Biogeographical history of cuckoo-shrikes (Aves: Passeriformes): transoceanic colonization of Africa from Australo-Papua

Knud A. Jønsson1,2*, Rauri C. K. Bowie2, Johan A. A. Nylander3, Les Christidis4,5, Janette A. Norman5,6 and Jon Fjeldså1

ABSTRACT

Aim Cuckoo-shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo-Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds.

Location Africa, Asia, Australo-Papua, the Pacific, the Philippines and Wallacea.

Methods We use model-based phylogenetic methods (MrBayes and GARLI) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes-diva). We also made use of a partitioned BEAST analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal.

Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo-Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo-Papua to Africa involving lineages within the core Campephagidae radiation.

Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo-Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo-Papua to Africa.

Keywords Africa, Australia, biogeography, birds, Campephagidae, cuckoo-shrikes, Indo-Pacific, Passeriformes, phylogeny, transoceanic dispersal.
INTRODUCTION

Recent advances in our understanding of biological dynamics within islands and archipelagos, and between archipelagos and continents, have demonstrated a greater complexity than thought by earlier biogeographers (reviewed by Whittaker & Fernández-Palacios, 2007; Bellemain & Ricklefs, 2008; Emerson & Gillespie, 2008; Gillespie et al., 2008). In particular, the increasing significance of reverse colonizations, whereby island systems are sources for continental biodiversity, has challenged a fundamental biogeographical paradigm (Filardi & Moyle, 2005; Bellemain & Ricklefs, 2008).

A second paradigm within biogeography that is receiving renewed attention is the determination of the relative importance of dispersal and vicariance in shaping distribution patterns of organisms across the globe (de Queiroz, 2005; Heaney, 2007). Dispersal and vicariance are often considered competing hypotheses when explaining present distribution patterns (de Queiroz, 2005). For example, disjunctly distributed sister-species can be explained either by dispersal or by postulating that an ancestral taxon was historically widespread, and that the present distribution pattern is a consequence of the extinction of populations from the intervening area. The advent of molecular-based phylogenies with corresponding divergence time estimates, however, has started to provide data sets with which one can explicitly test the underlying historical biogeographical pattern (e.g. Sammartin & Ronquist, 2004; Brown et al., 2006; Nylander et al., 2008b; Voelker et al., 2009).

The avian family Campephagidae (cuckoo-shrikes and allies) is distributed throughout Africa, Asia and Australia, as well as within the archipelagos of both the Indian and Pacific Oceans. Consequently, gaining an understanding of the origin, pattern and timing of dispersal that have led to the present cuckoo-shrike radiation is likely to be integral to interpreting broader regional biogeographical patterns and processes across continents and archipelagos.

The origin of passerine birds (Passeriformes) has been demonstrated to be within the Gondwana supercontinent and ranges back to the Cretaceous/Tertiary (K/T) boundary (Barker et al., 2002, 2004; Ericson et al., 2002). Two major lineages within Passeriformes are recognized: the suboscines (Tyranni), which occur primarily in South America; and the oscines (Passeri), with a putative Australian origin. The basal lineages within oscines all occur in Australia, thus it is likely that Australia is the place of origin for this highly diverse radiation (Christidis, 1991; Barker et al., 2002; Edwards & Boles, 2002; Ericson et al., 2002).

One of the major avian biogeographical questions in recent years has been how oscines dispersed out of Australia. One sub-group, the Passerida, which has been very successful in terms of diversity (c. 3500 species), is thought to have originated in Africa (Fuchs et al., 2006; Jønsson & Fjeldså, 2006; Johansson et al., 2008). For this hypothesis to be correct, it would require transoceanic dispersal from Australia to Africa of an early Passerida ancestor, a scenario perhaps more parsimonious than assuming a partial extinction of a once widespread common ancestor/s.

Another large radiation within the Passeri is the core Corvoidea (c. 750 species, sensu Monroe & Sibley, 1993). The Campephagidae is the most species-rich family of birds both within the core Corvoidea complex, and in the Indo-Pacific region. The core Campephagidae, which excludes Pericrocotus (minivets), but includes the cuckoo-shrikes and trillers belonging to the genera Coracina, Lalage, Campylopterus, Campylopterus, and Lobotos, numbers 70 species, 57 of which are distributed from India (including Sri Lanka) in the west to Australia and the Pacific Islands in the east. A further 11 species occur in tropical Africa (including Madagascar and the Comoros), and two species occur on the Indian Ocean islands of Mauritius and Réunion. The systematic relationships within this group are poorly studied, and consequently inferences made on the biogeographical history are highly speculative.

It has been argued that the cradle of campephagid diversification was within the Australo-Papuan region (Jønsson et al., 2008). However, the alternative hypothesis – that Asia could be the area of origin from where colonization of Africa and Australo-Papua could be explained by one radiation going west to Africa and another going east to Australo-Papua – could not be excluded. Recent work by Fuchs et al. (2007) and Jønsson et al. (2008) has suggested close affinities between African and Australian/Wallacea cuckoo-shrike species, leading the authors to speculate that dispersal directly between the two continents was a likely scenario. These studies, however, suffered from relatively poor taxon sampling hampering a more substantiated biogeographical investigation of the group.

In the present study we construct a densely sampled molecular phylogeny, which we use to assess several a priori hypotheses in order to gain a better understanding of the biogeographical history of cuckoo-shrikes. If cuckoo-shrikes originated in Asia, we would expect Asian taxa to dominate the basal clade(s) within the phylogeny. Conversely, if the origin was in Australo-Papua, then these taxa would be expected to dominate the basal part of the tree. If dispersal took place from Australia to Africa via Asia, as the terranes of the Australian and Asian plates collided some 20 Ma (Hall, 1998, 2002; Holloway, 1998), we would expect to find multiple dispersal events reflecting the close proximity of the many larger and smaller islands in the Indonesian and Philippine archipelagos, which would have served as stepping stones between Australia and mainland Asia. This kind of dispersal pattern has been demonstrated for other groups of birds, for example, the Pachycephalidae (Jønsson et al., 2010a). These Asian colonizers would, in turn, be expected to be the founders of African lineages, and we would expect to find African lineages at distal parts of the tree.

