population viability—designates IUCN
conservation categories based on the estimated time (in generations) that a species or population is
predicted to lose more GD than 75% of its taxonomic relatives. This conceptual framework was
proposed at the twilight of the microsatellite era. Here, we extend it into the modern genomic era.

We assessed relationships among population-level GD metrics and formal IUCN conservation categories
to determine whether the traditional four criteria employed by the Red List effectively captures
mammalian GD. We reasoned that if it did so, Red List Threatened species (Critically Endangered,
Endangered, and Vulnerable) should exhibit lower levels of GD than Non-Threatened species (Near
Threatened and Least Concern) due to inbreeding, genetic drift, and reduced gene flow. If not, this would
indicate that IUCN's four evaluation criteria insufficiently capture a key aspect of biological diversity (i.e.,
GD). We primarily focused on the idea that mean genome-wide heterozygosity, H, can serve as an
effective metric of GD that is a useful addition to the current classification approach employed by the
Red List. Unlike some lagging indicators of GD such as nucleotide diversity (which may reflect more
ancient demographic events such as bottlenecks or expansions), His a leading indicator of GD because

1 0,22)

it can change dramatically in only a few generations (e.qg., due to inbreeding . Heterozygosity can
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also be accurately estimated from only a few whole genome sequences?3%4

with respect to Threatened populations or species.

, an important consideration

We do not mean to suggest that a fixed GD threshold should be used to determine conservation
categories (e.g., mean H< 0.002 = Endangered) because of the inherent variation in GD observed among
taxa. Species vary in key biological attributes that are known to affect GD such as body sizes, generation
times, and metabolic rates?®>~2’. Thus, we also examined associations among fundamental biological
characteristics and GD to account for major biological factors that might otherwise confound the
relationship between GD and Red List status. We did so using Class Mammalia as an example because
many flagship species of conservation interest (e.g., pandas, tigers, and whales) are mammals.
Furthermore, mammalian data are sufficiently dense in both the IUCN Red List and in sequence
repositories to allow for robust analyses of our GD framework.

Results
Genetic diversity among mammalian species

Among 613 species and subspecies with reference genome assemblies available from National Center
for Biotechnology Information (NCBI), 98 species also had population genomic whole-genome
resequencing (WGR) datasets that met our criteria for inclusion. Fifteen species were subsequently
dropped during the bioinformatic data analysis due to unsatisfied thresholds (e.g., low mapping rates,
depths, and/or breadth), resulting in 83 species in our final WGR dataset (Supplementary Dataset S1).
Our “IUCN” (Supplementary Dataset S2) and “EcoEvo” (Supplementary Dataset S3) datasets had 71 and
64 species, respectively, after reconciling taxonomy and pruning for phylogenetic pseudoreplication (the
“IUCN dataset” included all the species having their own categorical Red List assessment but excluded
those listed as “Data-Deficient” and the “EcoEvo dataset” included all the species having data of eco-
evolutionary factors; see Statistical Analysis section in Methods for details). One species (Odocoileus
virginianus, the white-tailed deer) did not yield a Frgn-100kp (F100kb) estimate, perhaps because of the

pooled sequence data?® (https://www.ncbi.nlm.nih.gov/search/all/?term=PRJNA576136), and 21
species did not yield Fgon-1mp (F1Mb) estimates. Considering its high genomic diversity and unique
absence of F100kb ROHs, we imputed zero for F100kb and FIMb for O. virginianus as the lack of runs of
homozygosity (ROHs) could be real given the extensive history of hybridization, population

bottlenecks/expansions, and reintroductions/translocation in this species?’.

Descriptive statistics for each GD metric are summarized in Table 1 and Supplementary Table S1 (see
also Fig. 2 and Supplementary Figures S1-S12). Nucleotide diversity (1) and Watterson'’s theta (6y)
values were strongly correlated (r > 0.9) with H. In general, Non-Threatened species have higher GD than
Threatened species. Individual and categorical H was effectively twice as high in Non-Threatened
species compared to Threatened species (Table 1 and Fig. 1), and F1Mb was doubled in Threatened
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species (Table 1). The overall (cumulative) fraction of ROHs estimated with F1Mb was generally higher
among Threatened species (Table 1 or Supplementary Figure S12).

