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Abstract

An area of endemism (AOE) is a complex expression of the ecological and evolutionary history of a species. Here we aim to
address the principal drivers of avian diversification in shaping patterns of endemism in China by integrating genetic,
ecological, and distributional data on the Red-headed Tree Babbler (Stachyridopsis ruficeps), which is distributed across the
eastern Himalayas and south China. We sequenced two mtDNA markers from 182 individuals representing all three of the
primary AOEs in China. Phylogenetic inferences were used to reconstruct intraspecific phylogenetic relationships.
Divergence time and population demography were estimated to gain insight into the evolutionary history of the species.
We used Ecological niche modeling to predict species’ distributions during the Last Glacial Maximum (LGM) and in the
present. Finally, we also used two quantitative tests, an identity test and background test to assess the similarity of
ecological niche preferences between adjacent lineages. We found five primary reciprocally monophyletic clades, typically
separated approximately 0.2–2.27 MYA, of which three were deeply isolated endemic lineages located in the three AOEs. All
phylogroups were detected to have undergone population expansion during the past 0.3 MY. Niche models showed
discontinuous habitats, and there were three barriers of less suitable habitat during the LGM and in modern times.
Ecoclimatic niches may diverge significantly even over recent timescales, as each phylogroup had a unique distribution, and
unique niche characteristics. Vicariant events associated with geographical and ecological barriers, glacial refuges and
ecological differentiation may be the main drivers forming the pattern of endemism in China.
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Introduction

The area of distribution of a species is a complex expression

of its ecological and evolutionary history [1–2]. Integrating

phylogeographic and ecological data have provided new insights

on speciation and species’ distribution dynamics [3–7]. Phylo-

geographic studies suggest that geological, climatic, ecological

process and other factors all play roles in molding population

structure, eventually leading in some cases to reproductive

isolation and speciation [7]. Over the past two decades, the use

of genetic markers to identify evolutionarily distinct populations

has become routine [8]; this technique has played an important

role in describing the process of speciation [9–11], and revealed

the presence of cryptic endemic species [12]. In evaluating the

historical process of speciation, ecological data can complement

phylogeographic research by providing multifaceted information

about the origins, evolutionary history and present distribution

of species or phylogroups [13]. Ecological data also shows

enormous promise for elucidating how isolation, selection, and

speciation directly or indirectly link to earth history [14]. One

way to use these ecological data is in ecological niche modelling

(ENM), which use collection sites and ecological data modeled

in a Geographic Information System (GIS) framework to

identify factors that have contributed to the divergence of

terminal taxa [14–15]. Although controversy surrounds the

extent to which niche dimensions have been conserved in a

given group [16], ENM has the capacity to improve our

understanding of patterns of endemism and can accelerate the

discovery process for new species [4,6]. During the last decade,

research integrating these fields has become a powerful tool to

address issues in evolution, biogeography, ecology and conser-

vation biology [17–19].

Understanding the mechanisms shaping the present patterns of

species diversity and endemism is fundamental in biogeography

and evolutionary biology [13,20]. Operationally, an area that

contains at least one unique species or a unique combination of

species is an area of endemism (AOE) [21]. Biogeographic patterns

of endemism in China have been studied for birds, reptiles,

mammals, plants, insect, spiders and amphibians [22–28], leading

to the identification of three congruent AOEs: the Southwest

Mountainous Region (SMR, extending from the south of the

Tibetan Plateau to the Yunnan Mountains); Taiwan and Hainan
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Island (figure 1). Of the three AOEs, Lei et al. [29] found the SMR

have the highest richness of restricted range species and genera,

but the highest richness of zone-restricted species is on Taiwan

[30]. An AOE is a spatially and temporally bounded geographical

area [21]. Species’ current distribution patterns might result from

an amalgam of historical and current processes; the formation of

endemic species is complicated and closely related to geology,

climate, and the process of bio-evolution [29]. However, to date,

relative to other spatial scales, the processes and mechanisms

underlying the formation of areas of endemism remain poorly

understood in China [31–32], in spite of its global status as one of

the 17 megadiverse countries [33–34]. AOEs are determined by

tectonism creating physical barriers and by biotic dynamics

(dispersal, range expansions and contractions, and speciation as

well as local persistence related to local stability) [21,31].

Questions about AOEs may be best addressed by integrating

phylogeographic analyses with ENMs, as better integration across

geographical, geological and climate factors may form a more

comprehensive model of endemism [35–38].

We selected the Red-headed Tree Babbler (Stachyridopsis ruficeps),

a non-migrating bird in the Oriental realm [22,24], to address the

processes behind endemism in China. Currently, there are six

recognized subspecies: S. r. ruficeps, S. r. bhamoensis, S. r. davidi, S. r.

praecognita, S. r. goodsoni and S. r. pagana [39–40]. This species is

primarily distributed in China, with peripheral or local popula-

tions in the adjacent eastern Himalayas (Nepal, Bhutan and India),

northern Burma, Laos and Vietnam [39] (Fig. 1). This species

inhabits broadleaf evergreen forest, bamboo stands and thick

secondary bush growth in clearings from approximately 200–

2500 m in China [40].

Studies of recent divergences are particularly attractive because

the signatures of such events may not yet have been fully erased by

time, and it can be more straightforward to infer processes from

observed patterns of genetic variation [41]. The integration of

multiple complementary approaches is a powerful way to

understand the processes of diversification and speciation [7].

