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Refined Ordovician timescale reveals no link
between asteroid breakup and biodiversification
A. Lindskog1, M.M. Costa2,3, C.M.Ø. Rasmussen2,4, J.N. Connelly2,3 & M.E. Eriksson1

The catastrophic disruption of the L chondrite parent body in the asteroid belt c. 470 Ma

initiated a prolonged meteorite bombardment of Earth that started in the Ordovician and

continues today. Abundant L chondrite meteorites in Middle Ordovician strata have been

interpreted to be the consequence of the asteroid breakup event. Here we report a zircon

U-Pb date of 467.50±0.28 Ma from a distinct bed within the meteorite-bearing interval of

southern Sweden that, combined with published cosmic-ray exposure ages of co-occurring

meteoritic material, provides a precise age for the L chondrite breakup at 468.0±0.3 Ma. The

new zircon date requires significant revision of the Ordovician timescale that has implications

for the understanding of the astrogeobiologic development during this period. It has been

suggested that the Middle Ordovician meteorite bombardment played a crucial role in the

Great Ordovician Biodiversification Event, but this study shows that the two phenomena were

unrelated.

DOI: 10.1038/ncomms14066 OPEN

1 Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden. 2 Natural History Museum of Denmark, University of Copenhagen,
Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark. 3 Centre for Star and Planet Formation, University of Copenhagen, Øster Voldgade 5–7, DK-1350
Copenhagen K, Denmark. 4 Center for Macroecology, Evolution and Climate, University of Copenhagen, Denmark. Correspondence and requests for materials
should be addressed to A.L. (email: anders.lindskog@geol.lu.se).

NATURE COMMUNICATIONS | 8:14066 | DOI: 10.1038/ncomms14066 | www.nature.com/naturecommunications 1

mailto:anders.lindskog@geol.lu.se
http://www.nature.com/naturecommunications


L
-type ordinary chondrites represent the largest group of
meteorites striking Earth with a record of arrival extending
from the Ordovician to today1,2. A common resetting of the

40Ar/39Ar chronometer in recently fallen meteorites at 470±6 Ma
has been interpreted to reflect the breakup of the L chondrite
parent body3. This event has left an unusual mark in the
sedimentary record on Earth through a drastic increase in
L-chondritic matter in Middle Ordovician strata. Most notably,
more than one hundred macroscopic fossil meteorites (495% of
all pre-Quaternary specimens known) have presently been found
and all but one are identified as L chondrites. The meteorite-
bearing strata have been shown to contain very high
concentrations of sand-sized chromite (chromium-iron oxide
mineral) grains with typical L-chondritic chemical composition
that appear to signal an enhanced influx of micrometeorites to
Earth in the wake of the L chondrite breakup event2,4.

The meteorite-bearing strata overlap with an important phase
of the so-called Great Ordovician Biodiversification Event
(GOBE), during which the global marine biota diversified
extensively and new ecologic niches were established5–9. More
specifically, the arrival of the first known meteorites in the wake
of the L chondrite breakup coincides with a significant increase in
brachiopod diversity in Baltoscandia. This observation has led to
the suggestion of a causal link between the arrival of L chondrite
meteorites after the breakup of their parent body and the onset of
the GOBE, implying that the effects of the meteorite
bombardment on Earth would have forced biodiversification
processes10.

Here we present new U-Pb age data from recently discovered
and well-preserved zircon grains from a distinct bed within the
meteorite-bearing interval in Sweden. Using a novel approach,
the U-Pb data is combined with published cosmic-ray exposure
(CRE) ages of co-occurring meteoritic material to pinpoint the
timing of the L chondrite breakup event while simultaneously
refining the Ordovician timescale. This method holds promise to
be used as an independent geochronologic calibration tool for
much of the Ordovician, and possibly beyond.

