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                              Estimation of bird distribution based on ring
re-encounters: precision and bias of the division 
coefficient and its relation to multi-state models  

     FRÄNZI     KORNER-NIEVERGELT    1,2*  ,     MICHAEL     SCHAUB    1,3,     KASPER     THORUP    4,     MICHAEL     VOCK    5
and     WOJCIECH     KANIA6    
    1   Swiss Ornithological Institute   ,     CH-6204 Sempach  ,   Switzerland    ,     2   oikostat – Statistical Analyses and 
Consulting   ,     Ausserdorf 43, CH-6218 Ettiswil  ,   Switzerland    ,     3   Division of Conservation Biology, Institute of 
Ecology and Evolution  ,   University of Bern   ,     Baltzerstrasse 6  ,   CH-3012 Bern  ,   Switzerland    ,     4   Zoological 
Museum  ,   University of Copenhagen   ,     Universitetsparken 15  ,   DK-2100 Copenhagen  ,   Denmark    ,     5   Institute of 
Mathematical Statistics and Actuarial Science  ,   University of Bern   ,     Sidlerstrasse 5  ,   CH-3012 Bern  ,   Switzerland     
and     6   Gdańsk Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences   , 
    Nadwiślańska 108, 80-680 Gdańsk 40  ,   Poland         

    Capsule  The division coefficient is an estimate of the proportion of ringed birds migrating to different 
destination areas taking into account area-specific re-encounter probabilities.  
     Aims  To explore precision and bias of the division coefficient method by a simulation study and to 
compare the approach with multi-state models.  
     Methods  In a simulation study true and estimated division coefficients were compared. The division 
coefficient method was mathematically compared with the multi-state model.  
     Results  The estimated division coefficients seemed to be unbiased if the assumptions were met. The 
precision decreased if the bird distribution became similar in both bird groups and when difference 
between area-specific re-encounter probabilities increased. A bootstrap method to assess precision is 
presented. The estimates from the division coefficient method equal the maximum likelihood estimates in 
a multi-state model including only one time interval.  
     Conclusion  Before applying the division coefficient method or a multi-state model to real data a 
simulation study should be conducted in order to explore the behaviour of parameter estimation. The 
division coefficient method with the bootstrap confidence intervals is an easy alternative to a multi-state 
model with one time interval when the bird distribution between destination areas (e.g. migratory 
connectivity) alone is of interest.  

  Making inferences from re-encounters of ringed birds 
about their migration patterns is difficult because of under-
lying spatio-temporal heterogeneity in re-encounter 
probabilities (Coulson 1966, Davis 1966, Snow 1966, 
Perdeck 1977, van Noordwijk 1995). Several different 
approaches have been developed to overcome this prob-
lem. Sometimes relative measurements are used, for exam-
ple, the proportion of a group of birds migrating to a 
specific area relative to a reference group, assuming that 
the probability of reporting ringed individuals from all 
groups is the same (Lokki & Saurola 1987, 2004, 
Siriwardena  et al . 2004, Kania 2006). Recently research 

has focussed on multi-state mark–recovery models 
(Brownie  et al . 1985, Schwarz 1993, Thorup & Conn 
2009) and state–space models (see review by Patterson  et al . 
[2007]) in order to disentangle re-encounter probability, 
survival and proportion of birds migrating to different 
destination areas. Specific software was developed for 
estimation of parameters in such models, for example, 
surviv (White 1992), mark (White & Burnham 1999) 
or m-surge (Choquet  et al . 2004).  
   Less attention has been given to the method proposed 
by Busse & Kania (1977) and Kania & Busse (1987), 
which separates the proportion of birds migrating to 
different destination areas from area-specific re-encounter 
probabilities, by estimating the  division coefficient  (Fig.  1 ). *Correspondence author. Email: fraenzi.korner@vogelwarte.ch
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Figure 1. Illustration of the division coefficient concept. An idealized example of the distribution of two groups of ringed birds on two 
destination areas. NG, number of ringed birds per group; pGT, proportion of birds of group G migrating to area T (division coefficient); rT, 
re-encounter probability (probability of recovery sensu lato) in area T; VGT, number of re-encounters of group G in area T; NG and VGT are 
observed data (not shaded); rT and pGT are unknown parameters (shaded grey) that can be estimated by the division coefficient method or by 
a multi-state model. Redrawn after Kania & Busse (1987).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
R
o
y
a
l
 
