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Abstract

Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine-grained thermal variabil-

ity over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such var-

iability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted

to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km

wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first

combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and

globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature

conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed:

(1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically
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and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spa-

tial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assem-

blages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July,

August). Growing-season CiT range within 1-km2 units peaked at 60–65°N and increased with terrain roughness,

averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Com-

plex interactions between topography-related variables and latitude explained 35% of variation in growing-season

CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-sea-

son CiT within 100-km2 units was, on average, 1.8 times greater (0.32 °C km�1) than spatial turnover in growing-sea-

son GiT (0.18 °C km�1). We conclude that thermal variability within 1-km2 units strongly increases local spatial

buffering of future climate warming across Northern Europe, even in the flattest terrains.

Keywords: climate change, climatic heterogeneity, community-inferred temperature, Ellenberg indicator value, plant commu-

nity, spatial heterogeneity, spatial scale, temperature, topoclimate, topography

Received 27 November 2012; revised version received 27 November 2012 and accepted 14 December 2012

Introduction

Climate warming is a major threat to Earth’s biodiver-

sity (Fischlin et al., 2007; Rosenzweig et al., 2007). Sev-

eral models using the IPCC climate-change scenarios to

forecast impacts on biodiversity predict that many

organisms risk extinction within the next century (Tho-

mas et al., 2004; Thuiller et al., 2005). However, these

models were computed at a coarse spatial resolution

(�1 km2) and fail to capture spatial variability in tem-

perature over tens or hundreds of metres (Rae et al.,

2006; Fridley, 2009; Randin et al., 2009; Ackerly et al.,

2010; Fridley et al., 2011; Scherrer & K€orner, 2011).

Caution is therefore required in interpreting extinction

predictions from these coarse-resolution models (Arm-

bruster et al., 2007; Willis & Bhagwat, 2009; Hof et al.,

2011; Schwartz, 2012).

Spatial variability in temperature at scales of as little

as tens or hundreds of metres can potentially constitute

an important buffer in ecosystem response to climate

change (Ackerly et al., 2010). Such fine-grained thermal

variability is usually attributed to physical processes

such as air motion and solar radiation interacting with

topographic complexities such as aspect, slope angle

and roughness, i.e., topoclimate (Geiger & Aron, 2003).

Topoclimatic variability may therefore provide micro-

refugia where species might persist locally amidst unfa-

vourable regional climatic conditions (Dynesius et al.,

2009; Ashcroft, 2010; Austin & Van Niel, 2011; Dobrow-

ski, 2011) by shifting by as little as a few metres to

neighbouring locations with cooler conditions (e.g.,

towards more polar-facing slopes with lower insolation

or towards patches of wetter ground with higher heat-

consuming evaporation) (Edwards & Armbruster, 1989;

Wesser & Armbruster, 1991; Armbruster et al., 2007;

Ackerly et al., 2010). Incorporating such topoclimatic

processes into species distribution models predicts a

greater local persistence of alpine and nival species in

the Swiss Alps (Randin et al., 2009) where traditional

species distribution models based on coarse climatic

data predict extinction under the exact same future cli-

mate-change scenario (Ackerly et al., 2010). Focusing on

a small mountainous landscape in California (250 km2)

(Van de Ven et al., 2007), Ackerly et al. (2010) assessed

that thermal variability across this topographically

complex area may increase from 3 to 8 °C if topocli-

mate variability is represented. Hitherto, the assess-

ment of thermal buffering capacity over tens or

hundreds of metres have been mostly limited to small

spatial extents (<2500 km2) and topographically com-

plex terrains (Fridley, 2009; Ackerly et al., 2010; Scher-

rer & K€orner, 2011). We are aware of only one study

that provided fine-grained (625 m2) topoclimatic grids

of near-surface (5 cm) temperatures across a regional

extent (60 000 km2), while encompassing a wide

range of topographic complexities from lowlands to

highlands in Australia (Ashcroft & Gollan, 2012).

Broad-scale assessments of fine-grained variability in

temperatures and its variation across a large array of

ecosystems are therefore lacking. Providing such

assessments will help policy makers and landscape

managers take critical decisions.

Miniature data-loggers and high-resolution thermal

imagery are new tools that measure surface and soil

temperatures with high precision allowing fine-scale

spatial analysis of topoclimatic variability (Rae et al.,

2006; Ashcroft et al., 2008; Fridley, 2009; Ackerly

et al., 2010; Scherrer & K€orner, 2011; Ashcroft &

Gollan, 2012; Graae et al., 2012). However, the cost of

using such tools across large geographic extents is still

a limiting factor. In contrast, fine-grained (<1000 m2)

field surveys of plant community composition, which

can be combined with species-indicator values for

temperature (Ellenberg et al., 1992; Landolt et al.,

2010) to infer thermal conditions (Scherrer & K€orner,
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2011), are available worldwide (Dengler et al., 2011).

