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The early Palaeozoic Era records the initial biodiversification of the
Phanerozoic. The increase in biodiversity involved drastic changes in taxon
longevity, and in rates of origination and extinction. Here, we calculate these
variables in unprecedented temporal resolution. We find that highly volatile
origination and extinction rates are associated with short genus longevities
during the Cambrian Period. During the Ordovician and Silurian periods,
evolutionary rates were less volatile and genera persisted for increasingly
longer intervals. The 90%-genus life expectancy doubled from 5 Myr in the
late Cambrian to more than 10 Myr in the Ordovician–Silurian periods.
Intervals with widespread ecosystem disruption are associated with short
genus longevities during the Cambrian and with exceptionally high longev-
ities during the Ordovician and Silurian periods. The post-Cambrian
increase in persistence of genera, therefore, indicates an elevated ability of
the changing early Palaeozoic marine ecosystems to sustainably maintain
existing genera. This is evidence of a new level of ecosystem resilience which
evolved during the Ordovician Period.
1. Introduction
The spectacular early Palaeozoic rise in taxonomic richness of marine ecosystems
continues to be a focus point of palaeobiological research [1–8]. It featured
two distinct events of accelerated biodiversity accumulation, namely the
Cambrian explosion (CE) and the Great Ordovician Biodiversification Event
(GOBE). In addition, it contained a number of major crises during the Late
Ordovician mass extinctions (LOME) [8].

A growing body of evidence suggests that the timing and intensity of the early
Palaeozoic biodiversity accumulation was associated with changes in global
temperature and oxygen levels [8–13]. However, the mechanisms linking, e.g.
change in habitat space [12,14], spread of oxygen minimum zones [15,16], and
extent of primary production [17,18] with biodiversity remain elusive [19].

Global biodiversity accumulation results from a combined process of orig-
ination and extinction of taxa, or viewed from a different perspective, it builds
as a function of longevity of newly originating taxa. Hence, knowledge on
taxon longevity and origination/extinction rates is essential to make inferences
about the mechanisms of biodiversity accumulation. Many studies on evolution-
ary rates exist at the Phanerozoic and Palaeozoic scale and at the family and genus
level (e.g. [4,20–28]). Longevity and survivorship rates have previously also been
the focus of interest (e.g. [29–31]).

Rates of origination and extinction ultimately determine the probability of a
taxon (here, a genus) to survive until a time t [29,30]. This relationship should not
lead to the conclusion that analyses of longevity and evolutionary rates are redun-
dant. Evolutionary rates inform about the volatility of the evolutionary change at a

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.1634&domain=pdf&date_stamp=2019-08-28
mailto:bjorn.kroger@helsinki.fi
https://dx.doi.org/10.6084/m9.figshare.c.4614227
https://dx.doi.org/10.6084/m9.figshare.c.4614227
http://orcid.org/
http://orcid.org/0000-0002-2427-2364
http://orcid.org/0000-0002-7909-1800
http://orcid.org/0000-0003-2982-9931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:2019

2
given time interval, but they are agnostic about the specific com-
position of the rates of the individual genera and their life
history. Identical evolutionary rates can be produced by orig-
inations and extinctions of long-living and short-living genera.
Extinctions can preferably affect genera that persisted for a
long time or, by contrast, genera that originated shortly before.
Conversely, originations may result in long-lasting genera or
short-living genera. The ecological mechanisms behind these
different scenarios differ drastically and periods of ecosystem
disturbance or resilience may remain unnoticed when only
described by evolutionary rates.