L
i
b
r
a
r
y
]
 
A
t
:
 
1
6
:
4
7
 
1
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



58   F. Korner-Nievergelt et al.

© 2010 British Trust for Ornithology, Bird Study,  57, 56–68

Although this approach is very intuitive and easier to 
apply than the aforementioned models, it has not become 
commonly used in re-encounter analyses, possibly because 
an estimator of uncertainty, such as standard error or a 
confidence interval, was not available.
   In this work we explore the performance of the 
division coefficient based on simulated data in order 
to assess the violation of the assumptions underlying 
the concept and the requirements needed for precise 
estimations. We then present a non-parametric boot-
strap method for obtaining confidence intervals. 
Finally, we show that the division coefficient is math-
ematically related to the multi-state model.  
   We use the term ‘re-encounter’ for recoveries of dead 
birds, live recaptures and re-sightings, as proposed by 
Thomson  et al.  (2009).    

  DIVISION COEFFICIENT CONCEPT 

 Combining ringing and re-encounter data of different 
groups of birds (for example, local populations, migra-
tion waves, sex classes, sometimes species), for which it 
can be assumed that they experience equal re-encounter 
probabilities in shared destinations or stopover areas, 
enables the estimation of those probabilities and the 
proportion of birds within each group migrating towards 
those areas. The proportion of birds from group G poten-
tially migrating (i.e. including birds that die before or 
during migration) towards destination T is called the 
division coefficient (Busse & Kania 1977, Kania & Busse 
1987) (Fig.  1 ). The term division coefficient is synony-
mous with the term migration rate used in the mark–
recapture framework.  
   In the division coefficient concept, the number of 
ringed birds  N G   per group G and the number of recov-
ered birds  V GT   of group G in destination area T are 
related in a system of linear equations. For an example 
of two groups and two destination areas (Fig.  1 ), such a 
system of equations is:

    Note that  r T   (re-encounter probability) is defined as 
the ratio of the number of birds re-encountered in the 
area T to the number of ringed birds belonging to the 
group migrating to the area T.  
   There exists one exact solution for  x̂   T   if the number 
of groups equals the number of destination areas, and a 
least square solution can be found if the number of 
groups exceeds the number of destination areas.   x̂  T   is 
not identifiable if the number of groups is lower than 
the number of re-encounter areas and if the division 
coefficients are equal between the groups (Busse & 
Kania 1977, also see later). The division coefficient 
can be estimated by the ratio

N V x V x

N V x V x
A B B

A A B

1 1 A 1

2 2 2 B

= +
= +

ˆ ˆ ( )
ˆ ˆ .

1

    We denote  x̂  and  r̂  as estimates of  x  and  r .  x T   is the 
number of birds ringed necessary for obtaining one 
re-encounter, i.e. the inverse of the re-encounter prob-
ability in area T:

x
rT
T

=
1

2. ( )

ˆ ˆ
( )p

V x
NGT
GT T=

G
3

    and the estimate of the re-encounter probability is

ˆ
ˆ

. ( )r
xT

T
=

1
4

      PRECISION AND BIAS OF DIVISION 
COEFFICIENT 

 In order to assess precision, bias and requirements of 
the division coefficient estimate, we simulated data 
based on different true division coefficients and re-
encounter probabilities. We considered two destina-
tion areas (A and B) and two groups of birds (1 and 
2). We chose three proportions in re-encounter prob-
abilities ( r A  / r B   = 1, 3 and 6 respectively): with  r A   = 
0.03 and  r B   = 0.03, 0.01 and 0.005. Within each 
proportion of re-encounter probability, numbers of re-
encounter data ( V 1A   , V 1B  ,  V 2A  ,  V 2B  ) were simulated 
based on different underlying division coefficients. 
The division coefficient for Group 2,  p 2A  , was set to 
0.5, 0.7 or 0.9 ( p 2B   was then 0.5, 0.3 or 0.1 respec-
tively), whereas for Group 1  p 1A   varied from 0 to 1 
with step 0.02. For each combination of true parame-
ters we simulated 5000 sets of data.  
   Data simulation was done in two steps: first, for each 
group G we simulated the number of birds migrating 
towards area A ( N GA  ) as binomially distributed with 
given division coefficients ( p GA  ). The number of birds 
migrating towards B was then obtained by subtracting 
 N GA   from  N G  :