Results
Geologic setting. A shallow epeiric sea covered large parts of
Sweden and the surrounding Baltoscandian region during much
of the early Palaeozoic. This widespread inundation together
with low-relief (peneplaned) landmasses resulted in restricted
weathering and, consequently, extremely limited siliciclastic input
to the basin. Net sedimentation rates were typically on the order
of millimetres per millennium11. The table mountain Kinnekulle
in southern Sweden preserves a near-complete succession of
Cambrian through lower Silurian marine sedimentary rocks12.
During most of the Ordovician, this area was situated several
hundreds of kilometres from the mainland. The depositional
environment at this time was tectonically stable, a condition that
has generally persisted throughout the ages. ‘Orthoceratite
limestone’, a condensed cool-water carbonate facies, forms the
main rock type in the Middle Ordovician interval. These strata
are typically brownish to rusty-red in colour, but a temporary
change into grey limestone occurs in the Kunda Baltoscandian
Stage, which correlates with the lower-middle Darriwilian (Fig. 1).
This c. 1.5-m-thick grey interval, which by quarry tradition is
known as the ‘Täljsten’ (‘Carving stone’), forms an important
marker level in the regional stratigraphy. The ‘Täljsten’ is
associated with widespread changes in the depositional
environment and increased biodiversity, due to a significant
shallowing in sea level13,14. The active Thorsberg quarry of
eastern Kinnekulle (WGS84 58�3404500N, 13�2504600E) hosts a c.
6-m-thick succession of rocks that includes the ‘Täljsten’15.

This quarry is the main source of macroscopic fossil meteorites2.
The lowest stratigraphic horizon known to contain meteorites
lies c. 0.5 m below the base of the ‘Täljsten’, and the highest
occurrence lies c. 4 m above this level (Fig. 1).

The age of the meteorite-bearing strata. In the course of
processing 47 samples to isolate microfossils and heavy mineral
grains from Kinnekulle, a single sample from the ‘Täljsten’ at the
Thorsberg quarry (Fig. 1) yielded an anomalous abundance
(several hundred grains per kilogram of rock) of prismatic zircon.
All other samples were barren of such grains. The zircon-bearing
bed, locally known as the ‘Likhall’ (‘Corpse slab’)12, is visibly
distinct from enclosing strata (Fig. 2a) and it is recognizable
across Kinnekulle. The zircon grains are pale golden in colour
and have well-defined crystal faces with no evidence of abrasion.
Morphologies range from short prisms with near-equant aspect
ratios to long acicular forms and crystals consistently show
internal oscillatory zoning (Fig. 2b). Associated minerals include
ilmenite, biotite and titanite. Among a total of 17 zircon crystals
that were analysed via Chemical Abrasion Thermal Ionization
Mass Spectrometry (CA-TIMS; see the ‘Methods’ section), there
is a clustering of analyses B468–467 Ma (Fig. 3; Table 1). At the
core of this cluster, nine grains exhibit overlapping 206Pb/238U
dates defining an error-weighted mean of 467.50±0.28 Ma
(MSWD¼ 1.4). This is interpreted as the crystallization age of
the zircons and by inference the depositional age of the ‘Likhall’
bed (see below). Two analyses that are slightly younger than the
main cluster were excluded from the age calculation. These two
grains likely fall off the main array due to a minor loss of a Pb
(refs 16,17). The remaining six grains that have older ages than
the main cluster are interpreted to contain an older, perhaps
xenocrystic, component. No relationship between the external
characteristics of grains and their individual ages were noted.

The timing of the L chondrite breakup event. Chromite grains
within fossil meteorites facilitate determination of their CRE ages
via cosmogenic noble gases, which represent the time spent in
space following the disruption of their parent body. Previous
studies have shown that the meteorites have young 21Ne CRE
ages (c. 0.1–1 Ma) that increase upward through the meteorite-
bearing interval18–20. As such, CRE analyses provide a relative
timescale spanning the meteorite-rich rock interval that translates
into sedimentation rates. In combination with the numerical age
obtained from the ‘Likhall’ zircons, the CRE ages of fossil
meteorites can be employed for geochronologic work; using the
base of the short-ranged Yangtzeplacognathus crassus conodont
Zone (see below), or lateral equivalents, as a reference level, the
age of bounding strata can be deduced from the CRE data.
Figure 1 illustrates this method in principle, using published CRE
ages of macroscopic fossil meteorites18,19,21. Taken at face value,
tracing of the CRE ages backward in time and stratigraphic space
from the ‘Likhall’ bed indicates that the meteorites were dispersed
at 468.0±0.3 Ma or, in a relative reference frame, at a level c. 1 m
below the ‘Täljsten’ that corresponds to the early Kundan (early
Darriwilian, Dw1; Fig. 1)22. The sedimentation rates derived from
CRE ages of fossil meteorites and U-Pb dates23 are in excellent
agreement despite a tenfold difference in both stratigraphic and
temporal resolution between the two data sets. The minimum
sedimentation rate implied by the CRE data (3.3 mm ka� 1) is
close to the average rate implied by U-Pb data (3.1 mm ka� 1),
but the stratigraphic distribution of fossil meteorites puts a
practical lower limit on the net sedimentation rate at c.
3.8 mm ka� 1. The maximum sedimentation rate (8.7 mm ka� 1)
calculated from the CRE data is unrealistic, as it is incompatible
with the oligotrophic and sediment-starved depositional
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Figure 1 | Stratigraphic and geochronologic framework. Stratigraphic column15, with the stratigraphic positions and CRE ages of fossil meteorites

