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Abstract
Aim: Climate change alters the water cycle, potentially affecting the distribution of 
species. Using an ensemble of species distribution models (SDMs), we predicted 
changes in distribution of the Asian elephant in South Asia due to increasing climatic 
variability under warming climate and human pressures.
Location: India and Nepal.
Methods: We compiled a comprehensive geodatabase of 115 predictor variables, 
which included climatic, topographic, human pressures and land use, at a resolution 
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1  | INTRODUC TION

Presently, the Asian elephant (Elephas maximus), an endangered spe‐
cies, occupies only a small fraction of its historical range (Choudhury 
et al., 2008; Sukumar, 2006). Between 26,390 and 30,770 elephants 
are reported in India, and between 100 and 125 are found in Nepal 
(Choudhury et al., 2008). The two countries harbour the bulk (more 
than 60%) of the total population of wild Asian elephants (Choudhury 
et al., 2008; DNPWC, 2008). The species survives in human‐domi‐
nated habitats with human densities varying from approximately 
149 to 292 people per km2 (Worldometers, 2017), and is under 
threat from land use changes due to the continuous conversion of 
its habitat to agriculture, urbanization, transportation and industry. 
Elephant populations are usually small and mostly restricted to pro‐
tected areas (Choudhury et al., 2008; Sukumar, 2006), which have 
not been planned to account for range shifts (Alagador, Cerdeira, & 
Araújo, 2016; Araújo, Cabeza, Thuiller, Hannah, & Williams, 2004).

It is well known that climate change will cause redistributions of 
species (García‐Valdés, Svenning, Zavala, Purves, & Araújo, 2015; 
Jetz, Wilcove, & Dobson, 2007) directly through (a) temperature and 
water availability, indirectly through (b) further habitat modification 
and additionally (c) through feedback loops between climate and 
vegetation, agricultural practices and land use (Tripathi & Mishra, 

2017; Tsarouchi & Buytaert, 2018; Vanderwal et al., 2013). Higher 
temperature and its variability will lead to increased elephant mor‐
tality (Mumby, Courtiol, Mar, & Lummaa, 2013).

Even though climate change is projected to generally increase 
rainfall in South Asia in the near future (IPCC, 2013; Jayasankar, 
Surendran, & Rajendran, 2015), the intensity of changes will vary 
spatially and depend upon location (Rajendran, Sajani, Jayasankar, 
& Kitoh, 2013). Climate change is expected to increase the occur‐
rence of monsoon break periods, delay monsoon onset and reduce 
summer precipitation by the end of 21st century (Ashfaq et al., 
2009; Schewe & Levermann, 2012). The increase in the frequency, 
intensity and duration of weak spells or breaks can lead to enhanced 
drought (Rajeevan, Gadgil, & Bhate, 2010 and their Figure 1).

Warming will lead to shifts in the distributions of species pole‐
ward or to higher altitudes, mostly due to changes in temperature 
(Hickling, Roy, Hill, & Thomas, 2005; Moritz et al., 2008). Plants’ 
distributions are influenced by actual evapotranspiration and water 
deficit (Stephenson, 1998; Stephenson & Das, 2011). Ultimately, cli‐
mate‐driven geographical redistribution of plant and animal species 
affects ecosystem functioning, human well‐being and the dynamics 
of the climate system (Lenoir & Svenning, 2015; Pecl et al., 2017).

Land use change, one of the direct threats to the elephant 
(Choudhury et al., 2008), will also amplify the effects of climate 
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of 1 km2, and an extensive database on current distribution of elephants. For variable 
selection, we first developed 14 candidate models based on different hypotheses on 
elephant habitat selection. For each candidate model, a series of 240 individual mod‐
els were evaluated using several metrics. Using three climatic and one land use change 
datasets for two greenhouse gas scenarios, ensemble SDMs were used to predict 
future projections.
Results: Nine predictor variables were selected for ensemble SDMs. Elephant distri‐
bution is driven predominantly by changes in climatic water balance (>60%), followed 
by changes in temperature and human‐induced disturbance. The results suggest that 
around 41.8% of the 256,518 km2 of habitat available at present will be lost by the 
end of this century due to combined effects of climate change and human pressure. 
Projected habitat loss will be higher in human‐dominated sites at lower elevations 
due to intensifying droughts, leading elephants to seek refuge at higher elevations 
along valleys with greater water availability in the Himalayan Mountains.
Main conclusions: Changes in climatic water balance could play a crucial role in driv‐
ing species distributions in regions with monsoonal climates. In response, species 
would shift their range upwards along gradients of water availability and seasonal 
droughts. Conservation and management of elephant populations under global 
change should include design of movement corridors to enable dispersal of the ele‐
phant and other associated species to more conducive environments.
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change indirectly due to alterations in surface energy budgets and 
thus temperatures at the local scale (Lenoir et al., 2010; Vanderwal 
et al., 2013). Changes in monsoon dynamics with increased vari‐
ability in surface temperature and rainfall will affect climate water 
balance (Singh, Tsiang, Rajaratnam, & Di, 2014), thereby disrupting 
plant community structure and productivity (Condit, Engelbrecht, 
Pino, Perez, & Turner, 2013). Availability of forage and water influ‐
enced by seasonality is known to drive the habitat utilization of ele‐
phants (Bohrer, Beck, Ngene, Skidmore, & Douglas‐Hamilton, 2014). 
Consequently, the interaction between climate change and land use 
will compound existing threats to the elephant.