N N p

N N N
GA G GA

GB G GA

~ ( )

– .

binom( ,  ) 5

=
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    Then the number of re-encounters for each group  G  
within A and B were randomly drawn with the re-
encounter probabilities  r A   and  r B  .

used. For instance, we divide birds into different migra-
tion waves or neighbouring local populations, rather 
than into different age classes, since survival is usually 
lower in first year birds than in adults and therefore the 
probability of re-encountering an individual within a 
given time interval is lower for juveniles than for 
adults. But care must be taken when combining data 
from different ringing schemes, because re-encounter 
probability can also depend on the address on the ring 
(Sales 1973). Secondly, the re-encounter probabilities 
and bird distribution should not change within the 
time of the study. Thirdly, the re-encounter probabili-
ties must be uniform within each destination area, 
requiring a careful selection of the destination areas. 
Factors producing spatial heterogeneity in re-encounter 
probability, such as hunting regimes, human cultural 
factors, human population density, education, income 
level or habitat have to be considered. Fourthly, all 
destination areas together should include the whole 
area where the ringed birds can migrate to, because 
Equation system 1 is based on the assumption that the 
division coefficients of each group sum to one. 
However, when we have at least two groups migrating 
exclusively to two known destination areas (A and B), 
it is possible to estimate the division coefficients for 
further groups consisting of birds migrating to A, B and 
C, whereas C can be an area without or nearly without 
re-encounters. In this case, the re-encounter probabili-
ties have to be estimated for those groups migrating 
exclusively to the areas A and B. Next this estimated 
re-encounter probability can be used for estimating the 
proportion of birds that migrate to area A and B for the 
further groups (division coefficients). Then subtracting 
these division coefficients from one gives the estima-
tion of the proportion of birds migrating to area C from 
these groups (Busse & Maksalon 1978).    

  APPLICATIONS 

 The method was developed to estimate proportions of 
birds from consecutive migration waves going to various 
wintering areas, for Chaffinches  Fringilla coelebs  (Kania 
1981) and used in a similar way for Song Thrushes  Turdus 
philomelos  (Busse & Maksalon 1978). The division coef-
ficient method is especially useful in analyses of ring re-
encounter data resulting from intensive ringing in places 
on the migratory route of populations that differ in their 
proportions of individuals migrating to various (neigh-
bouring) wintering grounds. Such conditions are met by 
many field stations in central Europe through which rela-
tively close-breeding north European populations pass 

V N r

V N r
GA GA A

GB GB B

~ ( )

~

binom( ,  )

binom( ,  ).

6

    The numbers of released birds of each group,  N  1  and 
 N  2 , were set to 15 000 each in every simulation.  
   For each simulated set of data we estimated the divi-
sion coefficients   p̂   1 A   and    p̂    2 A   and the re-encounter prob-
abilities    r̂   A   and  r̂   B   by solving Equation system 1 and 
using Equations 3 and 4. Then the means and the 0.025 
and 0.975 quantiles of the 5000 estimated division 
coefficients and re-encounter probabilities for each 
parameter constellation were calculated. The simula-
tions and estimations were done in R 2.6.1 (R 
Development Core Team 2007).  
   The simulations show that the estimates of division 
coefficient and re-encounter probabilities are accurate 
and precise if differences in true division coefficients 
between the two groups are large (Figs  2  &  3 ). The 
precision increases (narrower 95% range of estimates) 
and bias decreases with increasing difference in divi-
sion coefficient between the groups. If division coeffi-
cients of the groups are similar, the estimates are very 
sensitive to random variation in the data, and if the 
division coefficient is equal in both groups, the equa-
tion system is not solvable. Precision decreases and bias 
increases with increasing difference of the re-encounter 
probabilities between destination areas (Fig.  2 ).    