Although this biotic approach does not directly

estimate real temperature conditions as miniature

data-loggers would, it estimates biologically relevant

temperatures as mediated by the biological processes

involved in plant community assembly. For these rea-

sons, such community-based approaches have already

been successfully implemented to map local biocli-

matic heterogeneity within several small areas of

15 km2 each in the Arctic (Karlsen et al., 2005). Here,

we first aim to infer temperature conditions from

plant assemblages within <1000-m2 units across a

2500-km wide latitudinal gradient in Northern Europe

encompassing highly variable topographic complexity

from flat to mountainous terrains. On the basis of

these community-inferred temperatures (CiT), we then

assess: (1) the spatial variability in CiT and thus buf-

fering capacity within 1-km2 units across this large

region; (2) the relation between CiT variability and

potential topographic and geographic drivers; and (3)

whether spatial turnover in CiT within 100-km2 units

is greater than turnover computed from a 1-km tem-

perature grid. If true, the latter would suggest that

short-distance escapes for species facing climate

change are likely underestimated by the 1-km gridded

global climate surfaces.

Materials and methods

Study area

We focused on Northern Europe including Fennoscandia,

Denmark and the Baltic countries (53–82°N, 3–32°E). This lati-
tudinal gradient from the northern limit of the temperate

biome (Denmark, Southern Sweden and the Baltic countries)

to the northern limit of the Arctic biome (Svalbard) encom-

passes a large range of temperature conditions from 9.2 °C

to �14.4 °C in annual mean temperatures and a large array of

topographic variability from flat (e.g., Denmark and southern

Finland) to mountainous (e.g., Norway and northern Finland)

terrains (Fig. 1). Across our study area, we compiled data at

three grain sizes: <1000 m2; 1 km2; and 100 km2 (Fig. 2).

Vegetation, temperature and topographic data at the
spatial grain of plant communities (<1000 m2)

By updating an existing dataset in the Scandes (Lenoir et al.,

2010), we compiled a comprehensive database of 42 117 fine-

grained (<1000 m2) and geo-referenced plots of terrestrial

vascular plant communities across Northern Europe encom-

passing a large array of vegetation types (forests, scrublands,

grasslands, moorlands). All plots were imported to TURBO-

VEG (Hennekens & Schamin�ee, 2001). During the import pro-

cedure, all vascular taxa were linked to TURBOVEG’s

European species list, a list of valid names and synonyms

based on Flora Europaea (Tutin et al., 2001). We updated this

list by adding taxa and synonyms not yet included. By relating

all vegetation plots to this updated list, we ensured that the

nomenclature was consistent. Then, we combined all vegeta-

tion plots with Ellenberg species-indicator values for tempera-

ture (Ellenberg et al., 1992). Ellenberg et al. (1992) classified

most of the plant taxa of Central Europe according to their

optimal occurrence along key environmental gradients for

plants. For temperature, they used an ordinal scale ranging

from 1 (cold) to 9 (warm) in terrestrial environments. A total

of 872 out of 1814 vascular plant taxa in our vegetation data-

base had Ellenberg temperature indicator values. For each

vegetation plot, we averaged the original Ellenberg tempera-

ture indicator values for the taxa present, excluding those

lacking values. To estimate reliably Ellenberg averaged values

(EaV) for temperature, we focused on vegetation plots with at

least three taxa with Ellenberg values. In addition, we focused

on vegetation plots with unique geographic coordinates and

reliable information on location accuracy. A total of 16 945

(Fig. 1a) out of 42 117 vegetation plots met these criteria with

location accuracy ranging from �0.5 to �500 m

(a) (b)

Fig. 1 Maps of (a) annual mean temperature conditions and (b) the range of elevation values within each 100-km2 unit across the study

area. Cross symbol gives the geographic location of all plant communities (n = 16 945). Green rectangles show the geographic location

and spatial extent of the zooming windows used in Fig. 2.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1470–1481
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(median = �5 m, mean = �15 m) and the number of taxa

with Ellenberg values ranging from 3 to 50 (median = 7,

mean = 9). The surface area (i.e., grain size) of these vegeta-

tion plots ranged from 0.1 to 900 m2 (median = 79 m2,

mean = 79 m2). Among the 16 945 selected plots, 138 had

information on locally measured temperatures (LmT) from

miniature soil data-loggers (Fig. S1). We focused on miniature

soil data-loggers rather than miniature air data-loggers as soil

temperature matters more than air temperature for most ter-

restrial vascular plants (Ashcroft et al., 2008; Graae et al.,

2012). Monthly mean temperatures were extracted from each

miniature soil data-loggers (Table S1).