Ensemble modelling approaches, which combine a series of spe‐
cies distribution models (SDMs), have become one of the widely 
used tools to forecast the anthropogenic climate change impact on 
species distributions (Araújo & New, 2007; Coetzee, Robertson, 
Erasmus, Van Rensburg, & Thuiller, 2009), as they produce con‐
sensus projections that usually outperform single SDMs (Marmion, 
Parviainen, Luoto, Heikkinen, & Thuiller, 2009). However, when a 
large set of predictor variables are considered for analysis, mainly 
due to the multidimensional abundance of environmental compo‐
nents, the model complexity increases and may lead to the devel‐
opment of heavily parameterized and overfitted models (Merow et 
al., 2014). Moreover, different SDMs and their underlying modelling 
decisions about inputs and settings further add to model complexity 
(Merow et al., 2014; Radosavljevic & Anderson, 2014). One way to 
reduce model complexity and avoid overfitting is to use an inter‐
mediate step of predictor variable selection before embarking into 

ensemble modelling. This step consists of developing candidate 
models of differing complexity by grouping the predictor variables 
based on their environmental types (Carroll, Dunk, & Moilanen, 
2010) and on different hypotheses on the mechanisms governing 
species’ habitat selection. These models can be fitted to the ob‐
served (presence‐only) data, using widely used modelling technique 
such as MaxEnt (Phillips, Anderson, & Schapire, 2006). MaxEnt is 
known to facilitate species‐specific tuning of modelling decisions for 
improved performance and the calibration and evaluation of models 
via spatially independent training and test datasets to reduce model 
overfitting (Muscarella et al., 2014). The performance of the fitted 
models can be assessed through the Akaike information criterion 
(Burnham & Anderson, 2004) and other adequate evaluation met‐
rics (Muscarella et al., 2014). The variables identified by the most 
parsimonious model can then be used in the ensemble modelling 
approach.

In this study, we compiled a large database on environmental 
variables (115) covering India and Nepal with presence observa‐
tions of Asian elephants (4,262), and subsequently used ensemble 
modelling and consensus projections to assess the current geo‐
graphical distribution of the elephant and impacts due to future 
climate and land use change. We expect that seasonal variation in 
temperature and precipitation under the monsoonal regime and 
human disturbance plays a dominant role in driving the distribu‐
tion of elephants. Our specific objectives were to (a) assess the 
relative contributions of climatic factors and their seasonal vari‐
ation, human‐induced disturbance, vegetation and topography on 

F I G U R E  1   Methods for ensemble species distribution modelling for Asian elephant in India and Nepal (a–f); current consensus prediction 
(g); projection of models into future climate and land use change scenarios (h); assessment of core habitat and connectivity (i). See section 
species distribution modelling and evaluation for details of the SDMs used in the ensemble approach for the consensus projections



     |  825KANAGARAJ et Al.

elephant habitat suitability; (b) map the current and future elephant 
habitat suitability under different projections of global climate and 
land use change; and (c) assess the habitat quality of corridors link‐
ing fragments for current and future habitat suitability projections 
for elephant in India and Nepal.

2  | METHODS

2.1 | Study area

Our study area includes India and Nepal (8º–37ºN, 68º–97ºE), en‐
compassing areas of 32,872,631 km2 and 147,181 km2, respectively 
(Balasubramanian, 2017; Karki, Hasson, Schickhoff, Scholten, & 
Böhner, 2017). The physiographical distribution is classified into 
three broad regions in Nepal, Lowlands (Terai and Siwalik), Mid‐
Mountains and Hills and High Mountains (Duncan & Biggs, 2012), 
and five broad regions in India, Himalayas and other ranges (includ‐
ing lowland Terai and Siwalik and hilly tracts of Western and Eastern 
Ghats in the south), Indo‐Gangetic Plain, Thar Desert, Peninsular 
Plateau, and Coastal belts and Islands (Balasubramanian, 2017). 
The current distribution of Asian elephant in India and Nepal can 
be separated into four major regions (Choudhury et al., 2008): the 
Himalayan foothills and lowlands in northern India and southern 
Nepal (N), the eastern Himalayan foothills and Lowlands in north‐
eastern India (NE), the forests tracts in eastern India (E) and the 
Western and Eastern Ghats in southern India (S), which are repre‐
sentative of the broad ecological conditions governing elephant dis‐
tribution in this region.