  FURTHER REQUIREMENTS AND ASSUMPTIONS 

 Beside a large difference in division coefficient between 
the groups, a large enough number of ringed and recov-
ered birds are required to get precise estimates. The 
bootstrap confidence intervals (see later) can be used 
as a guideline about how precisely the division coeffi-
cient can be estimated based on the data at hand.  
   However, there are further assumptions whose viola-
tion results in biased parameter estimates, and that are 
therefore more critical (see detailed discussion in Kania 
& Busse [1987]). They should be checked carefully 
before applying this method. First, different groups 
must have equal re-encounter probabilities ( r T  ) within 
destination areas, otherwise the estimated division 
coefficient can be biased (see Fig.  4  for an example). In 
practice this assumption is difficult to test, but is likely 
to be best fulfilled if ecologically similar groups are 
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Figure 2. Precision and bias of the estimated division coefficient p̂1A and  p̂  2A depending on the difference between true p1A and true p2A 
and the proportion of true re-encounter probability rA to rB. Bold lines, means of 5000 estimated division coefficients  p̂  1A and  p̂  2A; broken 
lines, 0.025 and 0.975 quantiles of these estimates; dotted lines, true values p1A and p2A; black, group 1; grey, group 2; true p2A is set to 
0.5, 0.7, or 0.9; true p1A varies from 0 to 1 (by step 0.02). Results are shown for three different ratios for re-encounter probabilities. When 
no bias is present the estimated  p̂  1A lie around a straight diagonal line and estimated  p̂  2A around a horizontal line at the height of true p2A.

(Petryna 1976, Busse & Maksalon 1978, Kania 1981, 
Busse 2001, Remisiewicz 2001, 2003).  
   The approach can also be used for comparing breed-
ing populations wintering in different proportions in 
distinct parts within the wintering grounds, e.g. for 

European Storm Petrels  Hydrobates pelagicus  wintering 
along the western coasts of Africa (Fowler 2002). 
Similarly, the division coefficient method can also be 
used to compare the breeding distribution of birds 
ringed on wintering grounds.  
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Figure 3. Precision and bias of the estimated re-encounter probabilities  r̂  A and  r̂ B depending on the difference between true p1A and true p2A 
and the proportion of true re-encounter probability rA to rB. Bold lines, means of 5000 estimated re-encounter probabilities  r̂ A and  r̂ B; broken 
lines, 0.025 and 0.975 quantiles of these estimates; dotted lines, true values rA and rB; grey, destination area A; black, destination area B; 
true p2A is set to 0.5, 0.7, or 0.9; true p1A varies from 0 to 1 (by step 0.02). Results are shown for three different ratios for re-encounter 
probabilities. Unbiased estimates lie around horizontal lines at the height of their true values.

   Differences in wintering areas between sexes can also 
be analysed, if it can be assumed that their mortality 
between ringing and destination areas are similar and 
their re-encounter probability equal. Such require-
ments might be met, for example, in some passerines 
and waders with low dimorphism.    

  COMMONALITY OF DIVISION COEFFICIENTS 
AND MULTI-STATE MODELS 

 The division coefficient can be seen as a synonym for 
the migration (transition) rate in a multi-state mark–
recovery model as proposed by Schwarz (1993) or 
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Figure 4. Estimates of division coefficients  p̂  1A and  p̂  2A (bold lines) compared with true values p1A and p2A (dotted lines) for simulated data 
sets for which the assumption of equal re-encounter probability in both bird groups is violated. These data sets were simulated releasing 
60 000 virtual birds in each group. Number of re-encounters per group and destination area were simulated using a true division coefficient 
for group 1 p1A varying from 0 to 1 with step 0.02 and for group 2 p2A = 0.7, and using group dependent re-encounter probabilities (r1 = 
0.03, r2 = 0.01) instead of area-dependent re-encounter probabilities as for Figs. 2 and 3. Then, estimated division coefficients  p̂  1A and  p̂  2A 
were calculated (thereby assuming equal re-encounter probabilities between the groups).