indicated in the diagram to the right18,19,21. Stippled purple lines indicate maximum (CRE Max.) and minimum (CRE Min.) sedimentation rate provided by

the CRE data. A middle line (blue) corresponding to a sedimentation rate of 4 mm ka� 1 is included to illustrate how the CRE data can be translated into a

high-resolution timescale. The green-shaded field indicates long-term time development calculated from U-Pb data (dark¼ central dates of datum points;

light¼ incl. uncertainties), with dotted line (green) indicating average23. Timescales resulting from the CRE Max. and CRE Min. lines are illustrated to the

right in the figure, together with a timescale produced from the average sedimentation rate indicated by U-Pb data. Asterisks indicate levels searched for

zircon.
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Figure 2 | The zircon-bearing bed and zircon grains. (a) The ‘Likhall’ bed (bracketed between arrows), as seen at the Thorsberg quarry. The scale bar

corresponds to 0.1 m. (b) Representative zircon grains, illustrating external (1–13, reflected light) and internal (14–17, cathodoluminescence) characteristics.

The scale bar corresponds to 100mm.
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environment represented by the ‘orthoceratite limestone’, and the
resulting timescale is equally incompatible with the chronologic
framework (Figs 1 and 4). The CRE and U-Pb data together
indicate that net sedimentation rates below 5 mm ka� 1 prevailed
at Kinnekulle over longer time periods and that an average close
to 4 mm ka� 1 is appropriate.

The Ordovician timescale. The ‘Likhall’ bed is exceptionally
well constrained in terms of biostratigraphy, permitting reliable
correlation at the global scale. The base of the ‘Likhall’ bed
coincides with the boundary between the globally recognized
Lenodus variabilis and Yangtzeplacognathus crassus conodont
zones (Fig. 1)13,24. This is close to the boundary between
the Expansograptus hirundo and Holmograptus lentus
(or, Didymograptus artus) graptolite zones25,26 and also that
between the regionally recognized Asaphus expansus and Asaphus
raniceps trilobite zones14. Given the excellent biostratigraphic
control, our new 467.50±0.28 Ma date from the ‘Likhall’ bed
adds a tie point to which the Ordovician timescale can be further
calibrated. The date is in good agreement with bracketing datum
points used for the Geologic Time Scale 2012 (GTS2012)27,
although it implies that the base of the Darriwilian, which is
presently cited as 467.3±1.1 Ma, must be moved back in time.
For reference, the Dapingian–Darriwilian boundary lies at least

5 m below the base of the ‘Täljsten’ at Kinnekulle. Figure 4
illustrates a revised timescale for the Middle Ordovician, based on
radioisotopic data presented here and from the literature. Taking
CRE and U-Pb constraints into account, a high-resolution
timescale was produced for the Kunda Baltoscandian Stage
using a 4 mm ka� 1 average sedimentation rate and the
stratigraphy at Kinnekulle as a model (Figs 1 and 4). In this
rendition, the Middle Ordovician spans c. 457.5–472.5 Ma, as
compared with c. 458.5–470 Ma in GTS2012 (ref. 27)–a 30%
increase in duration.