To obtain topographic data, we used the fine-scale

Advanced Spaceborne Thermal Emission and Reflection Radi-

ometer (ASTER) Global Digital Elevation Model (GDEM) Ver-

sion2 (Tachikawa et al., 2011). We downloaded a total of 490

1° 9 1° tiles to cover Northern Europe and processed each tile

separately to control data quality and to compute four eleva-

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Nested zooming windows illustrating the (a, b) 10-km, (c, d) 1-km and (e, f) 50-m resolution maps of (a, c, e) temperature and

(b, d, f) elevation. Spatial distribution of (a, c) annual mean temperature conditions, (e) Ellenberg averaged values (EaV) for tempera-

ture, (b, d) the range of elevation values and (f) elevation across each zooming window are represented. Each pixel represents (a, b) a

100-km2 unit, (c, d) a 1-km2 unit or (f) a 2500-m2 unit. Each circle represents a <1000-m2 vegetation plot and its size is proportional to its

EaV. Green rectangles show the location and spatial extent of the zooming windows used to depict scale nestedness.

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1470–1481
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tion-derivative indices at a 50-m resolution: slope, aspect,

exposure to wind from the south-west and roughness (see

Text S1 for data control and computational details). The expo-

sure to wind is very different from aspect alone as it accounts

for both slope and aspect to measure topographic sheltering

from dominant winds (Ashcroft et al., 2008). For instance,

within a region where south-west winds dominate, a site can

have a south-west aspect directly facing dominant winds if

one considers aspect solely, but be sheltered from these domi-

nant winds if it is behind a mountain. High exposure values

indicate high topographic sheltering effects and thus a more

sheltered location (Ashcroft et al., 2008). Ashcroft et al. (2008)

recommend using the exposure to wind to capture topo-

graphic complexities. We focused on exposure to the south-

west solely because westerlies winds dominate across the

study area.

Temperature and topographic data at the spatial grain of
global climate surfaces (1 km2 and 100 km2)

We obtained temperature data from the WorldClim set of

globally interpolated temperatures (GiT) (Hijmans et al., 2005).

GiT are available as grid layers at a 30-arc-second resolution.

These temperature grids are the basis for most species distri-

bution modelling studies that predict the impact of future cli-

mate change on biodiversity (Thomas et al., 2004; Thuiller

et al., 2005). Here, we used annual mean temperature and all

12 monthly mean temperature variables from historical base-

line climatic conditions (1950–2000). Each of these 13 tempera-

ture grids was cropped to the study extent and resampled at

an exact resolution of 1 km using the nearest neighbour

resampling approach.

We also derived six grids reflecting topographic variability

within each 1-km2 unit. We first aggregated each of the 490

ASTER GDEM Version2 tiles at a 1-km resolution, computing

the range of values (95th percentile – 5th percentile) for: eleva-

tion (eleR); slope (slopR); northness (northR); eastness (eastR);

and exposure to the south-west (expoR) and computing the

mean value for roughness (roughM). Because aspect values are

circular, computing its range of values to reflect its variability

within a 1-km2 unit is not meaningful. Hence, we used cosine-

and sine-transformed aspect values to reflect northness and

eastness, respectively, before computing their ranges. We then

created a composite grid, for each of the six topographically

derived grids, by patching together the 490 tiles across Northern

Europe. Finally, we resampled the composite grids at an exact

resolution of 1 km using the nearest-neighbour resampling

approach to match the resolution of the 13 temperature grids.

For the purpose of analysing spatial turnover in tempera-

ture conditions within 100-km2 units, we aggregated each

temperature and topographically derived grid at a 10-km reso-

lution by computing the mean.

Data analysis

Inferring temperature conditions from plant assem-

blages. The first step of our analyses was to derive commu-

nity-inferred temperatures (CiT) from the unitless EaV

computed for each of the 16 945 vegetation plots. We obtained

CiT by either: (1) fitting LmT from soil data-loggers against

EaV in a ‘bottom-up’ approach or (2) fitting GiT from WorldC-

lim temperature grids against EaV in a ‘top-down’ approach

(see Text S2 for details on both the bottom-up and top-down

modelling approaches).