MATERIALS AND METHODS

Taxon sampling and laboratory procedures

Recent studies of higher-level relationships within the Campephagidae have demonstrated that the genera Lobotos,
Campephaga, Campochaera and Lalage are nested within the Coracina complex. Pericrocotus, on the other hand, is the monophyletic sister-group (Fuchs et al., 2007; Jonsson et al., 2008). Sister to the Campephagidae (comprising Coracina and Pericrocotus) is an African assemblage including the families Platysteriidae and Malacoontiidae (Fuchs et al., 2007; Jonsson et al., 2008), which are intermingled with some Australasian species (Norman et al., 2009). Although the primary emphasis in our current paper is on the Coracina complex, we included several taxa from known sister groups (e.g. Pericrocotus and Malacoontiidae) in order to address biogeographical questions appropriately. With this in mind, we have sampled 59 of the 70 (84%) species included within the core Campephagidae (Taylor, 2005).

Fresh tissue (blood, liver or muscle) was extracted using the Qiagen DNeasy Extraction kit (Qiagen, Valencia, CA, USA), following the manufacturer’s protocol. Three nuclear gene regions: myoglobin intron-2 (Myo2) (chromosome 1), ornithine decarboxylase (ODC) intron-6 to intron-7 (chromosome 3), and glyceraldehyde-3-phosphodehydrogenase (GAPDH) intron-11 (chromosome 1); and two mitochondrial markers: NADH dehydrogenase subunit 2 (ND2) and subunit 3 (ND3), were sequenced and used to estimate phylogenetic relationships. Primer pairs used for amplification were: ND2: Lmet (Hackett, 1996)/H6312 (Cicero & Johnson, 2001); ND3: ND3-L10755/ND3-H11151 (Chesser, 1999); myoglobin intron-2: Myo2 (Slade et al., 1993)/Myo-cora2R (Jønsson et al., 2008) and Myo-coraF1 (Jønsson et al., 2008)/Myo3F (Heslewood et al., 1998); ODC: OD6/OD8 (Allen & Omland, 2003) and G3P13/G3P14b (Fjeldså et al, 2003).

The thermocycling conditions included a hot start at 95 °C for 5 min, followed by 32 cycles at 95 °C for 40 s, 54–63 °C for 40 s, and 72 °C for 60 s, and was completed by a final extension at 72 °C for 8 min. One microlitre of the amplification products was electrophoresed on a 1.5% agarose gel and checked to ascertain that the chains had reached apparent stationarity. Maximum-likelihood analyses were performed using garli 0.95 (Zwickl, 2006). Five independent analyses were performed (20 million generations for the combined analysis, 15 million generations for ND2, and 10 million generations for the nuclear partitions). Nodal support was evaluated with 500 nonparametric bootstrap pseudoreplications.

Establishing ancestral areas
In order to elucidate ancestral patterns we used the newly developed ‘Bayes-diva’ approach (Nylander et al., 2008b). In a standard dispersal–vicariance analysis (Ronquist, 1997) as implemented in the software DIVA (Ronquist, 1996, 2001), ancestral areas are optimized onto internal nodes of a phylogeny by minimizing the number of dispersal and extinction events required to explain the terminal distributions (Ronquist, 2003). The basic assumption (null model) is allopatric speciation in response to vicariance, but DIVA also considers dispersal and extinction in the shaping of current
Table 1

List of taxa included in the study.