Discussion
Given that prismatic zircon and other heavy mineral grains
commonly are either absent or very scarce (and typically
anhedral/subhedral) in acid-insoluble residues from the
‘orthoceratite limestone’, the abundance and nature of zircon
recovered from the ‘Likhall’ bed is exceptional. The angularity
of the grains indicates very little or no transport within a
sedimentary system and reworking was clearly limited even at the
local scale (there is no ‘tailing off’ in zircon abundance upward).
Collectively, the evidence indicates a short-term event that
entailed a significant influx of fresh zircon grains to the
Kinnekulle area. Although the host bed is not recognized as a
discrete bentonite horizon, we interpret the zircon grains to be
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Figure 3 | Zircon U-Pb data. (a) Concordia diagram, with analyses used in the age calculation indicated by blue ellipses (unused by grey). Data point

error ellipses are 2s. (b) U-Pb age distribution of analysed zircon grains, with age-defining grains indicated by blue colour. Box heights are 2s.

Table 1 | U-Pb isotopic data from the ‘Likhall’ zircons.

Fraction Compositional parameters Radiogenic isotope ratios Isotopic ages

U Pb 206Pb* mol % Pb*/ Pbc
206Pb/ 208Pb/ 207Pb/ % err|| 207Pb/ % err|| 206Pb/ % err|| corr. 207Pb/ 207Pb/ 206Pb/ 206Pb/

p.p.m.* p.p.m.* � 10� 13 molw 206Pb*w Pbc
w (pg)w 204Pbz 206Pby 206Pby 235Uy 238Uy coef. 206Pb ±|| 235U ±|| 238U ±|| 238U#

s6b9 379 33.5 1.1886 98.28 18 1.74 1,044 0.2384 0.056362 0.370 0.583605 0.446 0.075099 0.189 0.583 466.64 8.19 466.78 1.67 466.80 0.85 466.88
s6b10 99 10.0 0.3132 94.87 6 1.39 361 0.2797 0.056216 0.949 0.586220 1.046 0.075631 0.161 0.653 460.91 21.04 468.45 3.93 469.99 0.73 470.06
s6b11 624 58.6 1.9606 96.97 11 5.03 611 0.2671 0.056286 0.522 0.584207 0.595 0.075277 0.159 0.564 463.67 11.56 467.16 2.23 467.87 0.72 467.94
s6b13 204 19.1 0.6418 96.61 9 1.85 545 0.2492 0.056131 0.603 0.582380 0.681 0.075249 0.178 0.547 457.57 13.37 465.99 2.55 467.70 0.80 467.77
s6b14 505 48.6 1.5805 96.12 8 5.24 477 0.2739 0.056623 0.743 0.585424 0.840 0.074985 0.220 0.545 476.88 16.43 467.94 3.15 466.12 0.99 466.19
s6b15 301 26.6 0.9440 98.25 18 1.38 1,057 0.2396 0.056299 0.304 0.583426 0.422 0.075160 0.252 0.701 464.17 6.74 466.66 1.58 467.17 1.13 467.24
s6b21 398 36.6 1.2530 98.06 17 2.04 953 0.2786 0.056572 0.352 0.588903 0.408 0.075499 0.130 0.566 474.88 7.77 470.17 1.54 469.20 0.59 469.27
s6b23 312 42.9 0.9878 85.57 2 13.74 127 0.3740 0.055862 2.183 0.584229 2.392 0.075852 0.251 0.849 446.89 48.52 467.18 8.96 471.31 1.14 471.37
s7b10 358 38.4 1.1297 91.74 4 8.35 224 0.2340 0.056116 1.511 0.585315 1.668 0.075649 0.221 0.741 456.96 33.52 467.87 6.25 470.10 1.00 470.17
s7b11 290 26.4 0.9113 97.58 13 1.86 764 0.2482 0.056355 0.423 0.584793 0.479 0.075260 0.112 0.581 466.39 9.38 467.54 1.79 467.77 0.51 467.84
s7b13 254 22.8 0.7983 98.17 18 1.22 1,011 0.2511 0.056391 0.338 0.584823 0.399 0.075217 0.125 0.607 467.78 7.49 467.56 1.50 467.51 0.56 467.58
s7b15 526 47.3 1.6430 98.37 20 2.26 1,107 0.2708 0.056331 0.128 0.582200 0.283 0.074959 0.235 0.894 465.45 2.84 465.87 1.06 465.96 1.06 466.03
s7b22 208 21.8 0.6541 95.15 7 2.74 382 0.3569 0.056429 1.013 0.585530 1.141 0.075257 0.235 0.619 469.27 22.42 468.01 4.28 467.75 1.06 467.81
s7b24 295 28.3 0.9251 95.47 7 3.61 408 0.2354 0.055988 0.786 0.580390 0.881 0.075183 0.141 0.720 451.91 17.45 464.71 3.29 467.31 0.64 467.38
s12b21 246 22.8 0.7744 96.57 9 2.26 539 0.2284 0.056177 0.649 0.583510 0.708 0.075334 0.122 0.554 459.36 14.39 466.71 2.65 468.21 0.55 468.29
s12b22 199 18.2 0.6243 98.46 22 0.80 1,204 0.2920 0.056356 0.347 0.583790 0.375 0.075130 0.103 0.401 466.42 7.69 466.89 1.40 466.99 0.46 467.06
s12b24 30 3.5 0.0940 90.70 3 0.80 196 0.3429 0.056159 0.973 0.583932 1.024 0.075413 0.249 0.321 458.64 21.58 466.99 3.83 468.68 1.12 468.75