Irrespective of modelling approach (bottom-up or top-

down), EaV performed best to predict CiT during the grow-

ing season (June, July, August) (Figs. S2 and S3). For this

reason and because growing-season mean temperatures are

the most meaningful for plants, we decided to predict CiT

from EaV by focusing on growing-season mean tempera-

tures. Hence, we refitted LmT (bottom-up) and GiT

(top-down) against EaV, but using this time the full set of

data available for growing-season mean temperatures, i.e.,

133 <1000-m2 vegetation plots and 121 1-km2 climatic units

respectively. In addition, we tested for spatial autocorrela-

tion in the residuals of these nonspatial models using

Moran’s I correlograms. Significance (P < 0.05) was evalu-

ated by 1000 permutations for each distance class with cor-

rection of the resulting P-values for multiple comparisons

using the Holm adjustment. In case of significant spatial

autocorrelation in the first distance classes, we fitted spatial

models to remove spatial autocorrelation from the residuals

of the nonspatial models. We used the three nearest neigh-

bours to build the spatial neighbourhood matrix and a row

standardization (W) to generate the spatial weights matrix.

On the basis of the spatial weights matrix, we used spatial

eigenvector selection to reach a subset of significant (P < 0.05)

spatial filters to be added in the formula of the nonspatial

models (Bivand, 2009). We used the adjusted coefficients of

either the nonspatial or spatial models to predict CiT. Finally,

we averaged the bottom-up and top-down predicted values

of CiT into a single CiT value of growing-season mean

temperature for each of the 16 945 microclimatic units.

Assessing thermal variability. To evaluate thermal variability

within 1-km2 climatic units, we computed the range of values

(maximum – minimum) for CiT within each 1-km2 unit. To

ensure a reliable estimate of thermal variability, we only used

1-km2 units that included at least 10 vegetation plots. A total

of 569 1-km2 units met this criterion.

Relating thermal variability with topoclimate. We used gen-

eralized linear models to fit thermal variability within 1-km2

climatic units (the response variable) against several vari-

ables reflecting topoclimate within the same spatial units. As

a first set of topoclimatic variables, we conducted a Principal

Component Analysis (PCA) on the six topographic grids

(eleR, slopR, roughM, northR, eastR, expoR), covering a total of

1 905 865 1-km2 climatic units, to reduce topographic com-

plexity within each unit to a minimum set of composite and

uncorrelated variables. The first two axes (PC1 and PC2) of

the PCA were retained and accounted for 54% and 27% of

the total variation respectively. PC1 reflected the contribu-

tions of both elevation variability and slope variability (eleR,

slopR, roughM) to topographic complexity within 1-km2

climatic units, with the roughest units being located on the

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 1470–1481
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positive end of PC1 (Table S2). PC2 reflected the contribu-

tions of variability in both exposure and aspect (expoR, eastR,

northR) to topographic complexity within 1-km2 climatic

units, with units experiencing the largest heterogeneity in

exposure being located on the positive end of PC2 (Table S2).

We also used the latitudinal position (LP) of each 1-km2

climatic unit as an additional topoclimatically related vari-

able reflecting a linear decrease in both: (1) solar angle from

the equator to the poles and (2) daily-insolation contrasts

between polar- and equator-facing slopes from 45°N to 90°N
(K€orner, 2003). As the probability of finding markedly differ-

ent temperature conditions between two vegetation plots

sampled within the same 1-km2 climatic unit increases with

sample size, we controlled for the effect of sampling effort

(SE) on thermal variability within 1-km2 units by using the

number of vegetation plots sampled within each unit as a

covariate in all our models. All four explanatory variables

(PC1, PC2, LP, SE) were standardized to improve their inter-

pretability (Schielzeth, 2010). As candidate models to explain

thermal variability within 1-km2 units, we tested all possible

combinations (n = 18 models) of having 0, 1, 2 or 3 explana-

tory variables in addition to SE, including second- and

third-order interaction terms between LP, PC1 and PC2. For

model selection, we used Akaike’s Information Criterion

(AIC), with the Akaike weight (w) interpreted as the proba-

bility that a given model is the best among all candidate

models (Burnham & Anderson, 2002). We tested for spatial

autocorrelation in the residuals of the best candidate model

and fitted a spatial model for the best candidate model only

if there was significant spatial autocorrelation in the first dis-

tance classes (see above for a description on the implementa-

tion of spatial models).

Comparing spatial turnover in temperature with and without

accounting for thermal variability within spatial units of glo-

bal climate surfaces. For all pairwise comparisons of vegeta-

tion plots within a given 100-km2 unit (Fig. S4), we

computed: (1) the difference in growing-season CiT, which

reflects the potential turnover in growing-season mean

temperatures after accounting for thermal variability within

1-km2 climatic units of WorldClim’s global climate surfaces;