<table>
<thead>
<tr>
<th>Taxon name</th>
<th>Voucher number</th>
<th>Origin</th>
<th>GAPDH</th>
<th>ODC</th>
<th>Myo</th>
<th>ND2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleadryas rufinucha</td>
<td>NRM 543658</td>
<td>New Guinea</td>
<td>EU273375</td>
<td>EU27335</td>
<td>EU273395</td>
<td></td>
</tr>
<tr>
<td>Artamus cyanopterus</td>
<td>ZMUC 135911</td>
<td>Australia</td>
<td>DQ406661</td>
<td>DQ40663</td>
<td>DQ096728</td>
<td></td>
</tr>
<tr>
<td>Battis poensis</td>
<td>MNHN CG 1998-783</td>
<td>Cameroon</td>
<td>DQ40665</td>
<td>EU27120</td>
<td>AY529907</td>
<td>AY529941</td>
</tr>
<tr>
<td>Campephaga flava</td>
<td>RB 613</td>
<td>Kenya</td>
<td>DQ406639</td>
<td>EU380410</td>
<td>EF052822</td>
<td>AY529944</td>
</tr>
<tr>
<td>Campephaga petti</td>
<td>FMNH 384855</td>
<td>Uganda</td>
<td>EF052795</td>
<td>EU380411</td>
<td>EF052823</td>
<td>EF052771</td>
</tr>
<tr>
<td>Campochaera sloetii</td>
<td>NRM 569328</td>
<td>New Guinea</td>
<td>EU380459</td>
<td>EU380412</td>
<td>EU380489</td>
<td>HM002951</td>
</tr>
<tr>
<td>Coracina abbotti</td>
<td>NRM 569468</td>
<td>Sulawesi</td>
<td>EU380460</td>
<td>EU380415</td>
<td>EU380491</td>
<td>HM002952</td>
</tr>
<tr>
<td>Coracina analis</td>
<td>AMNH 337784</td>
<td>New Caledonia</td>
<td>HM002899</td>
<td>HM002997</td>
<td>HM002953</td>
<td></td>
</tr>
<tr>
<td>Coracina atriceps</td>
<td>BMNH 1910.12.28.182</td>
<td>Ceram</td>
<td>EU272091</td>
<td>EU272118</td>
<td>EU272102</td>
<td></td>
</tr>
<tr>
<td>Coracina azurea</td>
<td>ZMUC 135911</td>
<td>Australia</td>
<td>DQ406661</td>
<td>EU272118</td>
<td>EU272102</td>
<td></td>
</tr>
<tr>
<td>Coracina bicolor</td>
<td>ANSP 1901</td>
<td>Equatorial Guinea</td>
<td>EF052796</td>
<td>EU380416</td>
<td>EF052824</td>
<td>EF052772</td>
</tr>
<tr>
<td>Coracina boyeri</td>
<td>ANWC 27158</td>
<td>New Guinea</td>
<td>HM002901</td>
<td>HM002997</td>
<td>HM002955</td>
<td></td>
</tr>
<tr>
<td>Coracina caeruleogrisea</td>
<td>ANWC 24169</td>
<td>New Guinea</td>
<td>HM002902</td>
<td>HM002997</td>
<td>HM002956</td>
<td></td>
</tr>
<tr>
<td>Coracina caesia</td>
<td>ZMUC 123521</td>
<td>Tanzania</td>
<td>EF052797</td>
<td>EF052825</td>
<td>EF052773</td>
<td></td>
</tr>
<tr>
<td>Coracina caesia</td>
<td>AMNH 562444</td>
<td>Ceram</td>
<td>HM002903</td>
<td>HM002903</td>
<td>HM002957</td>
<td></td>
</tr>
<tr>
<td>Coracina caledonica</td>
<td>FMNH 268458</td>
<td>Loyalty Isl</td>
<td>HM002903</td>
<td>HM002903</td>
<td>HM002957</td>
<td></td>
</tr>
<tr>
<td>Coracina ceramensis</td>
<td>ANSP B6371</td>
<td>Philippines</td>
<td>EU380418</td>
<td>EU380418</td>
<td>EU380491</td>
<td>HM002957</td>
</tr>
<tr>
<td>Coracina dispars</td>
<td>AMNH 56229</td>
<td>Little Key</td>
<td>EU380418</td>
<td>EU380418</td>
<td>EU380491</td>
<td>HM002957</td>
</tr>
<tr>
<td>Coracina dohertyi</td>
<td>RMNH.AVES 85029</td>
<td>Flores</td>
<td>HM002904</td>
<td>HM003003</td>
<td>HM002903</td>
<td>HM002957</td>
</tr>
<tr>
<td>Coracina lineata</td>
<td>RMNH.AVES 69651</td>
<td>Sumatra</td>
<td>HM002905</td>
<td>HM003004</td>
<td>HM002931</td>
<td>HM002961</td>
</tr>
<tr>
<td>Coracina longicauda</td>
<td>ANWC 26970</td>
<td>New Guinea</td>
<td>HM002910</td>
<td>HM003009</td>
<td>HM002936</td>
<td>HM002967</td>
</tr>
<tr>
<td>Coracina larinata normani</td>
<td>BMNH 1935.10.22.303</td>
<td>Borneo</td>
<td>EU380461</td>
<td>EU380419</td>
<td>EU380492</td>
<td></td>
</tr>
<tr>
<td>Coracina leucopygia</td>
<td>RMNH.AVES 123485</td>
<td>Sulawesi</td>
<td>HM002908</td>
<td>HM003007</td>
<td>HM002934</td>
<td>HM002965</td>
</tr>
<tr>
<td>Coracina lineata lineata</td>
<td>ANWC 39960</td>
<td>Australia</td>
<td>HM002909</td>
<td>HM003008</td>
<td>HM002935</td>
<td>HM002966</td>
</tr>
<tr>
<td>Coracina lineata sublineata</td>
<td>ZMUC 95267</td>
<td>New Ireland</td>
<td>EU380462</td>
<td>EU380402</td>
<td>EU380493</td>
<td></td>
</tr>
<tr>
<td>Coracina macei larvivora</td>
<td>ZMUC 95260</td>
<td>New Guinea</td>
<td>HM002910</td>
<td>HM003009</td>
<td>HM002936</td>
<td>HM002967</td>
</tr>
<tr>
<td>Coracina maxima</td>
<td>ANWC 48004</td>
<td>Manus</td>
<td>HM002911</td>
<td>HM003010</td>
<td>HM002937</td>
<td>HM002968</td>
</tr>
<tr>
<td>Coracina megregorii</td>
<td>FMNH 392259</td>
<td>Philippines</td>
<td>EU380422</td>
<td>EU380422</td>
<td>EU380492</td>
<td>HM002968</td>
</tr>
<tr>
<td>Coracina melanoptera</td>
<td>FMNH 233770</td>
<td>India</td>
<td>EU380422</td>
<td>EU380422</td>
<td>EU380492</td>
<td>HM002968</td>