Therefore, in this paper, we attempt to address the principal

drivers of the diversification process and the mechanisms

underlying endemism in China by integrating a phylogeographic

Figure 1. Sampling sites and the geographic distribution of Stachyridopsis ruficeps lineages. Sampling localities are indicated by dots, and
the site numbers correspond to those in the Appendix. Each colour represents a lineage as identified in the phylogenetic trees. ‘‘–-’’ corresponds to
the species’ distributions: S. r. ruficeps is located in E Nepal to NE India and SE Xizang; S. r. bhamoensis in W & NW Yunnan and NE Burma; S. r. davidi in
C, E and S China, NW Laos and N Vietnam; S. r. praecognita in Taiwan; S. r. goodsoni in Hainan Island and S. r. pagana in S Vietman and S Vietnam [39–
40]. The pink areas on upper left represent the three primary AOEs in south China.
doi:10.1371/journal.pone.0046761.g001
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analysis of S. ruficeps with ENMs. Our results might also be able to

add further insight into the species’ global distribution and

endemism [42].

Methods

Ethics Statement
All of the samples used are unprotected bird specimens from the

specimen collection of the National Zoological Museum, Institute

of Zoology, Chinese Academy of Sciences (address: No1 Beichen

West Road, Chaoyang District, Beijing, China). Birds were

collected under a permit from the Forestry Department and

conformed to the National Wildlife Conservation Law in China.

No living animal experiments were conducted in the current

research. These samples did not concern ethical issues. The

Zoological Museum of the Institute of Zoology has the authority

over sample collections and exemptions for sample exports/

imports for scientific research purposes (No. 1999/84, provided by

Article VII from CITES). See also the recent publication of Dai et

al. 2011 in PLOS ONE [43].

Sample Preparation
Blood or tissue samples were obtained from 179 S. ruficeps

specimens collected from 16 sites in China including Taiwan

(Fig. 1, Table 1). Additionally, three Nepalese specimens from the

Natural History Museum of Denmark were used in this study. The

samples were stored in 100% ethanol in the field and transferred

to a 280uC freezer for long-term storage. Total genomic DNA

was extracted from blood or tissue samples using the QiagenTM

extraction kit following the manufacturer’s instructions. Samples of

S. r. pagana (only distributed in SC Vietnam) were not obtained

despite our efforts, so the 478 bp cytochrome b (Cyt b) sequence

acquired from GenBank (Access Number AF376886) was used to

reconstruct the phylogenetic relationships among subspecies of

S. ruficeps before the subsequent analysis.

Polymerase Chain Reaction (PCR) and Sequencing
Two mitochondrial DNA (mtDNA) genes were amplified using

the PCR; the 1340-bp cytochrome c oxidase I (COI) was amplified

with the ‘universal’ primer pair L6615 and H7956 [44]. The

1104 bp Cyt b gene was amplified with the new specific primers

CYTBUPA (59-AAT ATA AYT TTA ATG GCT CTC AAT C-

39) and CYTBLOA (59-ATA GTT TGA GTA TTT TGT TCT

CTA-39). The thermocycling program consisted of an initial

denaturation at 94uC for 5 min, followed by 40 cycles of 94uC for

40 s, 47uC for COI and 52uC for Cyt b for 50 s, and 72uC for

1 min, plus a final extension at 72uC for 8 min. The same primers

were used to sequence amplicons with a Big Dye Terminator

Cycle Sequencing Kit v.2.0 run on an ABI 377 automatic

sequencer. The sequences were assembled using Seqman II

(DNASTAR) and visually proofread against the chromatograms.

One sequence from Macronous gularis and two from Stachyridopsis

chrysaea (amplified using the primers above) were used as out-

groups. Three Nepalese specimens were amplified with the nested

primers (see Table S1).

Phylogenetic Analysis
The sequences were aligned using ClustalX [45], and

haplotypes for Cyt b, COI and the combined sequence were

generated in DnaSP 5.10 [46]. We concatenated the two

mtDNA fragments into a combined dataset, and all further

analyses were based on the combined dataset. Modeltest 3.07

[47] and the Akaike Information Criterion [48] were used to

identify the appropriate nucleotide substitution models for

phylogeny reconstruction. Maximum likelihood (ML) and

Bayesian inference (BI) phylogenetic analyses were used to

reconstruct the phylogenetic relationships among the haplotypes.

We performed ML analyses in PHYML [49] and assessed nodal

support using 1000 bootstrap replicates. BI was performed with

MrBayes 3.12 [50] with the default parameters using the models

selected by Modeltest. Initially, four Metropolis-coupled Monte

Carlo Markov Chains (MCMCs) were run with trees sampled

Table 1. The map number, latitude, longitude and haplotypes of each sampling site.

Site label Sampling site Number Latitude, longitude Haplotypes identified Subspecies

Nepal 3 28.35N,84.23E N1–N3 S. r. ruficeps

1 Chayu 4 28.56N, 97.08E H1–H3 S. r. ruficeps

2 Yunnan 15 24.93N, 98.77E H4–H15 S. r. bhamoensis

3 Panzhihua 7 27.04N, 101.97E H16–H20 S. r. bhamoensis

4 Sichuan 12 30.07N,102.99E H21–H29 S. r. davidi

5 Shaanxi 18 33.53N,107.83E H30–H38 S. r. davidi

6 Hubei 12 31.57N,110.14E H39–H47 S. r. davidi

7 Chishui 18 28.36N,105.94E H33, H48–H61 S. r. davidi

8 Guiding 19 26.60N,107.15E H33, H45, H53, H55, H62–H74 S. r. davidi

9 Guangxi 8 22.92N,106.48E H75–H81 S. r. davidi

10 Guilin 15 25.20N,109.87E H33, H55, HH82–H89 S. r. davidi

11 Guangdong 4 25.21N,113.60E H90–H93 S. r. davidi

12 Hunan 5 28.79N,113.83E H94–H98 S. r. davidi

13 Anhui 7 30.19N,118.55E H99–H105 S. r. davidi

14 Fujian 9 26.57N,117.52E H104–H112 S. r. davidi

15 Taiwan 13 23.46N,120.90E H113–H123 S. r. praecognita

16 Hainan 13 18.99N,109.33E H124–H135 S. r. goodsoni

doi:10.1371/journal.pone.0046761.t001
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every 100 generations for 4 million generations or more until

the standard deviation of split frequencies was below 0.01. The

first 25% of generations were discarded as ‘burnin’, and the

posterior probabilities were estimated for the remaining saved

generations.