Table 1

Genomic diversity metrics grouped by IUCN full categories. Abbreviations: spp. No. = the number
of species, H= observed genome-wide heterozygosity, 6,y = Watterson's theta, i1 = nucleotide

diversity, D= Tajima’s D, F100kb = Froy 100k F1Mb = Fron »1mp NA = not applicable.

IUCN spp. Mmean sd mean sd mean sd

category No. (H) (H (6w (6w (m) (m)

DD 2 0.00152 0.00031 0.00137 0.00025 0.00151  0.00042
LC 31 0.00366 0.00429 0.00379 0.00484 0.00359 0.00392
NT 9 0.00255 0.00094 0.00201 0.00076 0.00237 0.00085
VU 15 0.00121 0.00089 0.00119 0.00091 0.00131  0.00093
EN 15 0.00176 0.00280 0.00187 0.00341 0.00198 0.00354
CR 15 0.00145 0.00081 0.00133 0.00079 0.00140 0.00081

Non-Threatened 36 0.00351 0.00401 0.00354  0.00453 0.00342 0.00367

Threatened 45 0.00148 0.00174 0.00147 0.00206 0.00157 0.00213
IUCN spp. mean sd mean sd mean sd
category No. (D) (D) (F100kb)  (F100kb) (F1IMb)  (F1IMb)
DD 2 0.36770 0.42422 0.07753 0.10954 0.01300 NA

LC 31 0.21913 0.73928 0.07883 0.08274 0.02477 0.03985
NT 5 0.65424 0.47784 0.17202  0.10911 0.01980 0.02357
VU 15 0.69864 0.45017 0.11886 0.08329 0.06752 0.07027
EN 15 0.45159 0.55982 0.12005 0.09415 0.04228 0.04155
CR 13 0.26068 0.88502 0.09922 0.06770 0.02603 0.04629

Non-Threatened 36 0.27956 0.71961 0.09177 0.09109 0.02378 0.03679
Threatened 45 0.47030 0.66805 0.11271 0.08111 0.04407 0.05430

Bats and rodents (Order Chiroptera and Rodentia, respectively) had the highest mean 1, 6y, and H
values, almost double the next most genetically diverse Order (Artiodactyla; even-toed ungulates).
Carnivores and whales (Orders Carnivora and Cetacea, respectively) are at the other end of the GD
distribution. Mean Tajima'’s D (D) was lowest among Proboscidea (elephants), Cetacea, Rodentia and
highest among Eulipotyphla (hedgehogs and relatives), Pholidota (pangolins), and Carnivora. Chiroptera,
Dasyuromorphia (Australian carnivorous marsupials), and Proboscidea had the lowest mean F100kb
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while Eulipotyphla, Carnivora, and Primates had the highest F100kb. Dasyuromorphia, Pholidota, and
Proboscidea had the lowest mean F1Mb while Carnivora, Primates, Rodentia had the highest.

Statistical associations between GD and the IUCN Red List

Detailed model results are presented in Supplementary Table S2 (see also Supplementary Figures S13-
S17). The main Phylogenetic Generalized Least Squares (PGLS) model between IUCN full categories
(Least Concern - LC, Near Threatened - NT, Vulnerable - VU, Endangered - EN, Critically Endangered - CR)
and H was significant. The phylogenetic signal () in the model was significant (A = 0.887; 95% Cl =
0.584-0.972), implying there was phylogenetic non-independence among data which has been
accounted for in the model. The secondary PGLS model of H against IUCN binary categories of
Threatened and Non-Threatened (LC + NT + VU = Non-Threatened; EN + CR = Threatened) was also
significant with A = 0.867. The PGLS models also revealed a significant relationship between the ROH
burden (as measured by F100kb) and IUCN full categories and between the ROH burden and binary IUCN
categories. None of the PGLS models revealed significant associations between D or F1Mb and IUCN
category (full or binary). Among significant models, the F100kb with IUCN binary categories model was
best, only slightly better than the model with IUCN full categories, followed by H (Supplementary Table
S3). The results among models of “population trend” in place of IUCN categorization were similar to the
IUCN category models in general. The H as an individual factor and a whole model with F100kb were
significant, but not F100kb as an individual factor (Supplementary Figure S17). Technical Dimension 1
was the significant variable of this case. Models with D and F1Mb were non-significant with also non-
significant independent variables of interest. Among models with the geographic range as an
independent variable of interest, F1IMb showed significance with geographic range as an individual
factor (Supplementary Figure S18).