</tr>
<tr>
<td>Coracina melaschistos</td>
<td>MNHN 6-69</td>
<td>Laos</td>
<td>EU380423</td>
<td>EU380423</td>
<td>EU380492</td>
<td>HM002968</td>
</tr>
<tr>
<td>Coracina mindanensis everetti</td>
<td>ZMUC 95262</td>
<td>Tawi Tawi</td>
<td>EU380464</td>
<td>EU380424</td>
<td>EU380495</td>
<td>HM002970</td>
</tr>
<tr>
<td>Coracina montana</td>
<td>ANWC 24172</td>
<td>New Guinea</td>
<td>HM002913</td>
<td>HM003012</td>
<td>HM002939</td>
<td>HM002971</td>
</tr>
<tr>
<td>Coracina morio</td>
<td>RMNH.AVES 61242</td>
<td>Sulawesi</td>
<td>HM002914</td>
<td>HM003013</td>
<td>HM002940</td>
<td>HM002972</td>
</tr>
<tr>
<td>Coracina newtoni</td>
<td>SEOR 001</td>
<td>Reunion</td>
<td>HM002915</td>
<td>HM003014</td>
<td>HM002941</td>
<td>HM002973</td>
</tr>
<tr>
<td>Coracina novaleucomandiae</td>
<td>ANSP 10622</td>
<td>Australia</td>
<td>EU380428</td>
<td>EU380425</td>
<td>EU380492</td>
<td>HM002968</td>
</tr>
<tr>
<td>Coracina ostenta</td>
<td>AMNH 459820</td>
<td>Philippines</td>
<td>HM002916</td>
<td>HM003015</td>
<td>HM002916</td>
<td>HM002974</td>
</tr>
<tr>
<td>Coracina papuensis artamoides</td>
<td>ANWC 39813</td>
<td>Australia</td>
<td>HM002917</td>
<td>HM003016</td>
<td>HM002942</td>
<td>HM002975</td>
</tr>
<tr>
<td>Coracina papuensis sclaterii</td>
<td>ZMUC 95265</td>
<td>New Britain</td>
<td>EU380465</td>
<td>EU380426</td>
<td>EU380496</td>
<td>HM002976</td>
</tr>
<tr>
<td>Coracina pectoralis</td>
<td>MNHN CG 1979-1352</td>
<td>South Africa</td>
<td>EU380465</td>
<td>EU380426</td>
<td>EU380496</td>
<td>HM002976</td>
</tr>
<tr>
<td>Coracina polioptera</td>
<td>MNHN CG 1989-69</td>
<td>Thailand</td>
<td>EU380465</td>
<td>EU380426</td>
<td>EU380496</td>
<td>HM002976</td>
</tr>
<tr>
<td>Coracina salomonis</td>
<td>ZMUC 139341</td>
<td>Makira</td>
<td>HM002918</td>
<td>HM003017</td>
<td>HM002943</td>
<td>HM002977</td>
</tr>
<tr>
<td>Coracina schistacea</td>
<td>AMNH 561078</td>
<td>Sula</td>
<td>HM002918</td>
<td>HM003017</td>
<td>HM002943</td>
<td>HM002977</td>
</tr>
<tr>
<td>Coracina striata guillemardi</td>
<td>ZMUC 95261</td>
<td>Tawi Tawi</td>
<td>EU380466</td>
<td>EU380427</td>
<td>EU380497</td>
<td>HM002979</td>
</tr>
<tr>
<td>Coracina striata kochii</td>
<td>ZMUC 95258</td>
<td>Mindanao</td>
<td>EU380467</td>
<td>EU380428</td>
<td>EU380498</td>
<td>HM002980</td>
</tr>
<tr>
<td>Coracina sulis</td>
<td>AMNH 562441</td>
<td>Sula</td>
<td>HM002919</td>
<td>HM003018</td>
<td>HM002944</td>
<td>HM002986</td>
</tr>
<tr>
<td>Coracina temminckii</td>
<td>NRM 569324</td>
<td>Sulawesi</td>
<td>EU380468</td>
<td>EU380429</td>
<td>EU380499</td>
<td>HM002982</td>
</tr>
<tr>
<td>Coracina tenuirostris admiratilis</td>
<td>ZMUC 95268</td>
<td>Manus Island</td>
<td>EU380469</td>
<td>EU380430</td>
<td>EU380500</td>
<td>HM002983</td>
</tr>
<tr>
<td>Coracina tenuirostris heinrothi</td>
<td>ZMUC 95264</td>
<td>New Britain</td>
<td>EU380470</td>
<td>EU380431</td>
<td>EU380501</td>
<td>HM002984</td>
</tr>
<tr>
<td>Coracina tenuirostris matthiae</td>
<td>ZMUC 95266</td>
<td>Mussau</td>
<td>EU380471</td>
<td>EU380432</td>
<td>EU380502</td>
<td>HM002985</td>
</tr>
<tr>
<td>Coracina tenuirostris remotana</td>
<td>ZMUC 102478</td>
<td>New Hanover</td>
<td>HM002919</td>
<td>HM003018</td>
<td>HM002944</td>
<td>HM002986</td>
</tr>
</tbody>
</table>
distribution patterns (Ronquist, 1997), thus it has proven to be an appropriate and popular biogeographical reconstruction method. A limitation of the implementation of diva (and many other biogeographical optimization methods) is that it requires fully bifurcated trees, and that the method does not take into account the uncertainty in phylogenetic inference. In contrast, 'Bayes-DIVA' takes topological uncertainty into account. Rather than using a single fully resolved topology, which often is possible only by making certain assumptions about relationships in a given tree, we sampled 15,000 trees (by thinning the chain, i.e. sampling every n-th generation) from the MCMC output and ran diva on all of them. The frequency of ancestral areas for clades was then recorded and plotted as marginal distributions on the majority-rule consensus tree derived from the MCMC. The major advantage of the Bayes-DIVA method is that the marginal distributions for the alternative ancestral areas at each node in the tree are the product of the phylogenetic uncertainty in the rest of the tree and the uncertainty in the biogeographical reconstruction of the node of interest.