Our study area has a complex topography ranging from sea level 
in the south of India to elevation higher than 8,000 m in Himalayas 
in the north (Supporting information Figure S1). Two major weather 
systems dominate the general climate: the summer and winter mon‐
soon circulations in India and the former in Nepal. The average an‐
nual rainfall in India and Nepal is about 1,190 mm and 1,530 mm, 
respectively, with heterogeneous spatial and temporal distribution 
(Li & Deng, 2017; Purohit & Kaur, 2017). The study area experi‐
ences four climatological seasons reflecting changes in precipitation 
patterns: winter (India: January and February; Nepal: December–
February), pre‐monsoon or hot weather season (March–May), sum‐
mer monsoon season (June–September) and post‐monsoon season 
(India: October–December; Nepal: October–November) (De, Dube, 
& Rao, 2005; Karki et al., 2017).

2.2 | Asian elephant data

Asian elephant occurrence records, which included direct observa‐
tion and indirect evidences such as dung, track and debarking, were 
obtained from field surveys that ranged from one‐time surveys to 
long‐term monitoring of elephant populations in various time peri‐
ods in India and Nepal (see Supporting information Appendix S1 for 
details). Most field surveys were carried out between the years 2002 
and 2017, with few surveys done between 1990 and 2002. Overall, 
4,262 Asian elephant occurrence records were collected.

Besides locations from field surveys, we obtained 135 elephant 
locations from the Global Biodiversity Information Facility (http://
gbif.org) and the India Biodiversity Portal (http://indiabiodiversity.
org) databases. Additionally, we obtained coordinates and digitized 
elephant occurrence locations from published literature and reports 
(see Supporting information Appendix S1).

Each georeferenced position was verified against a coarse spatial 
outline of the distributional range of Asian elephant provided by the 
IUCN Red List of Threatened Species (http://www.iucnredlist.org). 
In order to reduce spatial autocorrelation in our dataset (i.e., pseudo‐
replication) that may bias parameter estimates and increase type I 
error rates (Dormann et al., 2007), we selected only locations which 
were a minimum of 5.6 km apart from each other. This spatial thin‐
ning resulted in 631 locations. We selected this distance because it 
represents the radius of the minimum circular home range size of 
elephants, which is approximately 100 km2 in the study area (Desai, 
1991; Sukumar, 1989a).

2.3 | Environmental data

We focused on the environmental variables that were important in 
affecting the distribution of Asian elephants (see Supporting infor‐
mation Tables S1 and S2). As most of our field data were from the 
years 2000–2017, whenever possible, we compiled our environmen‐
tal variables to cover this period. We assembled data on land use 
composition and human disturbances from various sources, as both 
habitat and human influence are likely to affect the distribution of 
Asian elephants. We obtained land cover variables and a time series 
of various vegetation indices from the MODIS database (https://lp‐
daac.usgs.gov). We then calculated for each variable several metrics 
across time (i.e., minimum, maximum, mean and SD) to be used as 
input into our models. We provided a detailed explanation of the 
collection and preparation of our environmental data in the digital 
Supporting information (see Appendix S2 and Table S2).

We also included various climatic factors and their seasonal 
variation (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005; Title & 
Bemmels, 2017; Supporting information Table S2). We obtained a 
total of 115 predictor variables: 60 climatic, 16 human disturbance, 
29 forest and vegetation and 10 topographic variables. All analyses 
were done at a grid resolution of 1 km. We obtained our predictor 
variables at the resolution that was available at source. Variables 
with a finer resolution were combined by taking the average of grid 
cell at a particular neighbourhood. Variables with a coarser resolu‐
tion were converted to fine resolution using bilinear interpolation.

2.4 | Candidate model construction and predictor 
variable selection

To make projections of elephant habitat suitability in space and time, 
we proceed in two steps: first (this section), we reduced the set of 
predictor variables by removing correlated variables and testing 
several models that are based on different hypotheses on elephant 
habitat selection, and second (next section), we used the variables of 

http://gbif.org
http://gbif.org
http://indiabiodiversity.org
http://indiabiodiversity.org
http://www.iucnredlist.org
https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
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the most parsimonious of these models in an ensemble of SDMs to 
project habitat suitability in space and time.

First, we grouped the environmental variables into three groups 
that correspond to basic hypotheses on elephant habitat selection: 
vegetation and topography (VT), human disturbance (D) and climate 
(C) (Supporting information Table S2). The candidate models were 
then assembled by the combinations of these three groups, thus 
ranging from specific models reflecting only one hypothesis (e.g., 
D) to general models containing variables of all three groups (i.e., 
VT + D + C). Whenever possible, we also defined “minimal” models, 
denoted by subscript m in italic (i.e., Dm and Cm) that contained only 
those variables expected a priori to be the most important ones. 
In total, we developed in this way 14 candidate models of differ‐
ing complexity (see Supporting information Table S3 for details). We 
then performed a variable reduction procedure in each candidate 
model based on Pearson's correlation coefficient r, excluding vari‐
ables with |r| > 0.6 (see Tables 1 and Supporting information Table 
S3).

To fit the candidate models to the data, we used MAXENT, one 
of the most commonly used presence‐only methods (Phillips et 
al., 2006). MAXENT models the statistical relationships between 
explanatory variables at observed locations of species, and “back‐
ground” locations in the study region. It incorporates flexible re‐
lationships by transformations of the original predictor variables 
into various feature classes. This higher flexibility, however, can 
lead to model overfitting (Muscarella et al., 2014; Radosavljevic & 
Anderson, 2014).