Thorup & Conn (2009). However, in multi-state mod-
els migration rates normally include movements of 
birds within short time intervals, whereas the division 
coefficient measures the cumulated movements over a 
long time period, i.e. bird distribution rather than bird 

movement. If many short time intervals are included in 
a multi-state model, survival can be estimated in addi-
tion. It is also possible to construct a multi-state model 
for one long time period instead of many small time 
intervals, so that the division coefficient equals the 
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migration rate. Then, survival is confounded with re-
encounter probability. In such a model, the expected 
number of re-encounters per group and destination area 
is modelled as a product: E( V GT  ) =  N G  p GT  r T  . For an 
example with two groups G and two destination areas 
T we have the following relationships making use of 
the constraint  p GA   +  p GB   = 1:

Here we calculate non-parametric bootstrap confidence 
intervals for the example given in Fig.  1 . Random sam-
ples with replacement have to be drawn from all ringed 
birds (pooled for both groups). This is done  K  = 5000 
times. For each bootstrap sample, the number of birds 
per group  N boot  Gk   for  k  in 1, …,  K  and the number of 
re-encounters in each destination area  V boot  GTk   has to 
be counted, and the estimated division coefficients for 
both groups  p̂ boot  GTk   calculated by solving Equation sys-
tem 1. From the distribution of  p̂   boot    GTk   the 0.025 and 
0.975 quantiles give the limits of the 95% confidence 
intervals. Because, in some cases, estimated division 
coefficients can become below 0 or above 1, which are 
meaningless values, such values are set to 0 or 1 respec-
tively. Therefore, the median instead of the mean of 
 p̂   boot

    GTk   is used as a bootstrap estimate. The syntax for 
calculating the bootstrap confidence intervals in R is 
given in Appendix  2 .  
   The bootstrap estimates of the division coefficients 
and their 95% confidence intervals for the example 
given in Fig.  1  were    p̂1A  = 0.51 (0, 0.83) and    p̂2A  = 0.20 
(0, 0.39). In this case, the uncertainty of the estimates 
is relatively high, which is most likely due to the large 
difference in re-encounter probability (factor 10) 
between area A and B, combined with a moderate dif-
ference in division coefficient between the groups.    

  DISCUSSION 

 We showed mathematically that the division coefficient 
is the maximum likelihood estimate of a multi-state 
model if applied to one long time period instead of many 
short time intervals. This suggests that, in both methods, 
similar requirements have to be met in order to get 
precise estimates. For getting precise and unbiased esti-
mates, in both methods, a large difference in division 
coefficient/migration rate between groups and no differ-
ence between groups in re-encounter probabilities must 
be present in the data. The former requirement is more 
important if differences in re-encounter probabilities 
between the areas are large. In multi-state models para-
meters might not be estimable due to the specific 
structure of the data, even if the model is intrinsically 
identifiable (Catchpole  et al . 2001, Brooks  et al . 2002, 
Schaub  et al . 2004, Schaub 2009). In the simulations 
presented here, we described such data structures for 
which parameter estimations in the division coefficient 
method failed. Because of the mathematical equivalency 
of the division coefficient and the simple multi-state 
model, parameter estimation in multi-state models will 
behave similarly in relation to data structure.  
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    For estimates of the migration rates and re-encounter 
probabilities we require that these equations hold for 
the observed instead of the expected values:

V N p r

V N p r
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V N p r

A A A

B A B

A A A

B A B

1 1 1

1 1 1

2 2 2

2 2 2

8

1

1

=

=

=

=

ˆ ˆ ( )

( – ˆ )ˆ
ˆ ˆ

( – ˆ )ˆ .

    Now, if  V GT   in Equation system 1 are replaced by 
Equation system 8, and the system solved for  x̂ T  , we get 

          ˆ
ˆ

x
rT
T

= 1 , which is the interpretation of  x̂ T   in the divi-

sion coefficient concept after Kania & Busse (1987). 
Indeed, it can be shown that the maximum likelihood 
solution for migration rate and re-encounter probabil-
ity in the multi-state model is equal to the solution of 
Equation system 1 proposed by Kania & Busse (1987), 
if the number of groups and the number of areas is the 
same and if certain technical assumptions are satisfied 
(Appendix  1 , see also Davidson & Solomon [1974] for 
a more general discussion about the relation of the 
method of moments and the method of maximum like-
lihood). Therefore, the division coefficient proposed by 
Busse & Kania (1977) is equivalent to the migration 
rate estimated by a multi-state model in these cases.    