Here, we present new estimates of rates of origination and
extinction at the genus level with an unprecedented temporal
resolution, based on a time binning established in Rasmussen
et al. [8]. Additionally, we present for the first time per time bin
estimates of longevity, taxon age, and taxon life expectancy of
early Palaeozoic marine genera. Our results allow for a differen-
tiation between taxonomic turnover and genus persistence, that
again enables an evaluation of time-specific ecosystem resilience
(i.e. the ability of a system to absorb changes and still persist,
sensu Holling, [32]) as a factor of biodiversity accumulation.
1634
2. Methods
We based our calculations on a sum of 173 293 genus-level
Cambrian to Silurian fossil occurrences downloaded from the
Paleobiology Database (PBDB, https://paleobiodb.org/#/, down-
load 30 January 2019) and an additional download of 545 449
post-Silurian genus level occurrences from the PBDB (download
02 February 2019). The occurrences were binned into 53
Cambrian–Silurian time intervals with an average duration of
2.3 Myr following [8] and into post-Silurian stage intervals using
the binning scheme of the PBDB (https://paleobiodb.org/data1.
2/intervals/list.txt?scale=1, accessed 6 July 2019). Details of the
data filtering and methodology of time binning and biodiversity
calculations have been published in [8]. We estimated genus
richness based on the capture-recapture model (CR) approaches
[33,34] by fitting the Jolly–Seber model following the POPAN
formulation [35]. We calculated relative diversification rates
by dividing the richness difference between a time bin and its
previous time bin with the richness of the respective time bin
((ngen(t)−ngen(t−1))/ngen(t)). With ngen being the number of genera, t
being the time bin of interest, and t− 1 being the previous time bin.

Additionally, we estimated survival and seniority probabilities
based on the CR-approach using the Pradel model [36], which
were transformed into extinction and origination rates, following
the transformation from probabilities into rates described in [37].
The method estimates survival, seniority, and sampling probabil-
ities, which we turn into rates, to account for uneven sampling
intervals (see electronic supplementary material, and [34] for
details of the method). For comparison of our CR-modelling
results with more conventional rate estimations, we calculated
origination and extinction rates with the turnover rate metric of
Alroy [38] as implemented in the R-package divDyn [39] (see
electronic supplementary material).

We estimated genus age, genus life expectancy, and genus
longevity indirectly by calculating forward and backward survi-
vorships of cohorts of genera occurring in each time bin. The
duration needed to reach the full diversity of genera occurring in
each time bin is our measure of backward survivorship (lbw) and
can be read as a measure of genus age. The subsequent lifetime
of the set of genera occurring in a time bin, is our measure of for-
ward survivorship (lfw) and can be read as a measure of life
expectancy. Long-life expectancies of genera indicate a long per-
sistence of the ecological relationships established among these
genera. Hence, we interpreted lfw as an indicator of ecosystem
resilience (where resilience determines the persistence of relation-
ships [32]). The backward survivorship can be read as a measure
for the age structure of the genera of a time bin and reflects the his-
tory of the ecosystems. The sum of lbw and lfw is our overall
longevity (lo), which is a wrapper representing the past and the
future of the genera that existed during each time bin.

Our longevity calculations are based on CR-modelled rich-
ness curves of the cohorts of genera occurring in each time bin
of interest (ti). In this calculation, a 100% richness always
occurs in ti and the modelled richness always increases in time
bins (ti−n) preceding ti and decreases in the time bins (ti+n) pos-
terior to ti. We determined the antecedent and posterior time
bins containing 50%, 70%, and 90% ti-richness levels and calcu-
lated lbw and lfw as the maximum time ranging from ti towards
these time bins.

The complete algorithm and relevant results are recorded
in R-code and can be downloaded at https://doi.org/10.5281/
zenodo.3365505.
3. Results
(a) Origination and extinction rates
Our estimated origination and extinction rates reveal basic
differences betweenCambrian andpost-Cambrian evolutionary
dynamics (figure 1c). The Cambrian rates are on average much
higher than the post-Cambrian rates. Fluctuations of rates
between time bins are much greater in the Cambrian Period.
The generally decreasing Cambro–Ordovician rates trend was
known already from curves with lower stratigraphic resolution
[4,25–27]. Additionally, data from trilobites evidenced distinct
differences in survivorships between Cambrian andOrdovician
cohorts [30]. Our results show that this trilobite survivor-
ship change reflects a more general pattern and that there is
a strong change at the Cambro–Ordovician boundary. The
significance of the trend change can partially also be demon-
strated with a time series changepoint analysis, where a single
changepoint of the origination rate time series occurs at the
Cambro–Ordovician boundary (electronic supplementary
material, figure S1).