To improve the performance of MAXENT and avoid overfitting, 
we used methods described in Muscarella et al. (2014): we (a) first 
generated spatially independent splits of data for training and test‐
ing (e.g., Madon, Warton, & Araújo, 2013), (b) second fit a series of 
models to these data partitions across different combinations of 
feature classes and regularization values and (c) finally characterized 
the performance of the models using evaluation metrics (Muscarella 
et al., 2014). Here, we selected a set of 10,000 random background 
locations to use in all our model fits (Figure 1). To partition the oc‐
currence and background locations into separate training and test 
datasets for k‐fold cross‐validation, we used a “block” method that 
partitions data according to the latitudinal and longitudinal lines, 
resulting in four bins (of equal numbers) (e.g., Madon et al., 2013; 
Muscarella et al., 2014).

We then built a series of individual MAXENT models (to each 
candidate model) to the partitioned training and test datasets with 
regularization values ranging from 0.5 to 4.0 (increments of 0.5) and 
with six different feature class combinations (L, LQ, H, LQH, LQHP 
and LQHPT; where L = linear, Q = quadratic, H = hinge, P = product 
and T = threshold) (Muscarella et al., 2014). Additionally, we also 
built a model using the entire, full dataset that was used to calculate 
the Akaike information criterion corrected for small samples sizes 
(AICc). Besides AICc, we calculated four other evaluation metrics 
as described in Muscarella et al. (2014): AUCTEST, averaged value 
of the area under the curve of the receiver operating characteristic 
plot calculated based on testing data of k‐fold cross‐validation bins; 

AUCDIFF, the difference between training and testing AUC, with high 
values for overfit models (Warren & Seifert, 2011); and two omission 
rates that quantify model overfitting with 0 and 10% omission rate 
of the training localities under which the proportion of test localities 
with MAXENT output values falls.

For each candidate model, we built 240 individual models (eight 
regularization values ×six feature classes × (four training and testing 
data bins + one full dataset)); this resulted in total of 3,360 individ‐
ual models (240 × 14 candidate models). We selected the most par‐
simonious model, which was then used in the ensemble approach 
(see section “Species distribution modelling and evaluation” below), 
in two steps. First, for each candidate model, we selected the best 
performing model by AICc (i.e., ∆AICc = 0). Then, among all the best 
performing candidate models, we selected the most parsimonious 
model that had lower AICc score, higher AUC value and overfit less 
severely than others by comparing the various evaluation metrics 
scores.

2.5 | Species distribution modelling and evaluation

An ensemble of species distribution models (SDMs) (Araújo & New, 
2007) was generated using the variables identified in the best per‐
forming MAXENT model of the previous step (Figure 1). We con‐
sidered 11 algorithms: generalized linear model (GLM), generalized 
additive model (GAM), generalized boosting model (GBM), artificial 
neural network (ANN), surface range envelope (SRE), classification 
tree analysis (CTA), random forest (RF), multiple adaptive regres‐
sion splines (MARS), flexible discriminant analysis (FDA), maximum 
entropy (MAXENT) and low‐memory multinomial logistic regression 
(MAXENT.Tsuruoka, noted below MAXENT.T).

The occurrence and background locations were split into 80% 
being a random sample to train the models, and the remaining 20% 
of the data were used to evaluate the fitted models using true skill 
statistic (TSS) as measure of accuracy with TSS = sensitivity + spec‐
ificity ‒ 1 (Allouche, Tsoar, & Kadmon, 2006) and the area under the 
curve of the receiver operating characteristic (AUC, Fielding & Bell, 
1997). Models were run five times, each time the training samples 
were taken randomly to be evaluated against a random test parti‐
tion. Models with the TSS scores >0.8 were kept in the consensus 
analysis. The final consensus prediction was based on the mean 
weighted probability of occurrence of elephants in each 1‐km grid 
cell and a proportional decay, with more weight given to the models 
that had better TSS scores. The continuous ensemble prediction val‐
ues were converted into binary ones (suitable/unsuitable) based on 
the optimal threshold identified by the TSS.

2.6 | Future projections under climate and land 
use scenarios

The ensemble model was then projected to climatic conditions 
around 2050 (i.e., 2041–2060) and 2070 (i.e., 2061–2080) based 
on several global change scenarios to project the likely changes in 
suitable habitats for elephants. We obtained the climatic variables 
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for future projections from the same sources as our current cli‐
matic variables (i.e., WorldClim). We obtained future climatic vari‐
ables from three Coupled Model Inter‐Comparison Project (CMIP5) 
Global Circulation Models (Taylor, Stouffer, & Meehl, 2012), GCMs: 
Centre National de Recherches Météorologiques Coupled Global 
Climate Model, version 5 (CNRM‐CM5); Hadley Centre Global 
Environmental Model, version 2‐Earth System (HadGEM2‐ES); and 
Max Planck Institute Earth System Model, low resolution (MPI‐ESM‐
LR), and for two representative concentration pathways (RCPs): RCP 
2.6 and 8.5. The models were then projected for 2050 and 2070 
under the two RCPs by averaging the climate variables across the 
three GCMs.