  BOOTSTRAP CONFIDENCE INTERVALS FOR THE 
DIVISION COEFFICIENT 

 Bootstrapping is an appropriate method to assess the 
sensitivity to random variation of the estimated divi-
sion coefficient. It allows for receiving uncertainty 
measurements such as standard errors and confidence 
intervals (Simon 1997, Carpenter & Bithell 2000). 
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   We showed that the parameter estimates obtained by 
the division coefficient method are also the maximum 
likelihood estimates of a multi-state model if the num-
ber of bird groups and the number of re-encounter areas 
are higher than two, given that these two numbers are 
equal (Appendix  1 ). It remains to be investigated 
whether the two methods are equivalent when the 
number of bird groups exceeds the number of re-en-
counter areas. Furthermore, we showed that the 
precision of the estimated division coefficients is low 
when their true values are similar between the two bird 
groups. We do not know how this rule is generalized to 
a case with more than two bird groups. For such cases it 
is valuable to conduct simulation studies, as presented 
here, in order to explore the behaviour of parameter 
estimation.  
   The similarity between the division coefficient 
method and the multi-state model leads to the question 
as to when to choose which method. Multi-state models 
are used to describe the dynamics of movements. They 
allow the investigation of how many birds move between 
different areas per time interval. In contrast, the division 
coefficient is a description of a (static) bird distribution 
and thus can be a tool for describing migratory connec-
tivity as defined by Webster  et al.  (2002). Multi-state 
models are more flexible. They allow the estimation of 
migration rates as well as survival rates over several time 
periods, time dependency of the parameters can be 
explored and covariates included in the model. However, 
when using a multi-state model ornithologists need to be 
familiar with the theory in statistical modelling, and 
they need to know how to use specific software (e.g., 
mark). In contrast, the division coefficient method is 
easier to understand and apply because only a simple 
equation system needs to be solved. It would be valuable 
to compare the performance of both methods if applied 
to real data examples.  
   Here, we showed that the division coefficient 
method with the bootstrap confidence intervals can be 
used instead of a multi-state model if the bird distribu-
tion between destination areas (e.g. migratory connec-
tivity) alone is of interest.  
   An R-function to calculate the division coefficient 
with the bootstrap interval is provided at http://www.
vogelwarte.ch/home.php?lang=e&cap=projekte&
subcap=vogelzug.    
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 APPENDIX 1     

  Mathematical evidence that the maximum likelihood 
solution for the migration rates and re-encounter prob-
abilities in a multi-state model is equal to the solution 
of the division coefficient concept if the number of 
groups equals the number of destination areas.  
   We determine the maximum likelihood estimates for 
the parameters of a multi-state model with  n  groups 
and  n  destination areas, where

            

V V V N VG Gn G GT
T

n

G1 2
1

, , , , –�

�

�

  are multinomially distributed with  N G   observations 
(i.e. number of ringed and released birds per group) and 
probabilities
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n
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  within each group  G  ∈  1,…,  n  (i.e. the probabilities 
that a bird of group G is migrating to and is recovered 
in destination areas T = 1,…, n ). The counts for differ-
ent groups are assumed to be independent.  
   Our aim is to show that these maximum likelihood 
estimates are equal to the estimates resulting from the 
division coefficient method. We assume that all counts 

 V GT   are positive and also that N VG GT
T

n

– >
=

∑ 0
1

           (i.e. 

from every group, some birds are not recovered). We 
also have to assume that the maximum likelihood esti-
mates satisfy    p̂ GT     r̂ T   > 0.  
   We write  q GT   =  p GT   r T   for the multinomial probabili-
ties in the above model. The likelihood function for 
the multi-state model is
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  If we are able to find values   q̂  GT   =    p̂ GT     r̂ T   that maximize 
the likelihood  L G   for each group separately, then these 
values will also maximize the full likelihood  L . In order 
to maximize  L G  , we consider its logarithm,
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  and set all its partial derivatives to zero:
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  (Generally, these are only necessary conditions for a 
maximum. However, since the matrix of the second 
partial derivatives is negative, as long as all observed 
counts are positive, these equations do yield a maxi-
mum in our case.)  
   Therefore, the maximum likelihood estimates   q̂  GT   
are given by
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  which simplifies to
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  These conditions for the maximum likelihood parameter 
estimates in every group  G  ∈  1,…,  n  are fulfilled by the 
estimates resulting from the division coefficient method, 
since for these estimators, according to Equations 3 and 4,