Our analyses indicate that Hand F100kb were the best conservation metrics of GD. Thus, either Hor
F100kb were used as independent variables in the PGLS for phylogenetic ordinal regression against
IUCN categorization. Models with H as the independent variable were significant when IUCN binary
category was the dependent variable, in contrast to the case of the IUCN full category as the dependent
variable. Individual heterozygosity was also significant, but F100kb was never a significant predictor of
IUCN category (whether full or binary). Results of the machine learning classifier models are presented in
Supplementary Table S4. In general, H was identified as a better predictor of [IUCN categories than
F100kb across models.

Discussion

Genome resequencing data offer remarkably high information content per individual (e.g., estimates of
GD such as mean Hor F100kb). This means that sampling only a few individuals can provide key
insights into population biology. The relationships among GD, N,, and fitness have been thoroughly

reviewed and summarized by previous studies?32. These and other studies indicate that GD, as
measured by H or related measures, is a critical component not only of contemporary fitness but also of
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future evolutionary potential. The idea that GD can serve as an indicator of future evolutionary potential
should not be overlooked considering the global environmental challenges facing natural populations
today.

A reduction in GD, with its concomitant loss of fitness and increased probability of extinction®33, is
expected to result from demographic events like population bottlenecks, population subdivision, and
founder events that reduce population sizes. Neutral GD is determined by the product of the generational
mutation rate and the effective population size (N,), and thus GD is determined in part by the census size

of the population®234. Moreover, and not surprisingly, population census size is positively correlated with
geographic range size. According to conservation theory, small, threatened populations tend to have

lower GD than large, broadly distributed populations which are typically not threatened®®.

Our analyses of empirical data bear out those theoretical predictions (Fig. 1). We analyzed population
genomic data from 83 species belonging to 11 Orders of mammals representing the various IUCN
conservation categories. For each species, we calculated GD metrics and tested for significant
associations between these metrics and various biological parameters, such as geographic distribution
or body size, that might impact diversity. The overarching goal of the research was to determine the
relationship between population-level GD metrics and IUCN conservation categories while
simultaneously identifying key intrinsic drivers of mammalian GD, which we address first.

Description of mammalian genomic diversity

Our results are consistent with a long history of empirical genetic studies dating to the 1960’s when
protein electrophoresis was first used to measure GD in natural populations of mammals. For example,
Fig. 1 indicates that the three species with the highest H values are O. virginianus (white-tailed deer),
Peromyscus maniculatus (deer mouse, including 2 subspecies), and Myotis lucifugus (little brown bat).
Nevo et al. (1984) compiled an allozyme dataset of GD metrics, including H, from 1111 species of
animals and plants including from 184 species of mammals. Their dataset was comprised of GD
estimates from only a few dozen allozyme markers per species, and they examined only a few of the
same species that we did. However, there are some remarkable similarities between Nevo et al. (1984)
and our current study. Nevo et al. (1984) only 12 species of mammals (not including humans and
domestic cat) that had values of H=0.09. Among them were O. virginianus, P maniculatus, and two
species of bats of the genus Myotis. The fact that the three species with the highest Hin our dataset are
either the same species or a congener of high GD species reported by Nevo et al. (1984) using such a
different analytical approach is reassuring. It bolsters our confidence that evolutionary genetics theory is
buttressed by existing, publicly-available genomic datasets that can be readily exploited by
conservationists.