Notably, the originationand extinction rates calculatedwith
Alroy’s [38] turnover rate metric show a less rapid but more
continuous decrease at the Cambro–Ordovician boundary
and continued to drop until the beginning of theMiddle Ordo-
vician (electronic supplementarymaterial, figure S2), similar to,
e.g. in Bambach et al. [26]. Bambach’s [26] estimations and
Alroy’s [38] turnover metric result in instantaneous rates that
do not account for the length of the time bins. The high esti-
mates in the earliest Ordovician time bins in Alroy’s and
Bambach0s calculations are therefore probably an effect of the
poorly constrained timing of these intervals. The relatively
long Early Ordovician time bins thus contain a comparatively
high number of short-ranging taxa (see below).

Exceptional Cambrian events are the peak origination rates
at the late Terreneuvian, earlyMiaolingian, and early Furongian
epochs. Conversely, Cambrian extinction rates peak during the
middle Series 2, the late Miaolingian, and early Furongian
epochs, reflecting the Botomian [40] and Marjuman extinctions
[41].During the succeedingOrdovician Period, origination rates
peaked at the Dapingian–Darriwilian boundary, and extinction
rates reached maximum values at the Katian–Hirnantian
boundary, reflecting the LOME [42]. Lastly, Silurian extinction
rates peaked at the Homerian–Gorstian boundary towards the
end of that period. This reflects the Mulde event [43]. The
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Figure 1. Early Palaeozoic curves of (a) per time bin genus level richness (adapted from [8]), (b) genus level relative diversification rate, (c) genus level extinction
and origination rates (r.), and (d ) duration of the forward (lfw) and backward (lbw) survivorship of 50%, 70%, and 90% of the cohort of genera of each time bin.
(a), (c), and (d ) are estimated with CR-modelling. Vertical bars indicate 95% confidence intervals. Note major changes in (a), (c), and (d ) during the Furongian–
Tremadocian interval. I-IX, designate numbered geo-historical intervals of distinct survivorship trends. Ae, Aeronian; CE, Cambrian Explosion; D., Devonian; Dp,
Dapingian; Dw, Darriwilian; Fl, Floian; Fu, Furongian; Go, Gorstian; GOBE; Great Ordovician Biodiversification Event; Hi, Hirnantian; Ho, Homerian; Ka, Katian; Lo,
Lochkovian; LOME; Late Ordovician Mass Extinctions; Lu, Ludfordian; Mia, Miaolingian; Pr, Pridolian; Rh, Rhuddanian; Sb, Sandbian; Se2, Cambrian Series 2; Sh,
Sheinwoodian; Te, Terreneuvian; Tl, Telychian; Tr, Tremadocian.
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observedevents here are robust and standout in the calculations
resulting from the CR-modelling and from Alroy’s [38]
approach (figure 1c; electronic supplement material, figure S2).
(b) Genus survivorships and longevities
The temporal variation of lbw and lfw is expressed in a geo-
historical succession of eight distinct intervals (figure 1d ),
which are best described as follows: the first (I) interval is
characterized by increasing lbw and decreasing lfw, reflecting
the initial low diversity phase of the Terreneuvian Epoch
with the appearance and slow accumulation of more and
more new genera. The second (II) interval represents the CE
with the rapid appearance of new genera causing lbw to
decrease. In the third (III) interval, which lasted until the
mid-Furongian Epoch, lbw and lfw remained low at values
of, on average, 4–5 Myr. High taxonomic turnover during
this time indicates rapid evolutionary change. In the fourth
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(IV) interval, which spans the late Furongian Epoch to middle
Floian Age, lbw and lfw initially increased and remained at
intermediate levels. Hence, during this time more genera per-
sisted for longer and had higher chances to survive for longer
times in the future. The overall post-Terreneuvian peak of lfw
was reached during the Dapingian Age with more than
21 Myr of 90% life durations, during the fifth (V) interval.
The end of the fifth interval marks the beginning of the
GOBE. Peak diversification was reached at the beginning of
the sixth (VI) interval during the early Darriwilian Age and
was paralleled with a decreasing lfw. In the sixth interval,
which ranges until the late Katian Age, lfw decreased while
lbw increased. Hence, more and more genera occurred with
long antecedent life histories, but at the same time the pro-
spect for their future survival decreased. This is clearly an
effect of the seventh (VII) interval which lasted from the
latest Katian towards the early Rhuddanian Age and which
represents the LOME and its direct aftermath. As a conse-
quence of the extinctions, the age structure of the occurring
genera was strongly altered and the lbw was at its early
Palaeozoic peak in the next interval (VIII) (Rhuddanian–
Sheinwoodian ages). A trend of increasing lbw and decreasing
lfw during this interval indicates recovery and the appearance
of more and more new genera.
4. Discussion
(a) Periods of early Palaeozoic biodiversity accumulation
The synoptic comparison of evolutionary rates, survivorships,
and longevity curves allows a periodization of the early Palaeo-
zoic time into a number of intervals characterized by specific
evolutionary dynamics. These intervals can be related to the
known changes of the biodiversity curve and to the changes
in global temperature and oxygen levels. The resulting picture
of such a comparison reveals an evolutionary history that
began with a relatively stable interval with low evolutionary
rates, high genus survivorships, and low diversities (figure 1d,
interval I). This relatively stable situation quickly escalatedwith
the rapid appearance of skeletal lophotrochozoans, ecdysozo-
ans, as well as sponge and archaeocyathid reefs and with a
climax of the CE during the latest Terreneuvian and Cambrian
Epoch 2 [44–46]. The remainder of the Cambrianwas character-
ized bya high volatility of the evolutionary rates, extremely low
genus survivorships, and a biodiversity accumulation with a
rising trend towards the Ordovician (figure 1d, interval III).
Our analysis thus portrays the late middle–late Cambrian as a
highly dynamic period with low ecosystem resilience and this
is concurrent with a growing body of evidence that the post-
CE Cambrian age was a time with recurrent expansions of
oxygen minimum zones across the shallow shelf and corre-
spondent habitat disruptions [15,16,47,48].