To obtain scenarios for land use changes, we focused on the 
MODIS land use variable (i.e., the combined class of croplands 
and cropland/natural vegetation mosaics, Supporting informa‐
tion Table S2) and used the future projections at 1‐km resolution 
available for years 2050 and 2,100 from GeoSOS global database 
(http://geosimulation.cn/GlobalLUCCProduct.html; Supporting 
information Appendix S3). The remaining disturbance variables 
in the final model were held constant while forecasting the fu‐
ture predictions, due to unavailability of their future spatial data 
distribution.

2.7 | Assessing core habitat and connectivity

To identify core habitat areas throughout the study area, we used 
the Core Mapper tool within the Gnarly Landscape Utilities pack‐
age (Shirk & McRae, 2013). Using a moving window with a 9.4 km 
radius (i.e., average home range 278 km2; Fernando et al., 2008), 
this tool identified highly suitable (>0.64) habitat patches in the 
study area (Supporting information Appendix S4). To assess the 
potential connectivity among cores, we defined a resistance sur‐
face (i.e., resistance = 1/habitat suitability). The resistance value 

is then multiplied with the minimum distance of this cell from the 
core area to obtain an effective distance. The cells within an ef‐
fective distance of 60 km (Sukumar, 1989b) are included into the 
extended core habitat area. This establishes connectivity between 
nearby cores that are within a reachable distance, resulting in 
fewer but larger cores.

All analyses were conducted in R (R Core Team, 2016) using the 
package ENMeval (Muscarella et al., 2014) for MAXENT fits for eval‐
uating candidate models and BIOMOD2 (Thuiller et al., 2016) for en‐
semble approach. For the latter, we used the default options, except 
for MAXENT (Phillips) for which the RM and FC combinations were 
selected in consistence with the best performing MAXENT model 
(see section Candidate models construction and predictor variables 
selection).

3  | RESULTS

3.1 | Candidate model evaluation and predictor 
variable selection

Overall, candidate models generally exhibited good performance 
(mean AUCTEST > 0.8), especially models that included climatic vari‐
ables, and the final model was selected from including combination 
of the climate and the disturbance groups comprising nine predic‐
tor variables (Table 1). The final model (Cm + Dm) was selected based 
on its low AICc scores and evaluation metric scores for overfitting 
(Table 1).

3.2 | Species distribution models

The selected nine predictor variables were chosen to model suit‐
able habitat for elephants. TSS scores were low for the SRE and 
MAXENT.T approaches (TSS < 0.8), and consequently, these two 

F I G U R E  2   Boxplots for AUC and 
TSS model evaluation scores for five 
cross‐validation runs on test data for 
the 11 species distribution modelling 
techniques used for predicting Asian 
elephant distribution in India and Nepal. 
For comparison, the evaluation scores 
for the consensus model are also shown. 
The boxes represent the first and third 
quartiles, with the median represented by 
the black line. The whiskers represent the 
data within 1.5× the interquartile range, 
and the individual points represent the 
outliers. The consensus model does not 
include MAXENT.T and SRE (TSS < 0.8). 
See text for model abbreviations

http://geosimulation.cn/GlobalLUCCProduct.html
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modelling techniques were removed from the ensemble approach 
(Figure 2). The evaluation scores for the consensus model were 
higher than for the individual modelling techniques. Within climate 
group, the minimum of actual evapotranspiration (AET) across the 
twelve monthly means accounted for 58.4% of the total statistical 
contribution (Table 2). This was followed by presence of land cover 
class “Croplands and Cropland/natural vegetation mosaic” (15.7%), 
isothermality (13.3%), potential evapotranspiration (PET) in the dri‐
est quarter (7%) and the variation of monthly AET over the year 
(5.6%). The contributions of remaining four variables were <5%.

The response curves for the predictor variables that contrib‐
uted substantially (% contribution > 5; see Table 2) to the consensus 
model showed that elephants prefer habitat that experience higher 
AET (Figure 3, Supporting information Figure S2), that is, active veg‐
etation. This indicates that elephants potentially avoid areas that 
experience enhanced seasonal droughts and desert areas. On the 
other hand, elephants avoid areas of high human influence in the 
form of increasing presence of croplands. The resulting spatial pat‐
tern of habitat suitability based on the ensemble approach is shown 
in Figure 4. Around 256,518 square kilometres was estimated as 
suitable for elephants, based on the optimal prediction value thresh‐
old of 0.513 identified by the TSS.