(2) the difference in growing-season GiT, which reflects the

actual turnover in growing-season mean temperatures across

WorldClim’s global climate surfaces at 1-km resolution; and

(3) the geographical distance separating pairs of vegetation

plots. We fitted an ordinary least-squares linear-regression

model of the difference in CiT (resp. GiT) between pairs of

vegetation plots (the response variables) against the geo-

graphical distance separating them (Fig. S4). Because of the

nonindependence between paired differences, significance

testing of the parameters of each model was obtained by

running multiple linear regressions on distance matrices

(Lichstein, 2007). We used 1000 permutations to estimate the

statistical significance levels for each parameter. To fit a

model of spatial turnover in temperature conditions within

100-km2 units, we focused on 100-km2 units that included at

least 10 vegetation plots. A total of 349 units met this crite-

rion. Finally, we compared estimates of the slope coefficients

(°C m�1) between both models of spatial turnover in grow-

ing-season CiT and GiT, but only for the subset of 100-km2

units in which spatial turnover in growing-season CiT and

GiT were significant (P < 0.05).

All WorldClim and ASTER GDEM Version2 raster layers

were projected into the ‘North Pole Lambert azimuthal equal-

area Europe’ projection in GRASS (Neteler & Mitasova, 2010)

before being processed in R (R Development Core Team, 2011)

for data handling and analyses using the ‘ade4’, ‘ecodist’,

‘hexbin’, ‘ncf’, ‘raster’, ‘rgdal’, ‘sp’ and ‘spdep’ packages.

Results

Focusing on the growing season (June, July, August) to

predict community-inferred temperatures (CiT), we

found positive relationships for both the bottom-up

and top-down modelling approaches (Fig. 3). Ellenberg

averaged values (EaV) explained 46% (adjusted

R2 = 0.45) of variation in locally measured tempera-

tures (LmT) from miniature soil data-loggers and 92%

(adjusted R2 = 0.92) of variation in globally interpo-

lated temperatures (GiT) from WorldClim respectively.

Accounting for spatial autocorrelation by adding spa-

tial filters as predictors in the nonspatial models

improved the explanatory power, reaching 72%

(adjusted R2 = 0.7) and 96% (adjusted R2 = 0.96) of var-

iation in LmT and GiT respectively.

The span of values for growing-season CiT (thermal

variability) within all 569 1-km2 climatic units ranged

from 0 to 6.57°C, averaging 2.1°C (SD = 0.97°C), across
Northern Europe (Fig. 4).

Thermal variability increased linearly with sampling

effort (SE) and roughness (PC1), whereas its relation-

ship with latitude (LP) was unimodal (Fig. 5). At

intermediate latitudes (60–65°N), thermal variability

averaged 2.72 °C (SD = 1.49 °C), reaching its

maximum (6.57 °C) at 61°N (Fig. 5b). Thermal vari-

ability averaged 1.97 °C (SD = 0.84 °C) and 2.68 °C
(SD = 1.26 °C) within the flattest (PC1 < 0) and rough-

est (PC1 > 0) 1-km2 climatic units respectively

(Fig. 5c). The second component of topographic com-

plexity reflecting fine-grained (1 km2) heterogeneity in

exposure and aspect (PC2) had no main effect on ther-

mal variability (Fig. 5d). Using SE as a covariate, LP

and PC1 remained significant and models including

both predictors had better support than others, among

which the best candidate model showed a significant

main effect for LP and significant multiplicative

effects between PC1 and PC2 and between LP, PC1

and PC2 (Table 1). This complex model explained 23%

(adjusted R2 = 0.22) of the variation in thermal vari-

ability. Accounting for spatial autocorrelation by add-

ing spatial filters as predictors in the best candidate

model improved the explanatory power, reaching 35%
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(adjusted R2 = 0.33) of the variation in thermal vari-

ability. Standardized partial regression coefficients

were similar between the nonspatial and spatial mod-

els (Table 2).

Spatial turnover in growing-season mean temperatures

was, on average, 1.8 times greater for CiT (0.32 °C km�1)

than for GiT (0.18 °C km�1) (Wilcoxon signed-rank test:

V = 1241, P < 10�4).

Fig. 4 Map and plot showing the (a) distribution of all 569 1-km2 climatic units used to assess the range of values for community-

inferred temperatures (CiT) and (b) a frequency histogram of the thermal variability (CiT range) within all these units. Background

temperatures are 1-km2 annual mean temperature from WorldClim. The dashed vertical line shows the mean.