*Nominal U and total Pb concentrations.
wPb* and Pbc represent radiogenic and common Pb, respectively; mol % 206Pb* with respect to radiogenic, blank and initial common Pb.
zMeasured ratio corrected for spike and fractionation only.
yCorrected for fractionation, spike and common Pb; all common Pb was assumed to be procedural blank: 206Pb/204Pb¼ 18.50±0.50%; 207Pb/204Pb¼ 15.80±0.50%; 208Pb/204Pb¼ 38.02±0.50%
(all uncertainties 1s).
||Errors are 2s, propagated using the algorithms of Schmitz and Schoene.62

#Th/U corrected ages assuming 3 as the Th/U ratio of the magma.
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the result of an ash fall related to distal active volcanism. The
action of burrowing organisms, as is recorded in the ‘orthoceratite
limestone’ by pervasive bioturbation patterns and numerous
ichnofossils28, would quickly mix the fallout from ash clouds
into the muddy seafloor and prevent the formation of discrete
bentonite beds. Still, bentonite beds do occur in the ‘orthoceratite
limestone’ as well as in coeval shales. Most significantly, in the
province of Skåne (Scania), southernmost Sweden, a succession of
bentonite beds occurs in strata coeval with the ‘Täljsten’29. These
beds provide unambiguous evidence of active volcanism in the
region. Source volcanoes were probably situated to the west or
southwest (present-day directions), where magmatic activity
occurred during the successive amalgamation of Baltica,
Avalonia and Laurentia30,31.

The dominance of distinctly euhedral shapes and the common
presence of acicular zircon grains, together with internal
oscillatory zoning, indicate a magmatic origin and rapid
cooling32, as is most typical for volcanically derived grains. The
homogeneous overall appearance of the grains points towards a
common origin. A single-source origin is also implied by the
consistent ages of the grains. A weathering-originated detrital
assemblage would likely give a range of much older ages, as any

significant land areas were part of the Precambrian Baltic shield.
In this regard, the distal location of the Kinnekulle area relative to
the mainland during the Middle Ordovician is reflected by the
complete lack of Precambrian grains in the set analysed here.
As such, transport of coarser-grained and high-density detritus to
the area was limited with much of the siliciclastics brought in
through aeolian processes. It has even been suggested that a large
proportion of the non-carbonate component of the ‘orthoceratite
limestone’ derives from atmospherically transported volcanic
ash33, and that such material entailed the widespread formation
of iron ooids at the time34.

The consistently young and well-constrained CRE ages of the
lowermost occurring fossil meteorites allow for little leeway in
terms of when their parent body broke up and in which
stratigraphic interval one should look for signals of this event in
the terrestrial sedimentary record (Fig. 1). The L chondrite
breakup event and the first arrival of meteorites from it
clearly post-date the onset of brachiopod diversification in
Baltoscandia35,36 and Laurentia37, and also that of graptolites at
the global scale38 (Fig. 4). Together, these records show that a
significant diversification pulse commenced in the benthic and
pelagic realms already during the Volkhovian (mid-Dapingian),
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Figure 4 | The timescale of the Middle Ordovician. A revised Middle Ordovician timescale based on our CA-TIMS data and well-constrained,

high-precision datum points from the literature13,27,58. The resolution of tick marks in the timescale indicates confidence and precision of the calibration.