3.3 | Future projections

The future projections under the combined climate and land use 
changes predict a heavy loss of potential elephant habitats under 
all scenarios in relatively low altitude, human‐dominated regions 
(Figure 5a,b), with no gain of suitable habitat in the eastern (E) and 
southern (S) regions. Overall, a loss of around 41.8% of potential 
suitable habitat is expected in the study area under the combined 
climate and land use change scenario of RCP8.5 in 2070 (Figure 5b 
and Supporting information Figure S4a). Under the climate‐only 
change scenarios, the loss of potential habitat is more moderate 
(Supporting information Figure S3), but still substantial with a 

17.1% loss under RCP8.5 in 2070 (Supporting information Figure 
S4b). Gain in potential habitat areas is indicated in the northern 
(N) and north‐eastern (NE) habitats particularly along the valleys 
towards north avoiding high mountains (Figure 5a,b), with a maxi‐
mum gain of 42.2% under climate‐only change scenario of RCP8.5 
in 2070 (Supporting information Figure S4b). Further, a possible 
northward shift along the valleys in the northern populations’ 
distribution (N) is expected, while losing the relatively flat habitat 
areas in the foothills (Figure 5a,b).

3.4 | Cores and habitat connectivity

The Core Mapper tool identified several core habitat areas (“cores”) 
in the study area (Figure 6a–d and Supporting information Figure S5). 
In particular, two large cores with high habitat quality (mean habitat 
suitability value around 0.91) were identified in the southern (S) part 
of the study area (S; Figure 6a and Supporting information Figure 
S5). Although the total area of cores of current elephant habitat was 
lower for the northern (N) and north‐eastern (NE) regions compared 
to southern (S) region of the study area, the number of cores is com‐
parable and increased under cost‐weighted dispersal, especially in 
north‐east under RCP2.6 in 2070, due to area gains of some patches 
smaller than 600 km2 (Figure 6d), revealing the fragmented nature of 
these habitat areas in terms of high suitability values (Figure 6c,d and 
Supporting information Figure S5).

4  | DISCUSSION

The historical range of the Asian elephant has shrunk due to an‐
thropogenic land use change (Choudhury et al., 2008). Currently, 
we show that seasonal rainfall patterns and human disturbance are 
strongly associated with the distribution of extant Asian elephant 
populations over the majority of its range in the Indian subcon‐
tinent. Our model projections suggest that future changes in the 

Variables % contribution

Climate

Actual evapotranspiration (AET mean monthly minimum) 58.4

Isothermality (mean monthly temperature diurnal range/annual range 
between maximum temperature of warmest month and minimum 
temperature of the coldest month)

13.3

Potential evapotranspiration (PET) of driest quarter 7

Actual evapotranspiration (SD) 5.6

Aridity index—Thornthwaite 1.5

Disturbance

Combined land cover—croplands and cropland/natural vegetation mosaic 
(%)

15.7

Fire probability in June–August 1982–1999 3.4

Human population density (mean) 2.7

Fire probability in September–November 1982–1999 1.1

TA B L E  2   Statistical contribution of 
variables in the final consensus model. See 
Supporting information Table S2 for 
definition of variables
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distribution of the elephants in India and Nepal would be driven 
predominantly by changes in climatic water balance, followed by 
changes in temperature and other ongoing human‐induced distur‐
bance. We anticipate that elephant range would likely shift towards 
higher elevations in the Himalayas and along a gradient of water 
availability, that is, low elevation valleys in the mountains, instead 

of a simple unidirectional range shift towards higher elevations and 
latitudes typically expected when temperature is the principal factor 
(Hickling et al., 2005; Lawler et al., 2009; Moritz et al., 2008). Our 
study also outlines complex local‐scale interactions among precipi‐
tation and temperature, complicated by seasonal monsoon, and land 
use changes in the distribution of elephants in South Asia.

F I G U R E  3   Response curves for the environmental variables that contributed substantially (% contribution > 5; see Table 2) to the 
consensus model for Asian elephant in India and Nepal

Actual evapotranspiration (AET mean monthly minimum in mm) Isothermality

Potential evapotranspiration (PET) of driest quarter (mm) AET (SD)

Combined land cover - Croplands and Cropland/natural vegetation mosaic (%) 

(a) (b)

(c)

(e)

(d)
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4.1 | Effect due to climatic factors

Forage and water availability is critical for elephants (Sukumar, 
2006). Actual evapotranspiration (AET) is a strong predictor of 
aboveground net primary productivity for terrestrial ecosystems 
as it simultaneously measures water availability (rain plus other 
water sources) and energy (heat and solar radiation), the key factors 

that enhance photosynthetic rates (Rosenzweig, 1968; Stephenson 
& Das, 2011). For the past several decades, both India and Nepal 
have been experiencing significant changes in spatial–temporal 
patterns of monsoon rainfall, with breaks in wet spell and the pro‐
longation of the dry spell leading to seasonal droughts (Karki et al., 
2017; Vinnarasi & Dhanya, 2016). Prolonged dry seasons have been 
observed to cause drought‐related mortality in African elephant 

F I G U R E  4   Map of predicted habitat suitability (on top of hillshade map) for Asian elephant in India and Nepal using the consensus model 
derived from the ensemble approach. Map projection: Universal Transverse Mercator zone 44 N
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populations in arid and semi‐arid savannas (Foley, Pettorelli, & Foley, 
2008; Wato et al., 2016). Seasonally driven rainfall affects vegeta‐
tion dynamics and water availability, and elephants are known to 

respond to those changes to their habitat, especially in dry seasons, 
by moving to more suitable sites (Birkett, Vanak, Muggeo, Ferreira, 
& Slotow, 2012; Bohrer et al.., 2014).