            

ˆ ˆ
ˆ

ˆ
,

{ , , }, { , , }.

p r
V x

N x
V
N

G n T n

GT T
GT T

G T

GT

G
� � �

� � �

1

1 1� �

  Therefore, the division coefficient estimates maximize 
the likelihood  L  of the multi-state model.  
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 APPENDIX 2     

  Example R-syntax for calculating bootstrap confidence intervals of the division coefficient for the data given in 
Kania & Busse (1987) and Fig.  1  in this study. An R-function to calculate the division coefficient and its bootstrap 
interval for cases with more groups than destination areas is provided at http://www.vogelwarte.ch/home.php?lang=
e&cap=projekte&subcap=vogelzug.  

  ########################################################################  
  # R-Code for calculating bootstrap confidence intervals  
  # of the division coefficient for the case with two bird groups (1, 2) and  
  # two re-encounter areas (A, B)  
  #  
  # R-Code developed for R 2.6.1, March 2008  
  # The software R can be downloaded and installed from    www.r-project.org   
  #  
  # Insert number of ringed and recovered birds in the first three  
  # lines of the code. Then, copy and paste the whole code into  
  # the R-console. The procedure will need several minutes.  
  #########################################################################  

  # Insert the observed number of ringed and recovered birds per group here:  
  N<-c(10000, 15000)      # number of ringed birds of group 1 and 2  
  VA<-c(100, 60)       # number of birds recovered in A per group 1
            and 2  
  VB<-c(10, 24)       # number of birds recovered in B per group 1
            and 2  

  nx<-matrix(c(VA,VB), ncol=2)  
  x.hat.obs<-solve(nx, N)  
  1/x.hat        # estimated re-encounter rates in A and B  
  div.coef.hat.obs<-x.hat.obs[1]*VA/N    # division coefficients    p̂  GA    
  div.coef.hat.obs       # print observed division coefficients  

  # create data with one row for each individual  
  dat<-data.frame(group=c(rep(1, N[1]), rep(2, N[2])),  
  rec=c(rep(0, N[1]-VA[1]-VB[1]), rep("A", VA[1]), rep("B", VB[1]), rep(0, N[2]-VA[2]-VB[2]),
rep("A", VA[2]), rep("B", VB[2])))  

  # start bootstrapping  
  K<-5000       # number of replicates  
  div.coef.hat<-data.frame(p1=numeric(K), p2=numeric(K))  
  for(k in 1:R){  
    dat.boot<-dat[sample(1:dim(dat)[1], replace=TRUE),]  # sample  

    N.boot<-table(dat.boot$group)    # count     N
Gk

boot

    VA.boot<-table(dat.boot$group[dat.boot$rec=="A"]) # count     V
GAk

boot

    VB.boot<-table(dat.boot$group[dat.boot$rec=="B"]) # count V
GBk

boot      
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    nx<-matrix(c(VA.boot,VB.boot), ncol=2)  
    x.hat<-solve(nx, N.boot)     # solve equation system  
    div.coef.hat[k,]<-x.hat[1]*VA.boot/N.boot # division coef.      p̂   boot  GAk   
     }  
  div.coef.hat$p1[div.coef$p1<0]<-0    # set values below 0 to 0  
  div.coef.hat$p2[div.coef$p2<0]<-0  
  div.coef.hat$p1[div.coef$p1>1]<-1    # set values above 1 to 1  
  div.coef.hat$p2[div.coef$p2>1]<-1  
  median(div.coef.hat$p1)      # bootstrap estimates of  p  1 A    
  median(div.coef.hat$p2)      # bootstrap estimates of  p  2 A    
  quantile(div.coef.hat$p1, c(0.025, 0.975)) # 95% confidence interval for  p  1 A    
  quantile(div.coef.hat$p2, c(0.025, 0.975)) # 95% confidence interval for  p  2 A    
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