In this study, which focuses on members of the core Campephagidae, we included several other groups known to be the closest relatives to Campephagidae, such that the basal part of core Campephagidae is no longer the root of the tree. This is...
because ancestral reconstructions become increasingly unreliable towards the root of the tree, which can cause the ancestral distributions at the root to include all areas analysed (Ronquist, 1996). Ancestral reconstructions depend on both the nodes above (more distally) and below (more basally) the group of interest.

We assigned seven geographical areas for the diva analysis considering evidence of historical relationships of geological plates and terranes (Audley-Charles, 1981; Hall, 1998; Moss & Wilson, 1998): A) Australia/New Guinea (including the Bismarcks and the Admiralty Islands, which, given their immediate proximity to New Guinea, have been easily colonizable in recent time); B) Wallacea (the area east of Borneo and Bali and west of New Guinea); C) the Pacific islands; D) the Philippine islands; E) Asia (including Sumatra, Borneo and Java, which are part of the Asian plate and have been connected to the Asian mainland on multiple occasions); F) Africa (including Madagascar); and G) the Indian Ocean islands of Reunion and Mauritius. The analysis was carried out constraining the maximum number of areas encompassed by the ancestral distributions to the maximum size of extant ranges using the maxareas (=2) option in diva. This is equivalent to assuming that the ancestors of the group in question have the same ability to disperse as their extant descendants and therefore that ancestral ranges were similar in size to extant ranges (Sanmartín, 2003; Nylander et al., 2008b).

Dating analyses

We used beast v.1.4.6 (Drummond et al., 2002, 2006; Drummond & Rambaut, 2007) to estimate the divergence dates within the Campephagidae. We assigned the best fitting model, as estimated by MrModelTest2, to each of the partitions. Because there are no fossils within or close to the Campephagidae, we used a combination of the island age of Réunion (2 Ma; see below) and a rate of 0.028 substitutions per site per lineage per million years for ND2 (corrected pairwise distances), which is derived from Galapagos mockingbirds (Drovetski et al., 2004) and secondary calibration points from Barker et al. (2004). We assumed a Yule Speciation Process for the tree prior and an uncorrelated lognormal distribution for the molecular clock model (Drummond et al., 2006; Ho, 2007). We used default prior distributions for all other parameters and ran MCMC chains for 50 million generations. The analysis was repeated three times. We used the program Tracer (Rambaut & Drummond, 2007) to assess convergence diagnostics.

Calibration points

The use of geological calibration points has been applied successfully for several avian groups, such as scops-owls (Fuchs et al., 2008), sunbirds (Warren et al., 2003) and whistlers (Jønsson et al., 2010a). A general problem when using islands as calibration points is that colonization may have taken place long after their emergence. Thus, in order to use the age of an island as a calibration point, the island should be fairly young and as remote as possible. In the present study, the only islands that fit these criteria are Mauritius (7.8 Myr old; McDougall & Chamalaun, 1969) and Réunion (c. 2 Myr old; Chevallier & Vatin-Perignon, 1982) in the Indian Ocean. It is unknown what the error margins for these age estimates are, and using these exact ages would indeed be misleading. Therefore we applied to our data a recently published rate extrapolation (2.8% Myr⁻¹) of evolution in ND2 for another family of passerine birds (Norman et al., 2007). This provides an age estimate for the split between Coracina newtoni (Réunion) and Coracina typica (Mauritius) at 1.35 Ma. Given the younger age of Réunion compared with Mauritius, it makes sense to assume that Mauritius was colonized before the emergence of Réunion, and that Mauritius would have acted as the source of colonists to Réunion once it emerged. So the combination of island age and ND2 evolution suggests that the split of these two species of cuckoo-shrike took place sometime around 1.5 Ma. Thus, for this calibration we chose a normally distributed prior at 1.5 Ma ± 0.25 SD (age within 95% confidence intervals (CI) = 1.089–1.911 Ma). Because it is important to have calibration points both basally and distally in the phylogenetic tree, we also used secondary calibration points from Barker et al. (2004). Barker et al. (2004) used a nonparametric rate-smoothing (NPRS) and a penalized-likelihood (PL) approach, as well as a calculation based on the DNA–DNA hybridization study of Sibley & Ahlquist (1990). The split of Acanthisita from all other passerines is estimated at c. 82 Ma and was used to calibrate the tree. We used the age of two of the oscine splits (nodes 7 and 11 in Barker et al., 2004). We used an average of the different age estimates presented by Barker et al. (2004). This translates into an estimate of the age of the split between Artamus and Malacoctonus to be 27.5 Ma ± 1 SD (age within 95% CI = 25.86–29.14 Ma) and the split between Menura and all other oscines at 62.5 Ma ± 1 SD (age within 95% CI = 60.86–64.46 Ma).

Our chronogram can also be visualized as a relative-time chronogram (when removing the absolute age estimates). This is important because we are also interested in assessing whether dispersal events of certain clades are centred on a particular time that could be explained by discrete palaeogeographical events.

RESULTS

Phylogenetic analyses

The use of old museum specimens at times made amplification of some DNA segments rather difficult, thus a few sequence fragments are missing (Table 1).

For GAPDH we sequenced between 272 and 298 bp, but managed to obtain only 215 bp from Alectryon rufinucha, 197 bp from Coracina analis, 197 bp from Coracina bicolor, 197 bp from Coracina caleodonica, 197 bp from Coracina...
For myoglobin intron-2 we sequenced 669 bp from Coracina typica, 816 bp from Coracina newtoni, 772 bp from Campochaera sloetii, Coracina bicolor, Coracina striata kochii and Coracina temminckii, 669 bp from Coracina ceramensis, Coracina ostenta and Coracina sula, and 525 bp from Coracina dispar.

Analyses performed on the concatenated data set (six partitions: GAPDH, ODC, Myo2, 1st, 2nd, 3rd mtDNA codon positions; maximum likelihood (ML): –ln 30273.75, Bayesian inference (BI) harmonic mean –ln 28990.66) and on the individual partitions (GAPDH: AIC: HKY + Γ, ML: –ln 2177.63, BI harmonic mean –ln 2447.96; ODC: AIC: GTR + Γ, ML: –ln 3231.03, BI harmonic mean –ln 3567.96; Myo2: AIC: HKY + Γ, ML: –ln 3767.67, BI harmonic mean –ln 4163.17; ND2: AIC: TVM + Γ, ML: –ln 19497.81, BI harmonic mean –ln 19178.53) yielded 50% majority-rule consensus trees that were topologically congruent for well-supported nodes (posterior probability >0.95 and bootstrap values >70%). The nuclear gene trees (GAPDH, ODC and Myo2) (see Appendices S1–S3 in Supporting Information) provide only a few well-supported clades. This was not unexpected, and reflects the fact that the nuclear genes used evolve too slowly to resolve closely related young species within the Campephagidae. The nuclear data do, however, provide evidence for the partitioning of some basal clades. The ND2 gene tree (Appendix S4) provides better resolution in the distal part of the tree, and the combined analysis (Fig. 1) of both mitochondrial and nuclear genes generates a rather robust and densely sampled core Campephagidae phylogeny.