Taxonomic Order is the taxonomic level in which member species share a broad suite of morphological,
physiological, genetic, and ecological characteristics; species of different Orders can easily be
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distinguished by many conservationists. If we just consider the 4 most speciose Orders, Rodentia had
the highest mean value of H=0.00520 and Carnivora had the lowest mean value H=0.00088. This is not
unexpected given that small herbivores generally have much larger population sizes and nucleotide
substitution rates than do carnivores®®. Conversely, Carnivores had the highest mean F1IMb =0.06209
and rodents have the second lowest mean F1IMb = 0.02441. Again, this is consistent with their
population biology in which rodents are expected to have higher effective mutation rates and larger
population sizes than carnivores, where there is generally far more opportunity for inbreeding in isolated
populations. Primates have relatively high inbreeding with FIMb = 0.05569. This is perhaps a reflection
of a high degree of social structuring, small census population sizes, and slower rates of molecular

evolution in primates®®.

Genomic diversity and Red List status

The major finding of this study is that key population GD metrics are predictive of IUCN conservation
categories that presumably reflect extinction threat status. This supports the idea that GD is indirectly
reflected by the current Red List assessment methodology. Our results also indicate that Threatened
species or populations have reduced GD compared to those with Non-Threatened status. We found that
H (and its correlates) was the best conservation metric, followed by F100kb (a measure of autozygosity
that is reflective of inbreeding). Two individual Red List criteria, “population trend” and “geographic
range”, also reflect GD. Species with “Stable” population trends had significantly higher Hthan do
“Decreasing” or “Increasing” species. Geographic range was inversely proportional to longer fraction of
ROH (Supplementary Figure S18), another reasonable result in that habitat contraction can result in

elevated levels of inbreeding relative to random mating®’.

Since Hand F100kb were the best predictors of Red List designation, we plotted their global distributions
(Supplementary Figures S19 and S20) to illustrate world-wide patterns of GD. Mammalian populations in
Asia and Africa, where the human footprint is the oldest, generally had higher levels of inbreeding than
did other continents whereas North America seemed to have relatively healthier distributions of
mammals with regard to their GD. Taken as a whole, the worldwide GD distribution calls for more active
conservation efforts and research in Asia and the Global South.

The correlation between GD and Red List status has been tested before'?11383% puyt mostly with
mitochondrial or microsatellite marker data. There has been no scientific consensus on whether the Red
List indirectly captures GD. Recently, Schmidt et al. (2023) performed a meta-analyses of studies that
used different markers and corroborated Willoughby et al. (2015), who found that GD is modestly
predictive of Red List status. Our results are consistent with this interpretation. Several authors!%11:40
have suggested using the loss of GD rather than snapshot values of GD in conservation assessments. In
the next section, we extend this line of reasoning by detailing an approach for including GD as an explicit

criterion in future conservation assessments.
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An explicit genetic criterion for conservation assessments

Over thirty years ago, Mace and Lande (1991) originally suggested an assessment criterion based on N,
in Version 1.0 of the Red List Categories and Criteria, but the most recent iteration of these Criteria
(Version 3.1) still do not embrace N, despite recent pleas to include genetic considerations in status
determinations (e.g., '%1142). We suggest that an additional criterion that explicitly considers GD metrics

and thresholds would help further inform conservation assessments, especially for species that might
otherwise be deemed Data Deficient.

Our proposal for an explicit new GD criterion for status assessments is based on the mean loss of
heterozygosity over time*3. We chose H not only because the concept of heterozygosity is well
understood by most biologists, but because our results indicate that it was the best indicator as well as
the best predictor of existing IUCN categories. Furthermore, H has a solid theoretical foundation based
on Crow and Kimura's equation:

1 T

Hr = Ho(1 —
T of 2Ne)

where N, = effective population size, Hy = observed heterozygosity, H; = heterozygosity attime T,and T
=the number of generations in 100 years (e.g., Tis 100 for most insects or annual plants, Tis 50 for
antelope with 2-year generation times, and Tis 5 for whales with 20-year generation times). Our
proposed GD criterion is illustrated in Fig. 3 and, in principle, could be readily applied by any conservation
organization that conducts status assessments given that the model parameters can be estimated from

publicly available resources’®. For example, H, can be estimated from population genomic datasets and
generation time is generally known from life history studies. N, can either be estimated indirectly from

census population size (N.) where N, is crudely estimated from NC44, or directly from population
genomic data. For example, contemporary N, can be estimated using the linkage-disequilibrium-based

method (e.g., GONE*®) or with a coalescence-based method (e.g., Stairway Plot 24) so long as

practitioners recognize that genomes do not immediately register demographic changes (i.e., there is a

lag time*/48).