Population Structures, Genetic Diversity and Gene Flow
among Regional Groups

A hierarchical analysis of molecular variance (AMOVA) was

performed to compare levels of genetic diversity within and among

several possible population groupings of S. ruficeps using ARLE-

QUIN 3.1 [51] with 20,000 permutations. The groupings that

maximized values of FCT and were statistically significant indicated

the most parsimonious geographical subdivisions.

The numbers of haplotypes (H), values of haplotype diversity

(h) and nucleotide diversity (p) for each regional group based on

the result of the AMOVA were computed in ARLEQUIN 3.1

[51].

Genetic differentiation between regional groups was evaluated

based on pairwise values of FST. The statistical significance of the

estimates was assessed after 10,000 permutations. Gene flow (Nm)

among groups was estimated according to the values of FST. FST

and Nm were calculated using the software ARLEQUIN 3.1.

Genetic Distance and Divergence Time Estimation
The net genetic distance (D) between geographical subdivisions

was assessed by comparing the corrected average pairwise

difference (PiXY – (PiX + PiY)/2) using MEGA 4.0 [52] under

the Tamura-Nei substitution model [53] with a 500 replicate

bootstrap. The PiXY is the average number of pairwise differences

between two populations X and Y, and PiX and PiY are the

average numbers of pairwise differences within each population.

The divergence times among the geographical groups were

estimated using the formula tdiv time = D/2m, where m is the

mutation rate of the combined dataset. Because no appropriate

fossils were available with which to date the ancestor of

Stachyridopsis, we were only able to use a conventional molecular

clock, the avian mitochondrial gene (2%) [54–55], to provide an

approximate estimation of the divergence time. Although the

absolute timing of divergences may be debatable, the sequence of

events and the relative timing depicted here are expected to

approximate the evolutionary history of S. ruficeps.

Population Demographic History
Values of Tajima’s D [56] and Fu’s Fs [57] were used to assess

the evidence for population expansion for the geographical groups

arranged by AMOVA partitions and phylogenetic topology. We

also used Bayesian skyline plots (BSP) [58] implemented in the

software program BEAST 1.4.7 [59] to depict the dynamics of

population size dating back to the time of the most recent common

ancestor (TMRCA). We performed BSP for each geographical

group and all groups combined. All analyses were run for 100

million iterations, sampling genealogy and population size

parameters every 2000 iterations and discarding the first 10% as

burn-in. The nucleotide substitution model we used was

TVM+I+G, as selected in Modeltest [47]. Although the mean

substitution rate was fixed by assuming a conventional avian

molecular clock (see Results section), we used an uncorrelated

lognormal model [60] to account for rate variation among

lineages. Default settings of Bayesian priors were used. In addition,

the TMRCA of each geographical group and all groups combined

were estimated using the same mutation rate as above. The results

were summarized using TRACER 1.3 [61].

Ecological Niche Modeling
Species’ ecological characteristics are generally conserved over

moderate periods of time despite profound changes in climatic and

environmental conditions [16,62–64]. As there were no earlier

records of environmental conditions during the Pleistocene glacial

cycle available for China, even though the divergence times

among lineages were prior to the last glacial maximum (LGM,

21,000 yr BP)(see below), we performed ENM to estimate the

potential distributions for S. ruficeps in the present and during

LGM, with the goal of modeling the impacts of Pleistocene

climatic oscillations on the species’ distribution. We modeled the

predicted suitable habitat using maximum entropy methods in the

program MAXENT 3.3.2 [65], which has been shown to be

robust for variable sample sizes and to perform well compared

with other methods in predicting past and present species

distributions [66–68]. We considered the 19 bioclimatic variables

at a 2.59 spatial resolution available from the WorldClim database

(see below) [69]. LGM climate data were simulated from two

models: the Community Climate System Model (CCSM) [70] and

the Model for Interdisciplinary Research on Climate (MIROC)

[71]. To minimize model over-fitting, we calculate Pearson’s

correlation coefficient (r) between each pair of variables using R.

Variables with r .0.8 were considered as highly correlated, and

we selectively removed one variable from each of these pairs. We

chose variables that represent climate seasonality or extremes

rather than average temperature or precipitation. The final model

included 9 variables: BIO2–mean diurnal temperature range;

BIO3–isothermality; BIO5–max temperature of warmest month;

BIO6–min temperature of coldest month; BIO7–annual temper-

ature range; BIO8–mean temperature of the wettest quarter;

BIO13–precipitation in the wettest month; BIO14–precipitation

in the driest month and BIO15–precipitation seasonality. Species

occurrence data included the 82 sampling sites recorded in the

field and sightings from some bird-watching sites (downloaded

from http://birdtalker.net/index.asp) with georeferenced data

specific enough for the longitude and latitude to be estimated

with confidence using Google Earth (http://www.google.com/

earth). A total of 220 presence records were used after removing

the localities that were separated from each other by less than 0.1

geographical degrees to minimize spatial autocorrelation.