F I G U R E  5   Future changes in consensus projections for Asian elephant in India and Nepal under climate change and land use change 
scenarios (a); different elephant population zones are magnified for RCP8.5 in 2070 (b). Variables Human population density and Fire 
probabilities were held constant (see Table 2). Green: stable, red: lost, blue: gain, grey: unsuitable. Note the projected habitat loss in 
relatively low altitude, human‐dominated regions and gain of habitat in the valleys of Himalayan Mountains. Map projection: Universal 
Transverse Mercator zone 44 N

2050 2070
RCP2.6 RCP2.6

RCP8.5 RCP8.5

(a)
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Continual rise in greenhouse gases and, thereby, temperatures 
is predicted to increase the intensity of the summer monsoon in 
India (scenario RCP8.5; IPCC, 2013; Jayasankar et al., 2015) caus‐
ing increase in evaporative demand and water availability. This can 
potentially increase AET and lead to shifts in species’ ranges to‐
wards higher elevations and latitudes (Hickling et al., 2005; Lawler 
et al., 2009). Although increase in water availability alone can lead 
to range expansion within an elevation belt (Stephenson & Das, 
2011), additional increase in evaporative demand may modify this 

pattern in unexpected ways depending on its magnitude relative to 
water availability. Our results show that this can cause range shifts 
towards higher elevations but along the water availability gradient 
(Figure 5a,b). The elephant range is projected to contract in the 
human‐dominated, flood‐prone low altitude tropical climate regions 
(i.e., the Terai areas of India and Nepal in the Himalayan region and 
central and southern parts of India; Figure 5a,b and Supporting infor‐
mation Figure S3). These regions experienced an increasing warming 
trend (1961–2000; Sheikh et al., 2014). Recent studies suggest that 

(b)

F I G U R E  5
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the onset of the summer monsoon could be delayed and lead to a 
rapid decrease in rainfall by the turn of the 22nd century (Ashfaq et 
al., 2009; Schewe & Levermann, 2012). This will additionally increase 
the magnitude of evaporative demand in relation to available water 
and would shift suitable elephant habitat further northwards in the 
Himalayan region and accelerate habitat loss at lower altitudes.

The adverse effect of increases in global temperature and anom‐
alies in seasonal monsoon rainfall on elephant distribution is also 
reflected by other climatic factors in our model. Our results suggest 
that elephants were fewer in areas that experience high minimum 
surface temperature in the warmest month, smaller day‐to‐night 
temperature oscillation relative to the annual oscillations (isother‐
mality) and low PET during the driest quarter of the year in the model 
(Table 2). These results are in agreement with a study of Mumby et 
al. (2013) that found that an average monthly temperature increase 
of ~1ºC over 35 years (between 1965 and 2000) increased mortality 
in calves and young elephants.

4.2 | Effect of human disturbance

Human disturbance and land use change have historically been 
the main drivers of elephant population decline (Choudhury et al., 
2008). Several studies have highlighted the sensitivity of Asian 
and African elephants to human disturbances (Buij et al., 2007; 
Jathanna, Karanth, Kumar, Karanth, & Goswami, 2015; Srinivasaiah, 
Anand, Vaidyanathan, & Sinha, 2012). Our results indicate here that 
human disturbances represented by the proportion of croplands in 
a 1.5 × 1.5 km area exerted negative influence on elephant occur‐
rence patterns (Figure 3). The loss of habitat is projected to occur 
mostly in the human‐dominated regions, that is, the Central‐Eastern 

(Eastern Ghats) and the Southern Western Ghats of India and in the 
relatively flat areas of the Himalayan region (Figure 5a,b). Loss of 
native forests (Puyravaud, Davidar, & Laurance, 2010) and land deg‐
radation, which affects about 18% of its territory (Bai, Dent, Olsson, 
& Schaepman, 2008), are major threats to India's biodiversity that 
will decrease the availability of forage for wild herbivores (Jathanna 
et al., 2015; Madhusudan, 2004). Climate change will further amplify 
these threats leading to species declines and eventual extinction 
(Thomas et al., 2004).