We suggest that GD can be used to assign threat categories (e.g., CR or VU) when a population is
expected to lose a given proportion of its Hin 100 years**~>2 as follows:

CR: if Hy is 90% or less of H, (i.e., a 10% or more loss of heterozygosity in 100 years)
EN: if Hy is 90—-95% of H (a 5-10% loss of heterozygosity in 100 years)
VU: if H; is 95-97.5% or less of H, (a 2.5-5% loss of heterozygosity in 100 years) OR N, < 1000

NT: if Hy is more than 97.5% of Hy AND 1000 < N, < 5000
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LC if Hy is more than 97.5% of Hy AND N, = 5000

We tested this new GD criterion using maximum population size estimates for species with Red List
information, or by employing Stairway Plot 2 to estimate N, for “Data Deficient” species (i.e., those
without Red List information). The results are presented in Fig. 4 and Supplementary Table S5.
Compared to the official IUCN Red List categories, the “GD categories” that we derived from the GD
criterion described above were generally more conservative, likely because we used the maximum
population size estimates available. The percentage loss of heterozygosity in 100 years (“Het_loss_%" in
Supplementary Table S5) was less than 2.5% in many cases thanks to large census population sizes
and/or long generation intervals. The two “Data-Deficient” species were assigned as “LC" or “NT" based
on large estimates of N,. However, while all the “LC" and “NT” species of the Red List remained in “Non-

Threatened” categories, some “EN” and “CR" species according to the Red List were elevated or
remained as “CR” when evaluated using only our new GD criterion, perhaps foreshadowing genomic

manifestations of the extinction vortex®.

Our analyses show that the five conservation criteria currently used by IUCN (census population size,
demographic trajectory, geographic range size, a combined index of population size and geographic
range size, and associated quantitative analyses) indirectly capture heterozygosity, a key element of GD.
However, many species on IUCN’s Red List are “Data Deficient” because parameters like census
population size or demographic trajectory are extremely difficult to estimate. We think that GD could
become valuable as a sixth criterion for conservation assessments, in large part because GD can be
more easily and inexpensively evaluated than census size or demographic trajectory and can be
estimated directly (by anyone) from public databases that are expanding rapidly.

Regardless of whether the scientific community adopts our specific GD criterion, we think
conservationists would do well to explicitly assess GD metrics as part of a comprehensive evaluation of
each species. We expect other genomic assessments, such as genetic load or genomic offset, could
ultimately be incorporated into a more comprehensive GD criterion at some point in the future, but
heterozygosity estimates for many species can be generated today as conservationists struggle with the
ongoing biodiversity crises. Our study outlines the theoretical and empirical justification for a new GD
criterion, a bioinformatic pipeline for estimating GD from publicly-available population genomic data, an
analytical framework, and explicit recommendations for use by conservation authorities. We have
illustrated our ideas using mammalian data, but they are applicable to most branches of the tree of life.

Materials and Methods

Overall workflow of this study is shown in Supplementary Figure S21. We evaluated five population
genomic metrics that each has a strong theoretical justification for being conservation-informative: 1)
mean nucleotide diversity (17); 2) Watterson's theta (6,y); 3) mean observed genome-wide heterozygosity
(H); 4) Tajima’s D (D); and 5) the extent of autozygosity as measured by runs of homozygosity (ROH). The
first, 7, is the basic genetic diversity index that conveys the average number of nucleotide differences
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per site between all pairs of sequences in a population®3. The second, 8y, represents the number of

mutations in a population under the infinite site assumption®. Third, H measures the proportion of

heterozygous sites considered in a given sample®®. At the population level, mean His averaged across
all individual estimates. Fourth, D is computed as the difference between T and 6, divided by its