The ENM was constructed based on current bioclimatic

variables, then projected to the LGM variables built on the

CCSM and MIROC models. The output map was generated by

averaging the suitable probability within each grid cell. This

approach is considered advantageous because it is not biased by

limited absence records [66], although it does assume that

preferences for climatic conditions do not change over time. We

used the default convergence threshold (1025) and set the

maximum iterations to 2000 and number of replicates to 10.

The logistic output format was chosen, which produces continuous

probability values for each grid cell from 0 to 1, an indicator of the

relative suitability for the species. Twenty-five percent of the

localities were randomly selected to train the model and the

remaining 75% to test the model performance. We also performed

jackknife resampling to measure variable importance and explore

the primary environmental factors restricting the Red-headed

Tree Babbler’s geographic distribution. Model performances were

evaluated by averaging the area under the curve (AUC) values for

the receiver operating characteristic (ROC) curves over ten

replicate runs. An AUC .0.5 indicates that a model performs

better than random, and an AUC .0.9 indicates an excellent

performance [72].

To assess the impacts of the ecological niche on the formation

and maintenance of separate lineages, we also modeled the

Process and Mechanism underlying Endemism in China
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suitable habitats for the inferred lineages. We built reduced-ENM

models based only on the localities in the three AOEs (proven to

be three monophyletic lineages; Southwest, Taiwan and Hainan,

see Figs. 1 and 2) and the remaining sites, including the lineages of

Central and Southeast. To facilitate model interpretation, we

selected the widely used lowest presence threshold (LPT) [73] to

distinguish ‘suitable’ from ‘unsuitable’ areas.

Niche Similarity
Niche similarity between adjacent lineages was calculated

following Warren et al. [74], who propose two metrics of niche

overlap based on ENM predictions, namely Schoener’s D [75] and

‘Warren et al.’s’ I [74]. These statistics quantify niche overlap and

range from 0 (no overlap) to 1 (complete overlap). First, niche-

overlap values were calculated from the ENMs for pair of

populations using ENMtools [74]. To test the null hypothesis that

the niches of two populations are identical, we performed the

identity test in ENMtools, which evaluates equivalency between

ENMs by comparing the observed values of D and I for the two

models with a distribution of values of D and I based on

randomized pseudoreplicates. This distribution is generated by

randomly assigning occurrence points from both groups into one

lineage or the other, simulating the potential overlap of a group of

points occurring across a given geographical area [74]. As we are

primarily reporting interactions between sister lineages, we did not

employ the possible phylogenetic corrections for these analyses

[74]. We calculated the observed D and I values and simulated

distributions of D and I using 100 pseudoreplicates for all pairwise

comparisons of the inferred lineages. We also wish to determine

whether ENMs were more similar than expected by chance based

on the geographical regions in which they reside. We used the

background randomization procedure in ENMtools, which

compares the observed niche overlap values to a null distribution

of 100 overlap values generated by comparing the ENM of one

taxon to an ENM created from random points drawn from the

geographic range of the other taxon [74]. Because this process is

then repeated for both taxa in the comparison, two null

distributions were generated per analysis.

Results

Phylogenetic Analysis
We obtained 938 bp of the partial Cyt b gene and 1237 bp of

the partial COI gene from 179 individuals collected in China. The

Cyt b sequences contained 132 polymorphic sites, defining 104

haplotypes (GenBank Access Number HM191271–HM191346,

HQ917474–HQ917501). The COI sequences yielded 167 poly-

morphic sites, identifying 94 haplotypes (GenBank Access Number

HM191347–HM191416, HQ917502–HQ917525). The com-

bined dataset identified 135 haplotypes (Table 1), and each of

the Nepal samples identified a unique haplotype.

The results from Modeltest indicated that the best model for the

combined dataset was TVM+I+G (I = 0.7045, G = 1.9012).

Phylogenetic reconstructions of the ML and BI analyses produced

nearly identical topologies that broadly corresponded to distinct

geographical regions (Fig. 2). Five major well-supported clades

were identified that divided S. ruficeps into the Southwest (sites1–3),

Taiwan (site 15), Hainan (site 16), Southeast (sites 11–14) and

Central (sites 4–12) (Figs 1 and 2, Table 1). The relationships

among these lineages were fully supported (bootstrap.75%), of

which the Southwest, Taiwan and Hainan phylogroups were

coincident with the three primary AOEs; the Southwest

phylogroup constituted a basal lineage, whereas the Hainan

phylogroup was represented as a tip clade. These clades are

allopatric with the exception of two sympatric sites on Guangdong

and Hunan (sites 11 and 12), which may be a secondary contact

zone between the Southeast and Central clades. Similar subdivi-

sions have also been evident in other bird species [76]. Most of the

locations of the geographic phylogroups were consistent with the

subspecies distribution ranges except for the subspecies S. r. davidi,

which included two monophyletic groups (Southeast and Central)

(Fig. 1, Table 1). One Cyt b sequence of S. r. pagana from Vietnam

(AF376886, 477 bp sequence available but not included in Fig. 2)

was nested within the Central clade. The Southwest phylogroup

was closely related to the Nepal samples of S. r. ruficeps, which

could also be divided into two subclades (Figs. 1 and 2, Table 1).

In the AMOVA, the highest amount of genetic variance

between groups (FCT = 0.89, p,0.001) was found when we

subdivided the samples into six groups based on the phylogenetic

results (Table S2). A long-term absence of gene flow among all

geographical groups was indicated by the significant, high FST and

the negligible Nm (Table 2). The haplotype diversities of the

geographical groups ranged from 0.833 to 0.99, and nucleotide

diversities ranged from 0.00046 to 0.00485 (Table 3).