GTS2012 (ref. 27) is included for comparison; differing distances between tick marks indicates the relative distortion resulting from the recalibration

introduced herein. Radioisotopic dates used in the construction of the timescale are indicated by black labels, with remaining datum points in grey for

reference (A1 (ref. 51); A2* (ref. 49); A3*, A6* (ref. 59); A4, A5 (ref. 23); A7 (ref. 60); A8* (ref. 61); A9 (ref. 55); A10 (ref. 50); *reported with

recalculations for GTS2012 (ref. 27)). The interval corresponding to the Kunda Baltoscandian Stage is calibrated at high resolution with the aid of CRE ages

of fossil meteorites. Baltoscandian brachiopod35,36 and global graptolite38 species diversity curves are calibrated against the biostratigraphic and

geochronologic framework.
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some 2 Myr before the inferred asteroid breakup event.
Brachiopods show accelerated diversification at the transition
into the Kundan (early Darriwilian), but the onset of this
phase precedes the meteorite-bearing interval. The GOBE
spanned many millions of years during which different taxa
show spurts in biodiversity at different times and the overall
phenomenon can be described as diachronous at the global
scale5,9. It has even been argued that the GOBE was initiated
already during the Cambrian8. However, regardless of how the
GOBE is constrained and defined, the refined date for the L
chondrite breakup event implies that it did not initiate the
biodiversification and neither paleoenvironmental proxies nor
diversity patterns show any measurable influence from it. In fact,
beyond the presence of meteorites, the event appears to have left
no obvious record in the marine environment (occasional larger
impacts notwithstanding), and the sedimentologic and
paleontologic development across the meteorite-bearing interval
forms a continuum with no signs of extraordinary influence or
catastrophic disturbance22,36. Although these may ultimately have
been astronomically forced (that is, via Milankovitch cyclicity),
we advocate more conventional processes, such as climate change,
plate tectonics and ecologic feedback, as drivers behind the
biodiversification during the GOBE15,36,39.

Sediment-dispersed L-chondritic chromite holds promise to be
used as a unique tool for the construction of empirically based
high-resolution (kyr) timescales globally. Age dating via CRE
analyses can be applied to individual meteoritic chromite grains,
which occur abundantly in Middle Ordovician strata formed after
the breakup of the L chondrite parent body2. The results of Meier
et al.20 wherein Swedish and Russian strata were successfully
correlated and tested against biostratigraphy using CRE data
from sediment-dispersed L-chondritic chromite, validate this
method. However, as most of the grains appear to represent
micrometeorites, methods to eliminate the common overprint of
a solar wind signal within the noble-gas content should be
employed. Sediment-dispersed L-chondritic chromite can further
be used as an independent correlation tool without CRE analyses,
as the first arrival of such grains in the wake of the parent body
breakup event essentially resulted in a chronohorizon in the
sedimentary record. An enhanced influx of L-chondritic
meteorites appears to have persisted well into the Darriwilian,
at least until the late Eoplacognathus suecicus conodont biochron
(B463.5 Ma)23,40 and, thus, there is potential to work out the
detailed geochronology for this interval using CRE analyses of
sediment-dispersed chromite. Such an endeavour may reveal
additional beds enriched in volcanic zircon that would provide
CA-TIMS dates for calibration of the CRE chronometry.
Cyclostratigraphic analyses of paleontologic and sedimentologic
data may be utilized to further optimize timescales. The results
will yield important empiric information about the dynamics of
asteroid collisions (for example, cascading effects) and the influx
of ordinary chondritic matter to Earth through time. L chondrites
remain common in the meteoritic influx to Earth even today, but
their CRE ages rarely exceed a few tens of million years1,41.
Clusters of CRE ages suggest that the sedimentary record should
host several pulses of L chondrite bombardment and the Middle
Ordovician fossil meteorites appear to represent only the first
record of such an event yet known.

Methods
Separation and search for zircon grains. The acid-insoluble residues of 47
(69 incl. replicates) variably sized (c. 0.5–10 kg) samples from the ‘orthoceratite
limestone’ at Kinnekulle, stored at the Department of Geology, Lund University,
were carefully searched for 463mm heavy mineral grains. Depending on size and
original purpose, the limestone samples were processed via different acid-treatment
protocols42,43 (typically using acetic acid followed by formic acid for smaller
samples, hydrochloric acid followed by hydrofluoric acid for larger samples). The

sample series spans the upper Volkhov through topmost Kunda Baltoscandian
stages, with the ‘Täljsten’ and its enclosing strata covered at bed-by-bed resolution
by several replicate samples (Fig. 1).