variance under mutation-drift equilibrium®®. Tajima’s D can be used to identify signatures of selection on
individual loci, but demographic trends can also be detected when it is measured across the genome: D
< 0 indicates population growth after a bottleneck, D = 0 indicates population stability, and D> 0 indicates
a sudden population decline. Lastly, ROHs describe the proportion of contiguous homozygous regions
along the genome and can used to directly estimate both the extent and timing of inbreeding (and
indirectly, the level of inbreeding depression due to associated reductions in fitness®’. We calculated two
ROH estimators, namely Frons100kp (the fraction of ROH longer than 100 kb, F100kb; representing the
cumulative inbreeding level) and Frop-1up (the fraction of ROH longer than 1 Mb, F1Mb; representing the
recent inbreeding level). We could not estimate Fgo-1mp iIN SOMe species because of low contiguity of

their reference genome and so could not determine if the absence of detection of long ROHs was due to
their true (biological) absence or if absence of detection was due to technical factors such as being
scattered across contigs.

Data collection

We collected four types of data from public databases: 1) reference genomes; 2) population-level whole
genome resequencing (WGR) reads for the inference of GD metrics; 3) IUCN Red List information; and 4)
ecological characteristics (trophic level, body mass, and habitat breadth) for statistical tests of
association with the GD metrics. We used subspecies or regional population level data whenever
available, because conservation status can vary among demographically independent populations within
the same species.

We searched all the available reference genomes of mammalian species (as of 2021) from NCBI and
collected assembly identifiers (e.g., accession number and assembly name) required for our
bioinformatic pipeline. We also collected additional information on the assembly level (i.e., contig,
scaffold, or chromosome), contig N50, scaffold N50, and assembly size for downstream analyses
(Supplementary Dataset S1). Species with a reference genome were further searched and population-
level WGR data were accessed via NCBI's Sequence Read Archive (SRA). We use population-level data
when: 1) “WGS” type data was available; 2) the data were comprised of paired-end reads; 3) the data
were sequenced with Illumina technologies, such as Genome Analyzer, Hiseq, Novaseq, or Nextseq
platforms; and lastly 4) a minimum of 2 different individuals from the same wild population were
available. We followed the data author’s population designation and limited the maximum number of
individuals to 25 for computational tractability. We recorded the types of sequencing chemistry (i.e., 2-
channel or 4-channel) and the number of individuals for downstream use (Supplementary Dataset S1,
https://github.com/AnnaBrunicheOlsen/theta).

Page 12/25



For each species evaluated, we used the IUCN Red List to record conservation category (i.e., CR -
Critically Endangered, EN - Endangered, VU - Vulnerable, NT - Near Threatened, LC - Least Concern),
population trend (i.e., decreasing, stable, or increasing), and extent of geographic range. We imported the
shape file of species geographic range to ArcGIS Pro 2.9.0°® and calculated the total habitat ranges
except for “Extinct” and “Possibly Extinct” species. The shape files were clipped to match with
“subspecies” or “subpopulation” of the collection site whenever apparent and applicable based on the
associated metadata.

Bioinformatic analysis

We downloaded each species’ reference genome assembly, sorted them by length using BBMap
(https://sourceforge.net/projects/bbmap/) and indexed each using samtools®°. If mitochondrial
sequences were labeled in the assembly, they were culled. Short scaffolds less than 100 kb were also
removed, then the resultant assembly was indexed again. Repeat files were downloaded from the
assembly file if readily available or were created by running RepeatMasker®® with “rush” option using the
mammalian repeat database.

For each species, WGR SRA files (fastq format) were downloaded using the sra-toolkit. We employed
fastqc® to check the raw quality of downloaded fastq files and TrimGalore
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to cull adapter sequences (using
“very stringent” setting), low quality ends (less than 20nt) or reads of short length (less than 30nt), and
read pairs of short length (less than 30nt). Sequence quality was checked again after filtering and
samples where < 80% of reads passed quality filters were removed from downstream analyses.