Genetic Distance and Divergence Time
The net genetic distance between the Southwest group and the

remaining clades was 0.042 (0.0372–0.0454), so the basal split time

was estimated to be 2.13 Ma (1.86–2.27 Ma); the next oldest basal

clade was Taiwan, with a net genetic distance of 0.0288 (0.0252–

0.0332) and a divergence time of 1.44 Ma (1.26–1.66 Ma). The

net genetic distance between Xizang and Yunnan was 0.0074

(0.005–0.009), and the divergence time was 0.37 Ma (0.25–

0.45 Ma). The Hainan and Southeast lineages diverged most

recently, with a net genetic distance of only 0.0054 (0.004–0.006),

and a divergence time of 0.27 Ma (0.2–0.3 Ma), more recent than

the divergence between these groups and Central clade of S. r.

davidi at approximately 0.53 Ma (0.45–0.66 Ma) (Fig. 2). The

estimated net distances and divergence times among the

phylogroups are shown in Table S3.

Population Demographic History
Following the phylogenetic tree results, the groups defined for

demographic expansion tests included the four clades and the two

subclades (Fig. 2; Table 3). Negative values of Fu’s Fs and Tajima’s

D were found for all the six groups, although only the Hainan,

Southeast and Central phylogroups were statistically significant (FS

a= 0.02; D a= 0.05). The BSP simulated the changes in

population size since the TMRCA (Fig. 3). For the whole dataset,

the TMRCA was dated to 3.299 Ma (95% CI: 1.935–4.784). Due

to its small sample size, the Xizang group (n = 4) was excluded

from the BSP analysis. Recent population increases were observed

for all five of the other groups, with population growth since 0.25,

0.25, 0.25, 0.15 and 0.20 Ma for the Yunnan, Taiwan, Hainan,

Southeast and Central groups respectively. TMRCAs were

inferred back to 0.369 Ma (95% CI: 0.199–0.570), 0.389 Ma

(95% CI: 0.146–0.626), 0.249 Ma (95% CI: 0.139–0.379),

0.215 Ma (95% CI: 0.087–0.401) and 0.303 Ma (95% CI:

0.155–0.517) for the Yunnan, Taiwan, Hainan, Southeast and

Central groups, respectively (Table 3).

Ecological Niche Modeling and Equivalency
MAXENT appeared to perform well for the full ENM, with an

average training AUC of 0.96560.002. These binomial probabil-

ities (p,,0.0001) for every run suggested that the model

predicted significantly better than random expectations at all

thresholds. The present-day spatial prediction generated for the

full ENM was largely congruent with the known species

Process and Mechanism underlying Endemism in China
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distribution (Fig. 4a), and the species’ suitability in the three AOEs

was lower during the LGM than in the present. Although there

were land bridges over the Taiwan and Qiongzhou Straits during

the LGM, both areas appeared unsuitable at the LGM (Fig. 4b).

Both the present-day and LGM predictions were consistent with

the findings of our molecular analyses. The model predicted that

populations of Red-headed Tree Babbler were separated by

climatically unsuitable habitats (Fig. 4a). This result corroborated

Figure 2. Bayesian trees of all combined mitochondrial haplotypes. Values above branches represent maximum likelihood bootstrap values
and Bayesian a posteriori probability; values below branches represent the divergence time between lineage groups. Outgroups names are shown.
The site numbers and haplotype names correspond to Table 1.
doi:10.1371/journal.pone.0046761.g002
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the analyses of population structure, which suggested that there

were strong barriers to dispersal. In addition, both the geographic

extent and relative suitability of habitats are predicted to have

been reduced at the LGM in comparison to the present (Fig. 4b).

The latter result paralleled the demographic analyses, which

suggested that populations might have increased in size in response

to a geographic expansion of suitable habitats.

The reduced ENMs developed using localities from clade A

(training AUC values 0.99560.001), clade B (0.99860.001), clade C

(0.99860.001) and clade D+E (0.96060.004) alone also performed

well in predicting the range-wide distribution of S. ruficeps. The

predicted distributions for each lineage closely matched their present

distributions (Fig. 4c). Thevariables with the greatest contributions to

the models for each lineage were as follows: BIO3 (isothermality)

contributed most to Southwest (62.9%), BIO7 (temperature annual

range) contributed most to Taiwan (77.8%) andHainan (76.5%), and

BIO2 (mean diurnal temperature range) contributed most to

Southeast and Central (57.5%).

The similarity tests are presented in Table 4 and Figure 5. All of the

identity tests showed that Schoener’s D and I values for the pairwise

comparisons of interest were significantly lower than expected from a

random distribution for all comparisons (P#0.01), so the null

hypothesis of niche identity for all adjacent lineages was rejected.

Thus, the niches of all the lineages are not identical to each other. The

null hypothesis of background test could not be rejected for either

direction of the Southwestvs.Central andSoutheast lineage (Table 4,

P.0.05). This indicates that the niches are only as similar as can be

expected from random niches drawn from the available climates, so

the ecological niches may have diverged between these two lineages.

For each island lineage compared with the Central and Southeast

lineage, the null hypothesis of background test was rejected for one

direction (Table 4, P#0.01), indicating that the niches are more

similar to each other than expected at random [74], which is evidence

for strong niche conservatism. However, in terms of the very

significantlydifferentiated niche identity (Table 4,P#0.01), although

the niches of the island lineages vs. Central and Southeast lineage

were significantly similar, they are not identical [16].