Scores of the best likelihood trees were within 0.5 likelihood units of the best tree recovered in each of the other four GARLI runs, suggesting that the five runs had converged. The ML tree topology was completely congruent with the BI topology for well-supported nodes (posterior probability >0.95 and bootstrap values >70).

Bayesian dispersal–vicariance analysis

The Bayes-DIVA analysis (Fig. 2) recovers the origin of oscines to be Australian (nodes 1–6) in concordance with several other studies (Christidis, 1991; Barker et al., 2002; Edwards & Boles, 2002; Ericson et al., 2002). The origin of the Campephagidae (node 7) including Pericrocotus, which occurs in Asia (including Borneo, Sumatra and Java), is also recovered as Australian/Asian (AE; >0.97 CI). Given that the origin of the next node (8) is Australian (A; >0.96 CI) and that nodes (9 and 10) further up in the tree are Australian/African in origin (AF; >0.99 and >0.96 CI, respectively), it is most parsimonious to assume that the initial dispersal event from Australia led to Pericrocotus colonizing Asia, where the genus subsequently radiated. Pericrocotus is distributed in mainland Asia, Borneo, Java, Sumatra and Palawan, but is absent from Wallacea (Jonsson et al., 2010b). The absence of Pericrocotus from Wallacea suggests that direct dispersal from Australia to Asia, not island-hopping across the Wallacean archipelago, is the most likely scenario. The core Campephagidae, however, remained in Australo-Papua. Node 10 splits into an all-African group (four species) and another group more or less restricted to Australo-Papua with a few rather late dispersals to Asia. Node 9 also splits into an all-African group (three species) and a more heterogeneous group consisting of species belonging basally to Australo-Papua, Wallacea, the Philippines and the Pacific. It is noteworthy that there is no indication of lineage sharing between Australo-Papua and mainland Asia at this stage. Furthermore, there is a rather clear pattern of dispersal between Australia and Africa, bypassing Asia. Apart from Pericrocotus, there is no dispersal to Asia from Australo-Papua in the basal part of the Campephagidae phylogeny. In fact, all Asian members of the core Campephagidae are found at terminal points in the phylogeny. Ancestral area reconstructions in distal parts of the tree become somewhat ambiguous, probably due to a high exchange of species between various regions leading to an obscured biogeographical signal. It should be noted, though, that the two Indian Ocean species (Coracina newtoni and Coracina typica) have an Asian rather than an African origin.

Dating analyses

The results of the BEAST dating analysis (Fig. 3) indicate the origin of the Campephagidae to be in the Late Oligocene and the origin of the core Campephagidae to be in the Early Miocene. We are particularly interested in the timing of dispersal between Australia and Africa. Thus, the time of common ancestry for the African clade comprising Coracina cinerea, C. grauieri, C. pectoralis and C. caesia, and its sister-group is found to be 14 Ma (95% highest posterior density (HPD) = 11.5–17 Ma) and the time of common ancestry for the African clade comprising Campephaga and Lobotos and its sister-group is 17 Ma (95% HPD = 14–20 Ma). Coracina azurea is a species that proves difficult to place in the phylogeny. Although C. azurea is sister to C. abbotti in both the Bayesian and the BEAST
Figure 1 The 50% majority rule consensus tree of the core Campephagidae and close relatives obtained from the Bayesian analysis of the combined data set: glyceraldehyde-3-phosphodehydrogenase (GAPDH), ornithine decarboxylase (ODC), myoglobin intron-2 (Myo2), NADH dehydrogenase subunit 2 (ND2). Support values are indicated to the left of the nodes. Above the branch is the posterior probability (only values above 0.90 are shown, asterisks indicate posterior probabilities of 1.00). Below (or above to the right of) the branch is the maximum likelihood bootstrap value (only values above 70% are shown) from 500 pseudoreplicates. Terminal taxa distributed in Africa, light grey; terminal taxa distributed in Asia (and the Indian Ocean), dark grey. All other taxa are either Australo-Papuan, Wallacean, Philippine or Pacific in distribution.

Figure 2 A summary of the Bayesian dispersal–vicariance analysis (Bayes-DivA) of the core Campephagidae and close relatives. The tree is a chronogram based on a 50% majority-rule consensus tree of a Bayesian Markov chain Monte Carlo (MCMC) analysis of a combined data set of mitochondrial [NADH dehydrogenase subunit 2, (ND2)] and nuclear [glyceraldehyde-3-phosphodehydrogenase (GAPDH), ornithine decarboxylase (ODC) and myoglobin intron-2 (Myo2)] DNA sequences. Breeding region for each taxon, as delimited in the map, is given after each taxon name. Pie charts at internal nodes represent the marginal probabilities for each alternative ancestral area derived using DivA while integrating over tree topologies using MCMC. These probabilities account for the phylogenetic uncertainty in the rest of the tree and the biogeographical uncertainty (multiple equally parsimonious reconstructions) at each node, conditional on this node occurring in a given sampled topology. In the pie charts, the first four areas with highest probability are coloured according to relative probability in the following order: white > red > blue > grey, and any remaining areas are collectively coded in black. Some basal nodes have been assigned a number, which is referred to in the Discussion. Biogeographical regions: A, Australia/New Guinea; B, Wallacea; C, The Pacific Archipelago; D, The Philippine Archipelago; E, Asia (including Sumatra, Java and Borneo); F, Africa; G, Mauritius/Réunion.
analyses, the relationship has no support and thus should be considered unresolved. Therefore, the split between *C. azurea* and any sister taxon is cautiously set to 13.5 Ma (95% HPD = 11–16 Ma). With these age estimates, it seems that the three dispersal events to Africa have taken place in a rather narrow time frame in the Miocene between 13.5 and 17 Ma (95% HPD = 11–20 Ma). Dispersal into mainland Asia, on the other hand, did not take place before the Pliocene.