Quality-filtered SRA reads from each species were mapped onto the respective preprocessed reference
assembly using bwa-mem®? after creating a reference genome dictionary using Picard tools
(http://broadinstitute.github.io/picard/). To improve read mapping quality, we locally realigned reads
using GATK's “RealignerTargetCreator” and “IndelRealigner” tools®3. We used samtools to estimate
summary statistics (mapping rate, depth and breadth of coverage) from the resultant bam files and
species data of low quality (< 80% mapping rate, depth, or breadth) were removed. We estimated
mappability using genmap®* with 100-bp k-mer setting allowing two mismatches. Sites with low
mappability (< 1) were not considered. Non-repeat regions were identified from the length-filtered
reference genome using bedtools complement®®. Intersecting regions among the non-repeat regions,
regions of mappability = 1, and scaffolds longer than 100kb were identified using bedtools.

We estimated GD metrics using ANGSD®® and bcftools. We applied conservative filters in ANGSD,
including removing low quality reads and ambiguously mapped reads. We estimated genotype
likelihoods with GATK and maximum likelihood estimates of the folded site frequency spectrum were
obtained using the realSFS tool. We estimated 11, 6, and D applying a sliding window approach with

non-overlapping 50 kb windows. Individual genome-wide H was estimated using a similar process and
averaged to provide a population-level mean H estimate for each species. To estimate the ROH burden, a
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bef file was generated using ANGSD from bam files. Subsequently, bcftools/roh®” was employed to

identify individual ROHs applying the hidden Markov model. The fraction of ROHs in individual genomes
were averaged to obtain a population-level estimate per species using an in-house python script.

Statistical analysis

Descriptive statistics (mean and standard deviation) and the distribution of GD metrics were
summarized and plotted by both IUCN categories and taxonomic Orders. Before the main analyses
described below, we partitioned the full dataset into two. The first data partition, the “IUCN dataset”
(Supplementary Dataset S2), included all the species having their own categorical Red List assessment
but excluded those listed as “Data-Deficient”. The second data partition, the “EcoEvo dataset”

(Supplementary Dataset S3), included all the species having data from the COMBINE database®®.

For the main comparison between GD and IUCN categorization, uncorrelated GD metrics were first
identified using Pearson'’s correlation test. Uncorrelated GD metrics were then individually tested against
IUCN categories (including binary-transformed categories where Threatened = CR + EN + VU versus Non-
Threatened = NT + LC) to determine if there was a significant difference between mean GD values across
IUCN categories. We considered technical factors as well (e.g., sequence read depth) and controlled for
them in the statistical tests (Technical Dimensions; Dim.1-Dim.4) as described in A1. To account for
phylogenetic signal (A) we ran Phylogenetic Generalized Least Squares models (PGLS; GD ~ IUCN
category + Dim.1 + Dim.2 + Dim.3 + Dim.4 - 1) using the R package ‘caper’®® with the maximum likelihood
method. The mammalian phylogenetic tree used in the models was derived from VertLife’? with

sampling 1,000 trees from the “Mammals birth-death node-dated completed trees” distribution’®. The

71

‘averageTree’ function with default option in R package ‘phytools’’' was applied to obtain a consensus

tree from the 1,000 trees, then rooted with Sarcophilus harrisii as an outgroup’? using the ‘root’ function

/73

in R package ‘ape’’. Additional tips for each subspecies were manually added to the tree as a sister

taxon of its closest relative using the ‘AddTip’ function in R package ‘TreeTools'’4. Effect sizes of
significant independent variables of interest were reported as partial omega-squared using R package
‘sjstats’’® and model comparisons were assessed using Akaike Information Criterion (AIC) values. Two
Red List assessment criteria, “population trend” and “geographic range”, were compared in place of the
IUCN category with the same procedure above.

We used ordinal regression tests to examine the explanatory power of GD metrics that were significantly
correlated with IUCN categorization after accounting for phylogenetic non-independence. Each model
consisted of IUCN full categories or of the binary categories (i.e., Threatened vs. Non-Threatened) as a
dependent variable and one of the significant GD metrics as an independent variable. [IUCN categories

were treated as pseudo-continuous following 7.