Discussion

Phylogeographic Structure and Lineage Endemicity
Our analysis revealed that the haplotype lineages of S. ruficeps

are exclusive to geographic regions and that each AOE harbors a

unique monophyletic clade: Southwest clade in SMR, Taiwan

clade in Taiwan and Hainan clade in Hainan Island. The

Southwest clade was the basal clade in our study, followed by the

Taiwan clade, whereas Hainan was the proximal clade. Compar-

isons of the genetic patterns of co-distributed species may reveal

historical processes that have occurred at the landscape scale. A

congruent pattern was found in Alcippe morrisonia, which is

distributed in similar geographical areas and habitats [76],

although the TMRCA and divergence times of the main lineages

were approximately twice those of S. ruficeps (the molecular clock,

effective population size, generation time or the species’ evolu-

tionary history may cause this difference). Congruent patterns are

also evident in other birds, such as Leucodioptron canorum [77] and

Aegithalos concinnus [78], despite their relatively restricted distribu-

tion ranges. This congruent pattern of lineage divergence may be

the result of similar responses to physiographic and environmental

shifts during the late Pliocene and Pleistocene. Deep isolated

lineages with disjunctive geographical ranges, negligible Nm, and

the significant ecological niche divergence led us to regard the

populations in the three AOEs as potential distinct species. Further

studies of their diagnosability and vocalizations and nuclear data

for modelling gene flow are required for a full assessment of the

taxonomic ranks of these populations. The endemic lineages may

have independently undergone long-term evolution and adaption

to local environments, which implies that some form of isolating

mechanisms have evolved.

Vicariance Hypothesis
The disjunctive distribution of the phylogroups indicated that

an allopatric process may be the most likely mode of divergence,

and geological events might be important factors for this

geographic isolation. The initial divergence of the species divided

the Southwest lineage from the others at the Qionglai Mts and Ta-

liang Mts. approximately 1.86–2.27 Ma. This geographical divide

has been documented in numerous species of plants and animals

[43,76,78–79]. The uplift of the Tibetan Plateau had profound

effects on the geological environment of the Plateau and adjacent

areas [80] and may have promoted the habitat fragmentation of

species [81]. Although the timing of the tectonic uplift of the

Tibetan Plateau remains controversial [82–83], the strongest

uplift, involving the whole Plateau and its marginal mountains,

commenced at 3.6 Ma, after which there were two additional

tectonic uplifts [84].

Considering the divergence time and the middle or lower

altitude distribution of this species, we hypothesized that the uplift

of the Tibetan Plateau might be an important factor in the

phylogeographic breaks within S. ruficeps. The climatic fluctuations

during the Pliocene/Pleistocene boundary might also have been

an important cause of the isolation of the Southwest lineage. From

Table 2. Pairwise population differentiation and gene flow
among populations (Nm) of the five lineages based on
mtDNA haplotype frequencies.

Groups Xizang Yunnan Taiwan Hainan Southeast Central

Xizang 0.35 0.04 0.04 0.03 0.04

Yunnan 0.59*** 0.06 0.05 0.04 0.04

Taiwan 0.93*** 0.90*** 0.07 0.06 0.06

Hainan 0.93*** 0.91*** 0.88*** 0.29 0.14

Southeast 0.95*** 0.92*** 0.89*** 0.63*** 0.15

Central 0.93*** 0.93*** 0.90*** 0.79*** 0.77***

Note: Below diagonal: F-statistics for pairwise population differentiation,
***P,0.001 after 10000 permutations. Above diagonal: Nm among
populations.
doi:10.1371/journal.pone.0046761.t002

Table 3. Number of samples (N), haplotypes (H), haplotype
diversity (Hd), nucleotide diversity (p), Tajima’s D, Fu’s Fs and
TMRCA of the six geographic groups of Stachyridopsis ruficeps.

Groups N H Hd p D Fs TMRCA(mya)

Xizang 4 3 0.833 0.00046 20.71 20.887

Yunnan 23 18 0.976 0.00485 21.51 24.48 0.369

Taiwan 13 11 0.974 0.00376 21.305 22.666 0.389

Hainan 13 12 0.987 0.00374 21.563 24.319* 0.249

Southeast 21 19 0.99 0.00266 21.78 212.781*** 0.215

Central 106 73 0.988 0.00338 22.18** 276.446** 0.303

*P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0046761.t003
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2.4 Ma onward, ice sheets began to expand in the Northern

Hemisphere [85], resulting in altitudinal shifts [86] and contrac-

tions of species distributions. The importance of Pliocene/

Pleistocene boundary climate fluctuations for avian speciation

has also been supported by most of the North American birds [87].

Our ENMs (Figs. 4a, b) suggest that the Qionglai Mts and Ta-

liang Mts. (fig. 1) were less suitable during both the glacial (LGM)

and interglacial (present day) stages. Therefore, we could associate

the initial isolation with this cooling event, the topographic

barriers as a primary cause of the isolation of S. ruficeps populations

dating at least from the LGM, and the absence of gene flow

between these lineages, which led to incipient allopatric diversi-

fication (Fig. 1).

The divergence of the Taiwan group occurred approximately

1.26–1.66 Ma. A long independent evolution of the lineages

inhabiting this island has also been found in other birds [76–77].

Pleistocene glacial-interglacial cycles were likely to have resulted in

the repeated isolation and divergence of haplotypes on islands with

favorable habitats [78,88]. For birds with poor dispersal ability,

the Taiwan Strait (Fig. 1) might have been an important barrier

during interglacial periods when the land bridge disappeared.

Similar to our Cyt b result, Li et al. [89] reported completely

interrupted gene flow between Hwamei and Taiwan Hwamei (L.

canorum and L. taewanum) before 0.5 Ma. We may wonder why the

independent evolution of the Taiwan population could be

sustained over such a long period, as Taiwan was repeatedly

connected and disconnected from the East Asian continent during

the Pleistocene [90]. Exogenous factors, such as habitat barriers,

may have contributed significantly to maintaining the evolutionary

isolation. During the LGM, although the island connected with

the mainland, ENM showed low suitability for the land-bridge

areas (Fig. 4b). The reconstructed paleo-vegetation of East Asia

also suggests that the Taiwan Strait was covered by savanna rather

than evergreen broad-leaved forest during glacial periods [91–92].