4.3 | Importance of habitat connectivity

Our habitat model predicts only the suitability for a given 1‐km2 grid 
cell without accounting for the movement capacity of elephants 
and their home range sizes. We therefore added an analysis of 
core areas, being contiguous high suitability areas larger than the 
size of two average home ranges, and an analysis of connectivity of 
core areas that considers the maximal displacement capacity of el‐
ephants. The core area analysis identified the major habitat patches, 
such as two large core areas in the southern part of India that had 
the highest mean habitat suitability compared to the patches of the 
other three regions (Supporting information Figure S5). Indeed, field 
estimates document that the southern region holds by far the larg‐
est population of the elephants in the world (Madhusudan et al., 
2015). The connectivity analysis suggests that the fragmented core 
areas that are located along the foothills forests and floodplains of 
the Himalaya in the northern part of India and Nepal could be con‐
nected by a mixture of poor‐ and high‐quality habitat that should 
form specific targets for management. These analyses provide a first 
assessment of areas that could provide connectivity among core 

F I G U R E  6   Amount of core habitat in the identified cores and the number of core habitat areas in the suitable habitat as predicted for 
Asian elephant in India and Nepal by the final consensus model for the current and future scenarios. (a) Identified core habitat areas and (b) 
under cost‐weighted dispersal. (c) Number of identified cores and (d) under cost‐weighted dispersal
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areas, and future studies using more detailed least‐cost path analy‐
sis (Cushman, Lewis, & Landguth, 2014) or individual‐based move‐
ment models (Kanagaraj, Wiegand, Kramer‐Schadt, & Goyal, 2013) 
can test specific management actions in their effectivity to provide 
connectivity.

4.4 | Modelling constraints

Although our modelling approach makes a number of simplifica‐
tions, for example, that the vegetation shifts are in equilibrium with 
climate shifting immediately after climate changes or that some 
variables are held constant (e.g., population density, fire probabil‐
ity), it is the best we can do at the moment to assess the sensitivity 
of elephant habitats to potential changes in climate and land use. 
Though such limitations inevitably affect the accuracy and gen‐
erality of projections, there are independent tests demonstrating 
that correlative models, especially when placed in the context of 
ensemble forecasting, provide inferences that are useful (Araújo, 
Whittaker, Ladle, & Erhard, 2005) and as powerful as more complex 
mechanistic models (Fordham et al., 2017). We acknowledge the 
inaccuracy associated with combining two IPCC assessments, but 
our approach of combining low emissions with balanced resources 
scenario and high emissions with adverse impact on the environ‐
ment scenario provides a balanced approach to make the best use 
of available data.

4.5 | Conservation implications

Loss of local species is considered to be a major driver altering 
ecosystem structure and function in any region (Hooper et al., 
2012). Our study area covers several biodiversity hotspots (Myers, 
Mittermeier, Mittermeier, da Fonseca, & Kent, 2000) and has a 
high proportion of threatened species; for example, India supports 
approximately 4.9% of the world's total threatened plant and fau‐
nal species (MEFI, 2009; Squires, 2014), and its extinction risk has 
increased in the recent past, primarily due to habitat loss and ille‐
gal hunting (Secretariat of the Convention on Biological Diversity, 
2010). Given the limitations in human and financial resources and 
political will in conserving all desired species and their habitats in 
South Asia (Persha, Fischer, Chhatre, Agrawal, & Benson, 2010), 
prioritizing biodiversity conservation, strengthened by manage‐
ment shortcuts such as umbrella‐species concept, should remain 
high priority in this region. The umbrella‐species concept has 
shown promise in forest restoration and conserving biodiversity 
(e.g., Bell, 2015; Yamaura, Higa, Senzaki, & Koizumi, 2018), and 
can be used as an effective strategy for conservation in the South 
Asian region. Further, the centrepiece of biodiversity conservation 
always remains to be conservation of remaining habitat from any 
further loss. By studying a charismatic megafauna and a flagship of 
conservation, we have not only quantified and mapped the current 
suitable habitat and projections for this species under a warming 
climate and land use change scenarios, but also provided con‐
servation opportunities for a large number of other species that 

co‐occur under elephants’ umbrella. For example, our suitability 
maps and future projections can be effectively used to identify 
critical habitat areas that require immediate conservation atten‐
tion in order to minimize biodiversity loss through habitat degra‐
dation and loss. Further our fine‐scale maps at 1‐km2 resolution 
can be used by park managers and conservationists to identify and 
prioritize the conservation requirements of those critical habitat 
areas, for example, preservation of critical remnant patches and 
connective habitats (e.g., corridors) that are projected to be lost 
in the future.

Adding to our difficulties in conservation of biodiversity in this 
region is the changing climate, which is predicted to affect the sea‐
sonal monsoon system, leading to variation in local climates. Our 
comprehensive treatment of relevant climatic factors at the spatial 
resolution of 1 km2 enabled us to capture the variation in local cli‐
mates over a major land part of the South Asian monsoon domain 
and assess its influence on the current and future distribution of 
elephants in this region. The wide array of scenarios tested here 
revealed clear tendencies in the expected habitat changes and 
provides an understanding of how climate and human‐induced 
threats can influence the elephant distribution, critical prerequisite 
for the management of endangered species that will help mitigate 
potential threats. Habitat loss/degradation and range shift of the 
elephants in human‐dominated landscape will also cause increase 
in human–elephant conflict (Lamichhane et al., 2018). Our study 
also provides a first assessment on the effect of climate change 
on the distribution of the Asian elephant in its major habitats in 
India and Nepal, which could help other assessments over its entire 
range across South and South‐East Asia, and be useful for develop‐
ing management plans for wildlife conservation under the aegis of 
climate change.
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