The terminal Cambrian and the beginning of the
Ordovician periods mark another phase in the evolutionary
dynamics of the early Palaeozoic that lasted until the end
of the Floian Age (figure 1d, intervals IV–V), which was
characterized by lowered evolutionary rates, increasing genus
survivorships, and a stable level in biodiversity accumulation.
This interval coincides with the global expansion and bio-
diversification of planktic primary producers and with the
first appearance of planktic graptolites and cephalopods
(the ‘plankton revolution’ [17]).
The Middle Ordovician time records the main phase of the
GOBE with a massive increase in biodiversity accumulation
during the Darriwilian Age [8]. Notably, the GOBE peak diver-
sification is preceded by a drastic increase of the forward
survivorship rates of genera during the Dapingian Age. This
means that Dapingian genera that survived into the Darriwi-
lian had exceptionally high chances to further persist several
Myr into the Late Ordovician. Hence, the exceptionally long-
life expectancy of Dapingian genera is best explained as an
ex-post effect of the GOBE. Similarly, the decreasing life expect-
ancy from the Dapingian Age onward until the end of the
Ordovician Period is an ex-post effect of the LOME. Middle
and Late Ordovician genera, successively were doomed to
extinction during the LOME. During the LOME genera with
short precedent life histories went preferentially extinct. This
is consistent with the finding that it was particularly the bra-
chiopod genera with limited geographical ranges that went
extinct [49] and that predominantly rare graptolite genera
were hit already early on during the LOME [50].