DISCUSSION

Systematics and taxonomy

Our study presents the first robust phylogeny of the core Campephagidae (Campephagidae with the exclusion of *Pericrocotus*) including all genera, and lacks only a few species with restricted ranges (mainly on smaller islands in the archipelagos surrounding Australo-Papua). The missing island taxa are generally linked to taxa on larger nearby landmasses (Taylor, 2005). Therefore, we feel confident in recommending some preliminary taxonomic changes. Our study confirms the monophyly of the Campephagidae, with a core Campephagidae group consisting of the genera *Coracina*, *Lalage*, *Campephaga*, *Lobotos* and *Campochaera*. These genera, however, are not monophyletic. Two primary clades are apparent, as also noted by Fuchs et al. (2007) and Jonsson et al. (2008). One clade (A) comprises a subset of *Coracina* Vieillot, 1816 (including the type species for the genus, *Coracina papuensis*) and thus should maintain this name. Clade B contains species of two genera, *Lalage* and *Coracina*. The oldest name for this
assemblage is Lalage (Lalage Boie, 1826), and thus we propose that the whole clade be treated under the name Lalage. Whether or not the genus Lobotos, which is sister to the genus Campephaga, should be maintained as a separate genus, is debatable. Peters (1960) argued that there is little reason to maintain the genus Lobotos as it does not seem to differ substantially in morphology from Campephaga. However, mitochondrial ND2 sequence data differ by 11.62% between the genera, perhaps suggesting that genus status is valid. Based on the results of the present study, the family Campephagidae now contains five genera: Pericrocotus, Coracina, Camppephaga (including Lobotos), Campochaera and Lalage (including several species previously assigned to Coracina) (Fig. 1).

Biogeography

The Bayes-

diva analysis indicates that the origin of the basal clades of oscine passerine birds (represented here by Menura and Orthonyx nodes 1 and 2), Petroicidae (represented by Eopsaltria node 3), and the basal part of the core Corvoidea (represented by all other taxa outside Campephagidae nodes 4–6) is Australo-Papuan. The Campephagidae (node 7), including Pericrocotus, has an Australian/Asian origin, whereas the origin of the core Campephagidae (node 8) is Australo-Papuan. This could be interpreted in one of two ways: (1) members of the Campephagidae were historically distributed throughout the Australo-Papuan and Asian region and later retracted to Australo-Papua when the core Campephagidae started radiating, or (2) a Pericrocotus ancestor dispersed out of Australia and colonized Asia as the first dispersal event within this group. We argue that the latter is the most likely scenario, given that there are no other Asian species in the basal part of the core Campephagidae phylogeny. At the time when Pericrocotus diverged from the core Campephagidae some 25 Ma, there was still a substantial body of water between Australia and Asia, and it is more parsimonious to assume that a single proto-Pericrocotus colonized Asia (which is also supported by the Bayes-

diva analysis) than to assume a historical range expansion followed by a range retraction of the whole Campephagidae. A molecular study of Pericrocotus unequivocally demonstrates that the radiation is centred in mainland Asia, from where dispersal took place in a south-eastwards direction to the Indonesian archipelago (Jónsson et al., 2010b). This dispersal pattern supports the idea that Pericrocotus colonized Asia by long-distance dispersal rather than by island hopping from Australia across Wallacea.

African species occur in two distinct basal clades within the core Campephagidae. One clade contains Campephaga and Lobotos. Another clade contains four species: Coracina caesia, C. pectoralis, C. graueri and C. cinerea. Coracina azurea is difficult to place, but is linked with low support to C. abbotti of Sulawesi. As C. azurea is not closely related to other African taxa, it seems to constitute an independent colonization of Africa at a relatively early time in the evolution of the core Campephagidae. Thus, we find three colonizations of Africa, none of which appears to be closely linked to the two very distal clades of mainland Asian taxa. This indicates that the Campephagidae did not colonize Africa via Asia, unless one assumes extinction of Asian representatives from all three dispersing clades.

To sum up, we find, based on the phylogeny and the Bayes-

diva analysis, that the Campephagidae arose in Australo-Papua, from where one early dispersal event of Pericrocotus colonized mainland Asia. Africa was colonized twice (perhaps three times) directly from Australia at around 14–20 Ma. Within the past 10 Myr, no cuckoo-shrike has colonized Africa. Rather, within this time frame, there have been a number of multi-directional dispersal events taking place from Australo-Papua to the Pacific Islands, the Philippines, Wallacea and mainland Asia. The Indian Ocean Islands of Réunion and Mauritius were among the most recently colonized islands, and were colonized from Asia rather than Africa during the Plio/Pleistocene.

Given that there is no evidence for the core Campephagidae having colonized Asia at an early point, we find little reason to suspect that cuckoo-shrikes colonized Africa via Asia, as this would require numerous extinction events. On the other hand, at the time of the ‘African colonization’ in the mid-Miocene, Australia had collided with Asia, providing a stepping-stone colonization pathway across Wallacea; and from the Oligocene to the mid-Miocene, large expanses of forest covered a continuous area from Southeast Asia to Africa, creating a dispersal corridor for forest-associated taxa (Janis, 1993). Parts of this region became significantly drier towards the end of the Miocene and caused parts of western Asia, the Arabian Peninsula and north-eastern Africa to become arid grassland and desert (Jacobs et al., 1999). With these climatic and tectonic changes in mind, it seems by no means impossible that members of the core Campephagidae dispersed via islands and forested land masses from Australia to Africa, and that Asian members subsequently went extinct. However, it does seem difficult to explain that Pericrocotus successfully radiated and still has many extant members throughout Asia, whereas all members of the core Campephagidae that expanded in the Miocene went extinct.