Therefore, we assume that the species was unlikely to survive in

these areas during the LGM. The absence of appropriate habitat

may have constricted gene flow between the island and mainland

populations despite the presence of a land bridge.

Similar to the Taiwan lineage, the Hainan Island lineage may

also have been isolated by the Qiongzhou Strait or unsuitable

habitat. However, the Hainan population diverged from the

mainland population only during the period of the most violent

climatic cycles in the middle Pleistocene [93], which was much

more recently than the Taiwan population. Our result is in

agreement with previous studies, such as those of A. morrisonia [94]

and L. canorum [77], the results of which showed that the

divergence time of Hainan lineages from the mainland lineages

is more recent than that of Taiwan lineages from the mainland

lineages. Generally, Taiwan has a greater number of endemic

species than Hainan [29–30], which can be considered in relation

to its isolation time, elevation (with more suitable montane habitats

in Taiwan than in Hainan) [90,94] and remote isolated distance

(230 km from the mainland, compared to 20 km in the case of

Hainan) [94]. Our result supports the conclusion that ecological

barriers might be the most plausible explanation for the different

Figure 3. Bayesian skyline plots of past population demographic trends in mitochondrial lineages. x-axis time in 106 yr BP; y-axis is
estimated population size [units = Net (the product of effective population size and the generation time in years). The mean estimates are joined by a
solid line, and dashed lines delineate the 95% HPD limits. (a) All sequence; (b) Southwest; (c) Taiwan; (d) Hainan Island; (e)Southeast; (f) Central.
doi:10.1371/journal.pone.0046761.g003
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degrees of divergence between the two islands and China’s

mainland, which is in agreement with general island theory [95].

Pleistocene Refugia Hypothesis
The patterns of endemism observed today might be a relict

pattern maintained by periodic eliminations from large areas with

the exception of areas that remained stable during the upper

Pleistocene due to local topographic moderation of the climate

[96] and because species can easily track climatic shifts within

steep montane habitats [31]. The divergence of lineages within S.

ruficeps occurred approximately 0.267–2.27 Ma. Although these

estimates are associated with significant uncertainty,they all fall

within the Pleistocene. Isolated refugia over one to several full

glacial cycles could induce speciation [97–99]. Even without niche

distributions earlier than the LGM, the BSP results showed that

each lineage had undergone population expansion after the initial

isolation. Compared with other species in southern China, such as

Taxus wallichiana [78], L. canorum [100], Dysosma versipellis [79], A.

morrisonia [76], and Bambusicola thoracica thoracica [101], congruence

among these genetic structures across these subregions support a

long-term restriction of southern China to multiple independent

localized refugial areas, allowing the populations in these areas to

persist through several climatic cycles in heterogeneous land-

scapes. Quaternary refugial isolation was also likely to have

Figure 4. The spatial distributions of S. ruficeps predicted by Maxent. Present (a) and the LGM (b) using all localities, and the reduced
distributions for each clade (c) in the present. ‘‘?’’ designates the observed distribution of S. ruficeps. Levels of shading represent continuous logistic
probabilities of bioclimatic suitability, ranging from highest suitability (red) to unsuitable (blue) habitat for the full distribution. For the reduced
distributions, we only used two states suitability or unsuitability.
doi:10.1371/journal.pone.0046761.g004

Table 4. Tests of niche similarity. Each test followed by an assessment of statistical significance.

Lineage Identity test Background test

D I D I

Southwest vs. Central and Southeast 0.079** 0.289** 0.079 ns, ns 0.289 ns, ns

Taiwan vs. Central and Southeast 0.107** 0.268** 0.107**, ns 0.268**, ns

Hainan vs. Central and Southeast 0.111** 0.299** 0.111**, ns 0.299**, ns

Significant of background tests are given as ‘‘other lineage predicting Central and Southeast lineage, Central and Southeast lineage predicting other lineage’’.
*, P#0.05,
**, P#0.01,
ns, P.0.05.
doi:10.1371/journal.pone.0046761.t004
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enhanced allopatric (incipient) species formation in temperate

plants in East Asia [79,92,102–104].

Both in the present and during the LGM, past climatic cycles

may have profound impacts on the genetic variability and

distribution of endemic lineages. During the LGM, there was

more suitable habitat for the Southwest than for the island

lineages, although populations might also have contracted to the

western Chinese boundary region or the Himalayas (Fig. 4b); the

genetic results showed further phylogeographic structuring and

greater genetic variation. Mountainous areas may play a key role

in speciation [105], as they create a mosaic of microclimates of

relative stability that allow species to persist over much of their

range [102]. The SMR has the most heterogeneity and

biogeographical complexity in China. Considering the ‘‘ecological

island’’ effect in the SMR [30], genetic exchange was restricted

during climate oscillations. Our results confirmed the importance

of mountainous environments as barriers in preventing gene flow,

promoting speciation and maintaining high endemism [28].

Ecological Adaptation Hypothesis
Once populations have become genetically differentiated, their

divergence status can be maintained if they have differentially

adapted to regional ecological conditions, as geographic differ-

ences in selection pressures can act as a strong barrier to gene flow

[106–107].

Even with the same suite of environmental conditions available

to them, the lineages’ tolerance of the environmental conditions

could diverge significantly. Our results predict almost complete

ecological separation between all adjacent lineages (Fig. 4, 5). This

suggests that environmental preferences are labile even over recent

timescales, and species may evolve significant differences even

between recently diverged lineage pairs as natural selection acts on

populations in ecologically heterogeneous environments [108].