At the same time, genera newly evolving and surviving
during the LOME (interval VII, figure 1d ) had higher chances
to survive for longer. This is thewell-known effect of increased
life expectancies of genera occurring and originating during
and immediately after mass extinctions [51,52]. Previous
studies and models show that genera surviving or originating
during mass extinctions tend to have a temporal advance to
accumulate species [52]. As a consequence, extinctions acted
as a filter for long-living genera, causing an early Palaeozoic
genus longevity maximum during the Early Silurian Period.
Only with the subsequent origination of new short-living
Silurian genera during the post-LOME recovery, the genus
longevity levels returned to pre-LOME values.

(b) Mechanisms of early Palaeozoic biodiversity
accumulation

The existence of an early Palaeozoic maximum in life expect-
ancy (lfw) just before the onset of GOBE is important evidence
for the mechanisms behind biodiversity accumulation during
this time: the GOBE coincides with an Ordovician peak in
origination rates, but not with exceptionally low extinction
rates (figure 1c). The exceptionally high life expectancy of
Dapingian–early Darriwilian genera, therefore, cannot be
explained by lowered extinction rates but as an effect of
increasingly long lives of genera that did not go extinct.
Dapingian–early Darriwilian genera, which persisted, did
so for exceptionally long time intervals. Importantly, the
Early Ordovician trend of increasing lfw is succeeded by a
Middle–Late Ordovician trend of increasing lbw, resulting in
a massive rise in lo across the entire Ordovician. This means
that, despite the environmental perturbations during the
LOME, the combined life expectancy and the age structure
of genera increased significantly.

The second important conclusion that can be drawn from
the pre-GOBE lfw peak is that the maximum life expectancy
was not exclusively caused by ‘GOBE-specific’ novel genera,
but also by genera that existed well before the GOBE during
the Floian and Dapingian ages. The prolonged life expectancy
was not an effect of specific novel genera but an effect of an
increased ability of the GOBE ecosystems to sustainably
maintain existing genera.

This suggests mechanisms of ecosystem evolution
during most of the Ordovician Period, where existing
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genera became increasingly successfully integrated under
novel ecological conditions such as different temperature
and oxygenation regimes while new genera appeared con-
stantly. One example of such an integrative mode of
ecosystem evolution is the Ordovician diversification of
bryozoan, coral, and stromatoporoid reefs. These clades
existed as minor components in tropical shallow-water habi-
tats from the Tremadocian Age, but collectively diversified
and became dominant reef builders under cooling climatic
conditions during the Middle Ordovician [12,53]. Once estab-
lished, these reef builders persisted throughout the early
Palaeozoic and survived even massive perturbations, such
as the LOME [54].

Here, a basic difference between the Cambrian and Ordovi-
cian evolutionary dynamics becomes apparent. Cambrian
conditions, such as poor oxygenation and high global tempera-
tures are considered to bemajor factors of ecosystemdisruptions
that caused origination and extinction rates to fluctuate and
genus persistence in ecosystems to decrease, e.g. [47,48]. By con-
trast, climatically induced global disruptions of the marine
ecosystems during the LOME (e.g. [55,56]), had the opposite
effect on genus persistence. During the latest Ordovician,
genus longevities continued to rise even under drastically
reduced biodiversity (figure 1). This basic difference is evidence
of a new level of ecosystem resilience that evolved during the
Ordovician. It is tempting to suggest that the Early Ordovician
revolution in plankton with a first establishment of diverse
and stable pelagic food chains that involved common macro-
predators, such as cephalopods, was an important step towards
these new levels. Stable pelagic food webs affected, e.g. larval
dispersal and spatial taxon ranges, which in turn potentially
affected the taxon longevity.

One general conclusion can be drawn from these
geo-historically more specific interpretations: generic life
expectancies during the Palaeozoic were highest during
time intervals directly preceding diversifications and early
during diversification peaks. The diversifications affected
novel and established genera likewise by increasing their
average life expectancies. Therefore, processes that led to
increased levels of ecosystem resilience were major factors
of marine biodiversity accumulation of the Palaeozoic.
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