A number of recent studies have demonstrated transoceanic dispersal as a possible mechanism to explain present disjunct distribution patterns of various groups of vertebrates (Yoder et al., 2003; Heinicke et al., 2007; Pereira et al., 2007). However, the evolutionary link between Australo-Papua and Africa/Madagascar remains rather unusual, although it has been suggested for several angiosperm families (Baum et al., 1998; Davis et al., 2002; Mummenhoff et al., 2004). We know of only few terrestrial avian examples for which a link between Australia and Africa has been suggested (Fuchs et al., 2006; Jónsson & Fjeldså, 2006; Jónsson et al., 2008; Wright et al., 2008; Schweizer et al., 2010). For the Psittaciformes (Wright et al., 2008; Schweizer et al., 2010) the authors reach somewhat different conclusions regarding dispersal. It seems that Psittaciformes is rather old, and that the link could be explained by vicariance events associated with the break-up of Gondwana and perhaps some dispersal events over relatively short
distances. Thus, the present study is the most substantiated avian example of long-distance ocean dispersal and colonization of Africa across the Indian Ocean from Australo-Papua.

Jønsson & Fjeldså (2006) have previously suggested that land plateaux in the southern Indian Ocean could have facilitated dispersal from Australia to Africa at around 45–50 Ma. However, by the Miocene these large land plateaux had subsided markedly (Coffin et al., 2002; Wallace et al., 2002). Although the Kerguelen Archipelago had several subaerial islands, it was far to the south and is unlikely to have aided birds crossing the Indian Ocean. Rather, it seems that cuckoo-shrikes dispersed directly across the Indian Ocean to Africa during two or three individual colonizations within a narrow time frame between 13.5 and 17 Ma.

The majority of cuckoo-shrike species are rather sedentary forest-associated species, and the few real migratory members inhabit high-latitude regions in continental Asia. However, the general lack of movements probably reflects the fact that the birds inhabit regions where environmental conditions vary little by season. Clearly, cuckoo-shrikes disperse well because they have colonized isolated oceanic islands in Micronesia, Melanesia and the Indian Ocean (Taylor, 2005). It seems that mobility is very plastic among birds, probably best exemplified by another avian family, Railiidae, whose members are generally thought of as poor flyers but nevertheless have colonized a multitude of remote islands and archipelagos across the globe (Taylor, 1996).

Although other avian studies in the Indian Ocean have demonstrated that transoceanic dispersal is important for colonizing islands (Warren et al., 2003; Fuchs et al., 2008), the present study infers the occurrence of transoceanic dispersal over an unusually large body of water (the Indian Ocean). A recent study of Turdus thrushes found evidence for direct dispersal from Africa to the Caribbean (Voelker et al., 2009), lending further support to the idea that long-distance ocean dispersal may be an important biogeographical force.

ACKNOWLEDGEMENTS

We are grateful to the following institutions for granting access to toe-pad, blood and tissue samples: AMNH, American Museum of Natural History, USA; ANSP, Academy of Natural Science, Philadelphia, USA; ANWC, Australian National Wildlife Collection, Canberra, Australia; BMNH, British Museum of Natural History, Tring, England; FMNH, Field Museum of Natural History, Chicago, USA; MCNC, Museo Civico di Storia Naturale di Carmignola, Italy; MNHN, Muséum National d’Histoire Naturelle, Paris, France; MV, Museum Victoria, Australia; NRM, Naturhistoriska Riksmuseet, Stockholm, Sweden; RG, Musée Royal de l’Afrique Centrale, Tervuren, Belgium; RMNH, Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands; SAM = South Australian Museum, Australia; SEOR, Société d’Études Ornithologiques de la Réunion; USNM, United States National Museum (Smithsonian), Washington DC, USA; UWBM, University of Washington, Burke Museum, Seattle, USA; and ZMUC, Zoological Museum, University of Copenhagen, Denmark. We would like to thank Walter Boles for taxonomic advice. K.A.J. would also like to thank Manickchand Puttonoo, Director and Senior Research and Development Officer and Rajen Sookharea of the National Parks and Conservation Service for kindly issuing a collecting permit in Mauritius. In the field K.A.J. was assisted by Lone Raffray of the Mauritian Wildlife Foundation and volunteers Anna Reuleaux, Jannie Fries Linnebjerg, Elaine Fraser, Jason van de Wetering and rangers Paul and Mario, who all proved indispensable. K.A.J. also thanks Thomas Ghestemnne for his help in the field. K.A.J. would also like to acknowledge support from the Australian Museum Postgraduate Awards 2006/07.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article:

Appendix S1 The 50% majority rule consensus tree of the core Campephagidae obtained from the Bayesian analysis of glyceraldehyde-3-phosphodehydrogenase (GAPDH).

Appendix S2 The 50% majority rule consensus tree of the core Campephagidae obtained from the Bayesian analysis of ornithine decarboxylase (ODC).

Appendix S3 The 50% majority rule consensus tree of the core Campephagidae obtained from the Bayesian analysis of myoglobin intron-2 (Myo2).

Appendix S4 The 50% majority rule consensus tree of the core Campephagidae obtained from the Bayesian analysis of NADH dehydrogenase subunit 2 (ND2).

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

BIOSKETCHES

Knud A. Jønsson is a PhD student at the Zoological Museum, University of Copenhagen, Denmark. His main interests include the systematics and historical biogeography of passerine birds with a particular emphasis on the Indo-Pacific region.

Jon Fjeldså is a professor at the Zoological Museum, University of Copenhagen, Denmark. He has broad interests in the phylogeny and systematics of birds as well as a general interest in several other aspects of ornithology, ecology and conservation.

Author contributions: K.A.J. and J.F. conceived the ideas; K.A.J. and J.A.A.N. collected and analysed the data. All authors took part in the writing process.

Editor: Lawrence Heaney