(a) (b)

(c) (d)

Fig. 3 Plots showing (a, b) fitted values and (c, d) correlograms of the residuals from the (a, c) bottom-up (n = 133 <1000-m2 vegetation

plots) and (b, d) top-down (n = 121 1-km2 climatic units) models used to predict community-inferred temperatures during the growing

season (June, July, August). EaV, LmT and GiT refer to Ellenberg averaged values, locally measured temperatures from miniature soil

data-loggers, and globally interpolated temperatures from WorldClim respectively. Plain and dashed lines represent predictions from

the nonspatial and spatial models respectively. Circles and squares represent Moran’s I values from the nonspatial and spatial models

respectively. Filled and open symbols represent significant (P < 0.05) and nonsignificant Moran’s I values respectively.
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Discussion

The plant community-based approach

Our modelling results indicate that Ellenberg indica-

tor values for temperature (Ellenberg et al., 1992) rep-

resent temperature conditions experienced by plants

during the growing season (Fig. 3). Interestingly, the

strength of the relationship between Ellenberg aver-

aged values and locally measured growing-season

mean temperatures from miniature soil data-loggers

(R2 ranging from 0.45 to 0.7) is similar to an earlier

study relating Landolt indicator values for tempera-

ture (Landolt et al., 2010) with night-hours soil tem-

peratures recorded between June and September

(R2 = 0.51) in the Swiss Alps (Scherrer & K€orner,

2011). We furthermore found strong positive relation-

ships (R2 ranging 0.92–0.96) between Ellenberg aver-

aged values and globally interpolated growing-season

mean temperatures from WorldClim temperature

grids in this study. Similarly, Karlsen & Elvebakk

(2003) found strong positive relationships (R2 ranging

0.82–0.92) between an empirical index of thermophily

computed for 147 arctic plants and real temperature

measurements from neighbouring meteorological sta-

tions in Greenland. Our study adds to a growing

number of studies combining plant indicator values

for temperature with independent data on field

records of plant community composition (Karlsen &

Elvebakk, 2003; Karlsen et al., 2005; Scherrer &

K€orner, 2011), an approach that is particularly well

suited for predictive purposes.

We must emphasize that community-inferred tem-

peratures tend to be conservative. Indeed, growing-

season thermal variability within 1-km2 climatic units

assessed by means of community-inferred tempera-

tures from a plant community-based approach was

systematically lower than the one assessed by means

of locally measured temperatures from miniature soil

data-loggers (Fig. S5). This probably reflects that

(a) (b)

(c) (d)

Fig. 5 Trends in the range of values for community-inferred temperatures (CiT) within each 1-km2 climatic unit against various charac-

teristics of these units: (a) sampling effort (SE); (b) latitudinal position (LP); (c) topographic heterogeneity due to elevation and slope

(PC1); and (d) topographic heterogeneity due to exposure and aspect (PC2). Linear and quadratic trends were tested along each gradi-

ent and solid lines were added where significant (P < 0.05). Bubble size is proportional to the number of 1-km2 climatic units falling

within each bin of the xy plane tessellated by a regular grid of 26 by 21 hexagons [cf. ‘hexbin’ package in R (R Development Core Team,

2011)].
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community-inferred temperatures from plant assem-

blages estimate thermal variability as filtered through

biological community assembly processes. Indeed, abi-

otic variability will be smoothed out: (1) over space

by metapopulation dynamics causing populations to

average over fine-grained conditions and thus be

dependent on the coarse-grain conditions (Eriksson,

1996; Freckleton & Watkinson, 2002) and (2) over time

by species traits of perennial plants such as matura-

tion time, dispersal ability and persistence capability

causing plant assemblages to exhibit considerable lags

in their response to climate variability (Bertrand et al.,

2011; Dullinger et al., 2012). For these reasons,

although the community-based approach underesti-

mates real fine-grained (1 km2) thermal variability, it

may better reflects temperature conditions relevant to

plant community dynamics than measurements from

short-term, localized miniature soil data-loggers.

Therefore, we propose that community-inferred tem-

peratures provide a unique, highly valuable source of

information to assess fine-grained (1 km2) biologically

relevant thermal variability.

Table 1 Model selection among 18 generalized linear models that explain thermal variability within 1-km2 climatic units (n = 569)

across Northern Europe. Rank of a given candidate model based on Akaike’s Information Criterion (AIC), its difference to the best

candidate model (DAIC) and its Akaike weight (w). Standardized partial regression coefficients are given for each explanatory vari-

able. SE is the sampling effort (number of vegetation plots) within each 1-km2 climatic unit. LP represents the latitudinal position of

each 1-km2 climatic unit. PC1 and PC2 are the first two axes of the Principal Component Analysis used to reduce topographic com-

plexity within each 1-km2 climatic unit to a minimum set of composite and uncorrelated variables. Second- and third-order interac-

tion terms are tested between LP, PC1 and PC2. Grey partial regression coefficients are nonsignificant (P � 0.05)