U-Pb analyses. A total of 17 zircon grains from the ‘Likhall’ bed, with varying
morphological characteristics, were selected for U-Pb dating using the CA-TIMS44

method. Analyses were performed at the Centre for Star and Planet Formation
(StarPlan), at the Natural History Museum of Denmark, University of Copenhagen,
Denmark. The grains were chemically abraded to remove damaged domains and
minimize the effects of Pb loss. This pre-treatment consisted of thermal annealing
of all crystals for 3 days at 900 �C in Alsint crucibles. Un-annealed domains were
then dissolved using concentrated HF for 12 h at 180 �C, in Savillex beakers placed
inside vapour equilibrated Parr bombs. Before complete dissolution, the zircon
grains were cleaned in alternating steps with warm 3.5 M HNO3, H2O and acetone.
They were processed as single grains to account for the possible existence of
optically indistinguishable xenocrystic grains. As such, the crystals were
individually dissolved in Teflon capsules in an HF–HNO3 (3:1) mixture, together
with the mixed 202Pb–205Pb–233U–235U EARTHTIME U-Pb tracer, for 5 days at
210 �C. The dissolved samples were dried down and redissolved in 3 M HCl
overnight, and then dried down again with 8 ml of 0.1 M H3PO4. They were loaded
with silica gel45 on zone-refined rhenium single filaments. The Pb and U isotopic
ratios of the sample-tracer mixture were measured using a Thermo Fisher thermal
ionising mass spectrometer, where each isotope was sequentially counted in a
single axial ion counting system with Pb as Pbþ , and U as UO2þ . All common Pb
was considered as procedure blank.

The data correction, reduction and age calculation was accomplished using an
Excel spreadsheet and ISOPLOT46. A linear mass fractionation normalization for
instrumental mass-dependent fractionation of Pb was based on the 202Pb/205Pb
isotopic ratio of the tracer. Mass-dependent fractionation during U isotope
measurement was corrected by running U standards and the isobaric interference
of 233U16O18O on the 235U16O2 peak at mass 267 was also corrected. The 238U and
235U decay constants of Jaffey et al.47 and a 238U/235U ratio of 137.88 were used for
the fractionation and age calculations. All age uncertainties are quoted at the 95%
confidence level.

Cosmic-ray exposure ages of fossil meteorites. The data on CRE (21Ne) ages of
fossil meteorites in the studied succession derive from Heck et al.18,19 and Schmitz
et al.21. The data points were spaced according to stratigraphic distance, based on
the assumption that the meteorites were found in the middle of their host bed
(many meteorites lack detailed data in this regard). The extreme lines of
sedimentation rate/time development (CRE Max. and CRE Min. in Fig. 1) were
determined from maximum inclinations possible via direct connection of central
age data points from the lowermost-lying meteorite level. While somewhat
simplified in a statistical sense, changes in parameters (for example, stratigraphic
position of meteorites, CRE ages) within realistic constraints have little effect on the
main outcome and subsequent interpretations. The effects of varying statistical
parameters on the intercept (‘year 0’) level in the CRE data were however taken
into account in the definition of the stratigraphic interval that coincides with the
initial dispersion of the fossil meteorites that we correlate with the breakup of their
parent body (Fig. 1). Bracketing CRE ages indicate that the zircon-bearing ‘Likhall’
bed formed c. 0.4±0.15 Ma after the disruption of the L-chondrite parent body,
or relative to a level c. 1 m below the base of the ‘Täljsten’. Interpolation further
reveals that the bed itself represents a time period of 10–40 ka. The uncertainty
associated with the CA-TIMS age thus appears to be close to the stratigraphic
resolution of the studied strata.

Meteorite ages in the upper part of the studied succession lying towards the
younger end of the CRE diagram probably stem from unusually large host bodies,
that provided sheltering from cosmic rays during the voyage through space18. The
faded CRE data points in Fig. 1 (Gull 001 and Gla 3 003) were not considered in
the data interpretation. The stratigraphic position of Gull 001, which was found
in a different quarry than the other meteorites were found, is not known in any
detail beyond biozone (Yangtzeplacognathus crassus)48 and the relationship of
the non-L-chondritic Gla 3 003 (ref. 21; Österplana 65)4 to the main meteorite
population found at the Thorsberg quarry is not clear. Nevertheless, the CRE age of
Gull 001 fits well into its stratigraphic context in relation to the meteorites from
Thorsberg (as does the age of Gla 3 003).