We considered several machine learning (random forest, k-nearest neighbors, and support vector

machine) classifier models using the ‘scikit-learn’ package’’ in Python 3.9. These machine learning
algorithms more efficiently capture potential non-linear relationships, such as those between GD and
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IUCN categories, and are applicable to small datasets’®. All GD metrics identified as significant in linear
models were included as predictors, whereas IUCN binary categories were included as responses. For
the random forest and linear support vector machine classifiers, we used predictors together and
compared their feature importance. For k-nearest neighbors and non-linear support vector machine
classifier, we used predictors individually and compared their model accuracy. Predictors were
standardized in k-nearest neighbors and support vector machine models. We used 70% of the data for
model training and 30% for model testing. After hyperparameter tuning by a wide range of randomized
grid searches and/or a finer parameter grid search, the final random forest classifier was set as
described in Supplementary Table S3.

We tested associations between IUCN categories and a) population trend and b) geographic range
estimates, two criteria currently used to help determine IUCN status. We did so to provide perspective on
the signal (or lack thereof) contained in GD metrics. The two GD metrics which best predicted IUCN
status were used to plot the global distribution of GD values on a global map. We collected geo-
coordinates of the WGR data from their original sources or by using the GeoNames database
(https://www.geonames.org/) when a coordinate was unavailable.

To strengthen our conservation-oriented analyses by accounting for potential confounding factors, the
distribution of all the GD metrics, conservation criteria and eco-evolutionary factors across species was

'79 with the first two

displayed on a Multi Factor Analysis (MFA) plot using R packages ‘FactoMineR
dimensions. We also exploited the data to address evolutionary questions. We compared GD against key
eco-evolutionary factors that could drive levels of standing GD, including trophic level, habitat breadth,

and body mass. See Appendix A2 for details.
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Figure 1

A box plot of heterozygosity by species. Species are arranged by descending median value of
heterozygosity and colored by IUCN Threatened/Non-Threatened categories, plus “Data-Deficient”.
Dashed line indicates the overall mean value. It should be noted, however, that Odocoileus virginianus
WGR data is pooled-sequencing which should contribute to the high GD value, and is included in this
study since the NCBI SRA does not separately categorize “pooled-seq” from “WGS” data type. Species
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names according to NCBI are shown on the y-axis. The inset shows a box plot of log-transformed
observed heterozygosity against [IUCN categories. Non-Threatened category is compared to Threatened
category using a Wilcoxon test and the significance is shown (***: p< 0.001). Dashed line indicates the
overall mean value.
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Figure 2

A box plot of observed heterozygosity by taxonomic Order. Taxonomic Orders are arranged by
descending median value of heterozygosity. Dashed line indicates the overall mean value. Silhouette
images of animals are adapted from PhyloPic (https://www.phylopic.org/).
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1. Collect biological information
* Nt
* u per generation for estimating N, at
step 3

5. Estimate the loss of heterozygosity
after 100 years

¢ Use the equation based on established
population genetics theory

2. Estimate contemporary H,
* Use the contemporary value of Hyas a
supplementary information

3. Approximate N, by (1) or (2)

(1) Calculate N, = N_*0.14

* (2) Estimate using genomic data based
on LD method or coalescence method

4. Estimate T
* Calculate T=100/t

Figure 3

6. Determine genetic category

* Apply cutoff values for the loss of
heterozygosity and N,

* Consider other criteria collectively for
final category decision

Critically
endangered

H
= - l T S HO
Hr=Hqy(1 2,\,e) > oR Vulnerable
N, < 1000
T
oAt 0.975 Near
AND threatened
1000 < N, < 5000
A1 5 0.975
T Least
AND concern
N, > 5000

A practical outline of how genetic or genomic diversity could be explicitly used to help determine formal
conservation status. Using reliable scientific knowledge, the loss of heterozygosity after 100 years can
be predicted and used to determine conservation status according to cutoff thresholds. Abbreviations:
N, = census population size, t = generation time, p = mutation rates, H, = observed heterozygosity, N, =

effective population size, LD = Linkage-disequilibrium, 7= the number of generations in 100 years, H; =

reduced heterozygosity after T generations.
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Figure 4

The comparison between original, official IUCN categories and hypothetical categories based solely on
the genetic criterion described in this study, whether full (a) or binary (b) plus “Data-Deficient”.
Abbreviations: LC - Least Concern, NT - Near Threatened, VU - Vulnerable, EN - Endangered, CR - Critically
Endangered, DD - Data Deficient, Thr - Threatened.
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