SE LP PC1 PC2 LP : PC1 LP : PC2 PC1 : PC2 LP : PC1 : PC2 AIC DAIC w

0.19 0.30 0.09 �0.11 �0.04 �0.03 �0.25 0.14 1451 0.00 1

0.21 0.21 0.33 �0.25 �0.10 0.12 1474 23.21 0

0.20 0.16 0.21 �0.17 0.15 �0.06 1475 24.30 0

0.19 0.17 0.20 �0.22 0.11 1478 26.84 0

0.19 0.32 �0.20 0.10 1489 38.15 0

0.21 0.24 0.32 �0.15 �0.11 0.04 1489 38.26 0

0.21 0.22 0.27 �0.07 �0.07 1490 38.84 0

0.20 0.19 0.18 �0.06 1491 39.87 0

0.21 0.22 0.26 �0.07 1491 39.99 0

0.20 0.19 0.17 1491 40.46 0

0.19 0.19 0.18 �0.09 0.01 1493 41.53 0

0.19 0.32 �0.06 1499 47.89 0

0.20 0.32 1499 48.09 0

0.20 0.32 �0.06 1500 49.04 0

0.20 0.31 1501 49.55 0

0.20 0.32 �0.09 0.01 1502 50.72 0

0.20 1564 113.42 0

0.20 �0.04 1565 114.32 0

Table 2 Standardized partial regression coefficients, standard errors and associated P-values for each parameter of the spatial and

nonspatial versions of the best candidate model. See Table 1 for a full description of each parameter

Parameter

Spatial Nonspatial

Estimate Standard error P-value Estimate Standard error P-value

Intercept 2.14 0.05 < 10�4 2.15 0.05 < 10�4

SE 0.18 0.03 < 10�4 0.19 0.04 < 10�4

LP 0.26 0.06 < 10�4 0.30 0.06 < 10�4

PC1 0.14 0.09 0.15 0.09 0.09 0.32

PC2 �0.09 0.06 0.18 �0.11 0.07 0.10

LP : PC1 �0.03 0.05 0.46 �0.04 0.05 0.40

LP : PC2 0.00 0.05 0.89 �0.03 0.05 0.51

PC1 : PC2 �0.23 0.05 < 10�4 �0.25 0.05 < 10�4

LP : PC1 : PC2 0.12 0.03 < 10�4 0.14 0.03 < 10�4
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Fine-grained (1 km2) thermal variability in Northern
Europe

Fine-grained variability in growing-season mean tem-

peratures exceeds 2 °C in 44% of the 1-km2 climatic

units investigated (Fig. 4b). This suggests that many

places across Northern Europe may provide substantial

spatial buffering of the local impacts of climate change

on species persistence. This result further argues for

incorporating fine-grained thermal variability in pre-

dictive models of species distributions to provide more

realistic projections of climate-change impacts (Van de

Ven et al., 2007; Randin et al., 2009; Willis & Bhagwat,

2009; Ackerly et al., 2010). However, fine-grained ther-

mal variability exceeding 4 °C is found in only 3% of

the 1-km2 climatic units investigated (Fig. 4b). This

means that areas offering the high thermal variability

necessary to cope with the range of warming projected

by the IPCC scenarios of future climate change (IPCC,

2007) and avoid critical climate-change impacts (Schel-

lnhuber et al., 2006) through local-scale relocation are

scarce. Note, however, that our estimate of fine-grained

thermal variability is conservative (Fig. S5). In addition,

the probability that the most extreme sites with respect

to temperature within each 1-km2 climatic unit are

included in the sample is low, although increasing with

sampling effort (Fig. 5a).

Variation in fine-grained (1 km2) thermal variability
across Northern Europe and its potential determinants

As suggested by Scherrer & K€orner (2011), our analyses

of variation in thermal variability across Northern Eur-

ope show that as climate changes, rough terrains offer

safer living conditions than flat terrains (Fig. 5c).

Indeed a rough terrain provides a multitude of local

temperature gradients over tens or hundreds of metres

that are driven by topographic effects (Geiger & Aron,

2003; Ackerly et al., 2010) and may lower the regional

risks of population decline under periods of extreme

weather events, as well as under more gradual changes

in climatic conditions, because climatically and ecologi-

cally different habitats are available for species within a

close vicinity (Luoto & Heikkinen, 2008). Consistently,

thermal variability peaks at 60–65°N (Fig. 5b), where

rough terrains are predominant due to the gross topog-

raphy from southern to mid-Norway. At about the

same latitudes (66°N), Armbruster et al. (2007) found a

maximum difference in direct-beam radiation budgets

between polar- and equator-facing slopes thus suggest-

ing high thermal variability. These radiation contrasts

between polar- and equator-facing slopes coupled with

the mountain-mass effect and strong North Atlantic cli-

matic gradients from the ocean to the continent could

underlie the high thermal variability we observed at

these latitudes. Indeed, the confluence of these strong

climatic gradients may contribute to the co-occurrence

of both southern and northern plant species within a

relatively small geographic area and thus locally inflate

the size of the species pool (Zobel, 1997) and hence our

plant community-based estimate of thermal variability

at these latitudes. Overall, the availability of short-

distance escapes for species facing climate change is

likely to be higher at these latitudes.