Sedimentation rate. The lowermost occurrence of fossil meteorites and abundant
L-chondritic chromite puts a lower limit on the possible net sedimentation rate
throughout the studied succession at c. 3.8 mm ka� 1 with the conditions set by the
CRE data as above. The upper limit of the net sedimentation rate in the studied
succession is more difficult to define, but the U-Pb data indicates c. 4.6 mm ka� 1

if we include the calculated error of our CA-TIMS age (467.50±0.28) and a
stratigraphic uncertainty of the overlying datum point (464.57±0.95 Ma)23

corresponding to 25% of the Kunda Baltoscandian Stage. From this, we can
constrain the average sedimentation rate of the Kundan to c. 4.2±0.4 mm ka� 1.
Taking into account perceived variations in sedimentation rate across this interval,
a net sedimentation rate of 4 mm ka� 1 is deemed realistic.
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Constructing a timescale. The basic timescale in Fig. 4 was produced by an initial
linear interpolation between the central dates of U-Pb datum points23,49–51 and
fitting of these onto the stratigraphic framework of the Geologic Time Scale 2012
(GTS2012)27. Where possible, the timescale was then calibrated on a point-by-
point basis with focus on boundary-defining dates. In instances where dates
overlap in error, the data were treated as a single time span of which the mid-point
of the middle third portion defines the boundary and the midpoints of the
bounding thirds define the ‘actual’ numerical ages of bracketing datum points. Any
part of the error span of the lower-lying datum point passing the minimum age
defined by an overlying point was disregarded (a lower-lying point cannot be
younger than an overlying one). Biostratigraphy was treated as secondary to
numerical dates. Boundaries without defining bracketing dates were left in their
relative position in the biostratigraphic scheme used in GTS2012 (ref. 27).

The Kunda Baltoscandian Stage was further calibrated using CRE ages of fossil
meteorites, and a high-resolution timescale (4 mm ka� 1 scale in Fig. 1) was
produced for this time span. The timescale in the Dapingian was roughly defined
through extrapolation of the CRE-derived scale, as directly applied to the
stratigraphic succession at Kinnekulle22,52–54. Given the dearth of well-constrained
datum points in this interval, the base of the Dapingian was arbitrarily adjusted to
472.5 Ma to allow for a realistic amount of time relative to the central date of the
underlying datum point (473.0±0.8 Ma, uppermost Floian Isograptus victoriae
lunatus graptolite Zone)50. For reference, the extrapolation resulted in an age of
c. 472.85 Ma for this level. The large stratigraphic distance between bracketing
datum points, coupled with the poor temporal constraint of the lower one
of these, results in a large uncertainty for the Middle-Upper Ordovician
(Darriwilian-Sandbian) boundary (Fig. 3). Simple linear interpolation yields an age
of c. 457.5 Ma. Determining a robust numerical estimate of the true uncertainty
associated with this boundary age is difficult, as the bracketing datum points with
uncertainties form a time span of nearly 7 Ma.

Only biostratigraphically well constrained and high-resolution (high analytical
precision) datum points associated with U-Pb data were included in the
construction of the timescale. Many of the points used in GTS2012 (ref. 27) were
excluded due to a lack of biostratigraphic and/or analytical precision. Likewise,
although the dates are quite precise, we disregarded the bentonite data of
Thompson et al.55 due to a significant lack of biostratigraphic control56. We do
note, however, that their data appears to substantiate a revision of the Middle
Ordovician timescale as proposed here, as it suggests that 469 Ma is reached already
in the Dapingian–Darriwilian boundary interval57 (cf. GTS2012 (ref. 27)). In total,
six datum points (excluding CRE data) were used for the calibration of the
timescale. While this number is essentially identical to that used in the GTS2012
for the same interval27, the datum points used here are typically better defined both
in terms of biostratigraphic and chronometric precision.

Data availability. The authors declare that data supporting the findings of this
study are available within the article and, where applicable, in cited literature.
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