Niche divergence may lead to lineage formation when populations

adapt to new environments [108].

Overall, the formally recognized subspecies of S. ruficeps can

mostly be confirmed genetically as distinct phylogeographic units;

not only have these units diverged in allopatry, but they also show

distinctive adaptation trends, Thus, each phylogroup might have

undergone divergent evolution in physiological and/or life history

traits, with adaptation to different eco-climatic conditions. Taiwan

has a subtropical island climate (warm and humid all year round).

Hainan Island has a tropical monsoon maritime climate (minimal

temperature annual range, with distinct dry and rainy seasons).

Figure 5. Sampling for the niche similarity test. I and D are two distinct measures of niche similarity (Warren et al., 2008). The arrows indicate
the observed values relative to the frequency distributions of random replicates from the niche-identity and niche-background tests.
doi:10.1371/journal.pone.0046761.g005
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The southwest mountain region is affected by the Indian monsoon

(with a rainy summer and autumn) and, thus, has a relatively drier

climate. The Central/Southeast lineages are exposed to the Pacific

monsoon and have a cold winter and warm/humid summer [109].

This climatic heterogeneity should have ecologically constrained

the potential for postglacial expansions and then prevented

effective migrations among ecologically distinct regions. There-

fore, the current pattern of distribution of the three AOE groups in

China appears to be defined by adaptive differences reinforcing

the role of physical barriers. As a consequence, there has been little

or no gene flow and the patterns of differentiation created during

historical isolation have therefore been maintained. Thus, our

study illustrated that the lineages representing separate areas of

endemism have a long history of independent evolution, enabling

adaptations to local conditions. Speciation across geographical

barriers can be influenced by niche divergence in ecologically

distinct habitats [3,4,6]. The highly diversified habitats and

geographically separated environments might have reinforced

the isolation of populations in maintaining the genetic lineage or

species endemism.

Conclusion
Intraspecific data are rarely used to illustrate endemism. In this

study, we integrated the phylogeography of the non-migrating

oriental bird Stachyridopsis ruficeps and ENMs to address the

principal drivers of avian diversification and the formation of

endemism in China. We found evidence from both the

mitochondrial DNA and the modeled distribution of the species

that there is significant geographic structure in S. ruficeps. Deeply

isolated endemic lineages with disjunctive geographical ranges

were generally separated before the climatically most unstable

Late Pleistocene. The phylogeographic patterns of our study

indicate that vicariant events due to geographical or ecological

barriers might be the drivers or facilitators in forming these

endemic lineages or putative species, after which ecological niche

differentiation resulted in a situation where expanding populations

remained parapatric. Refugia are directly responsible for main-

taining the endemic lineages, which may supply the source for

speciation. Major biotic responses to climatic change involve

persistence and resilience rather than large-scale migration,

indicating the importance of dynamic evolutionary processes and

a mosaic of habitats in heterogeneous landscapes for the

persistence of species through changing environmental conditions.

The deep isolation and complex genetic differentiation of the study

species highlight the SMR as the center of origin for genera and

species. However, as a longer-isolated and more distant island,

Taiwan has the highest proportion of strict endemics.
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96. Fjeldså J, Lambin E, Mertens B (1999) The relationship of species richness and

endemism to ecoclimatic stability - a case study comparing distributions of
Andean birds with remotely sensed environmental data. Ecography 22: 63–78.

97. Klicka J, Zink RM (1997) The importance of recent ice ages in speciation: a

failed paradigm. Science 277: 1666–1669.
98. Johnson NK, Cicero C (2004) New mitochondrial DNA data affirm the

importance of Pleistocene speciation in North American birds. Evolution 58:
1122–1130.

99. Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and

extinction rates of birds and mammals. Science 315: 1574–1576.
100. Li SH, Yeung CK, Feinstein J, Han L, Le MH, et al. (2009) Sailing through the

Late Pleistocene: unusual historical demography of an East Asian endemic, the
Chinese Hwamei(Leucodioptron canorum canorum), during the last glacial

period. Molecular Ecology 18: 622–633.
101. Huang Z, Liu N, Liang W, Zhang Y, Liao X, et al. (2010) Phylogeography of

Chinese bamboo partridge, Bambusicola thoracica thoracica (Aves: Galli-

formes) in south China: Inference from mitochondrial DNA control-region
sequences. Molecular Phylogenetics and Evolution 56: 273–280.

102. Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species
diversity of temperate plants. Nature 407: 180–182.

103. Qian H, Ricklefs RE (2001) Diversity of temperate plants in East Asia – reply.

Nature 413: 130.
104. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China

and adjacent regions: Tracing the genetic imprints of Quaternary climate and
environmental change in the world’s most diverse temperate flora. Molecular

Phylogenetics and Evolution 59: 225–244.
105. Wollenberg KC, Vieites DR, Van Der Meijden A, Glaw F, Cannatella DC, et

al. (2008) Patterns of endemism and species richness in malagasy cophyline

frogs support a key role of mountainous areas for speciation. Evolution 62:
1890–1907.

106. Slatkin M (1987) Gene flow and the geographic structure of natural
populations. Science 236: 787–792.

107. Barton NH (1979) Gene flow past a cline. Heredity 43: 333–339.

108. Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche
conservatism and the origin of species. Evolution 58: 193–197.

109. Liu H, Xing Q, Ji Z, Xu L, Tian Y (2003) An outline of Quaternary
development of Fagus forest in China: palynological and ecological

perspectives. Flora 198: 249–259.

Process and Mechanism underlying Endemism in China

PLOS ONE | www.plosone.org 13 October 2012 | Volume 7 | Issue 10 | e46761