Inconsistent with former studies that suggest that

exposure and aspect represent different components of

topoclimate that may increase fine-scale spatial hetero-

geneity in temperature (Ashcroft et al., 2008; Ashcroft

& Gollan, 2012), our models do not suggest a positive

main effect of spatial variability related to these topocli-

matic components on thermal variability (Fig. 5d).

Although exposure and aspect may influence tempera-

ture conditions, these factors may also influence water

balance and soil conditions that interact with species

distributions in ways that are not reflected by our com-

munity-inferred temperatures. However, our best

model suggests that it is not via purely additive effects

that the different drivers of topoclimate act, but rather

via complex multiplicative effects among them

(Table 1). On top of the positive main effect of latitude

on thermal variability across Northern Europe, there is

a positive three-way interaction between latitude, the

elevation and slope components of topographic vari-

ability and the exposure and aspect components of

topographic variability, even after accounting for other

spatially structured effects (Table 2). In summer, the

sun appears at a low angle above the horizon and at

almost any aspect in high latitude areas. Topographic

features being equal from 45 to 90°N, the linear

decrease in solar angle is likely to intensify the positive

effects of topographic complexity on thermal variability

whereas the linear decrease in daily-insolation contrasts

between polar- and equator-facing slopes is likely to

mitigate the positive effects of topographic complexity

on thermal variability. Given these compensating

effects, our best model suggests that the intensifying

effect of low solar angles on thermal variability over-

rides the mitigating effect of the sun appearing at

almost any aspect towards the northern latitudes of the

studied gradient.

By incorporating spatial filters in the nonspatial

model to remove spatial autocorrelation in the residu-

als, we improved the explanatory power of our best

model from 23% to 35%. This means that 12% of the

variation is explained by one or several spatially auto-

correlated explanatory variables missing in the nonspa-

tial model and partly responsible for thermal variability

within 1-km2 climatic units. Among the potential
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drivers that might be spatially autocorrelated, fine-scale

spatial heterogeneity in canopy cover is likely to affect

ground and air temperatures below the canopy (Geiger

& Aron, 2003) and is often used as a predictor together

with other topographic predictors to produce fine-reso-

lution topoclimatic grids (Ashcroft & Gollan, 2012). For

instance, trees and shrubs may strongly reduce the

effect of topographically induced differences in insola-

tion (�Astr€om et al., 2007). Therefore, not only topocli-

mate but also habitat heterogeneity may contribute to

increase local spatial buffering of climate-change

impacts on species, notably in the flattest terrains.

Consistently, thermal variability reaches 1.97 °C, on

average, within the flattest 1-km2 climatic units investi-

gated. This suggests that even the flattest terrains may

still provide short-distance escapes for species facing

climate change.

Fine-grained (1 km2) thermal variability, global climate
surfaces and spatial turnover in temperatures within
100-km2 units

The spatial heterogeneity (turnover) in temperature

conditions computed from community-inferred tem-

peratures is almost twice the turnover computed from

the WorldClim grid of globally interpolated tempera-

tures. This suggests that species distribution models

based on the WorldClim set of temperature grids tend

to overestimate future species’ range shifts in Northern

Europe. Again, this argues for incorporating fine-

grained thermal variability within models of species

distribution (Randin et al., 2009; Willis & Bhagwat,

2009; Ackerly et al., 2010). In the context of contempo-

rary climate change, fine-grained temperature turnover

in space cannot be dissociated from temperature turn-

over in time at a given location. The ratio between tem-

poral and spatial turnover in temperature determines

the velocity of climate change and thereby how fast

species will have to move to track suitable climate,

determining the degree of threat (Loarie et al., 2009).

On the one hand, a higher level of threat is expected in

flat terrains compared with rough ones which offer

greater spatial turnover in temperature conditions for

species facing climate change. On the other hand, a

higher level of threat is expected for localities experi-

encing rapid climate change compared with localities

experiencing a relatively stable climate. In short, flat

terrains experiencing relative climate stability may be

as safe places as rough terrains experiencing rapid cli-

mate change. Reflecting these two components of cli-

mate-change velocity, endemic species are globally

concentrated in regions characterized by low Late Qua-

ternary climate-change velocity (Sandel et al., 2012). To

improve predictions from future models of species

distribution, both the fine-scale spatial and temporal

components of the turnover in temperature conditions

should therefore be incorporated.
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